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Abstract: We study the singular Bertrand curves and Mannheim curves in the 3-dimensional
space forms. We introduce the geometrical properties of such special curves. Moreover, we get the
relationships between singularities of original curves and torsions of another mate curves.
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1. Introduction

In classical differential geometry, Bertrand curves as special curves have been deeply explored in
Euclidean space; see [1]. For instance, in [2] Pears proved that a Bertrand curve in Rn must belong to
a 3-dimensional subspace R3 ⊂ Rn. In [3], Izumiya and Takeuchi constructed Bertrand curves from
spherical curves and verified a fact that two disjoint minimal asymptotic curves on a ruled surface both
of which are transversal to rulings are Bertrand curves in [4]. Moreover, mathematicians also studied
Bertrand curves in other spaces, such as in the 3-dimensional sphere space S3 [5], in the 3-dimensional
Riemannian space forms [6] and in non-flat 3-dimensional space forms [7,8].

Mannheim curves as another kind of special curves are broadly concerned. In [9], Liu and Wang
focused on the Mannheim mate and showed the necessary and sufficient conditions for the existence
of curves. Meanwhile, Mannheim curves also have been studied in the 3-dimensional Riemannian
space forms [10] and in non-flat 3-dimensional space forms [11].

Though we cannot construct a Frenet–Serret frame of a smooth curve at a singularity, Takahashi
and Honda defined a framed curve in Rn, see [12,13]. If a smooth curve has a moving frame at every
point, then we call it a framed curve. Notice that a framed curve may be having singularities. Framed
curves are a generalization of Legendre curves and regular curves. For the regular Bertrand and
Mannheim curves, Takahashi and Honda found that the existence condition is not sufficient. It turns
out that the non-degenerate condition, that the curvature does not vanish, is needed. In [14], the
authors added the non-degenerate condition when proving a regular curve is a Bertrand or Mannheim
curve. They discussed a framed curve in R3, under what conditions, can be either a Bertrand or
Mannheim curve. They found an interesting fact. If a framed curve is a Bertrand curve, then it is also a
Mannheim curve. This result is not true for the regular case. In this paper, we concentrate on singular
Bertrand and Mannheim curves in 3-space forms and we find out the relationship between singular
points and the torsion τ.

We assume here that all maps and manifolds are C∞ unless otherwise stated.

2. Preliminaries

We now review some basic notions and present the local differential geometry of Frenet type
framed base curves in 3-space forms.
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Let R4
v be a 4-dimensional semi-Euclidean space with index v, where the standard metric of R4

v is

〈x, y〉 = −
v

∑
i=1

xiyi +
4

∑
j=v+1

xjyj,

where x = (x1, x2, x3, x4) ∈ R4, y = (y1, y2, y3, y4) ∈ R4, and v =0 or 1. For a non-zero vector x ∈ R4
v,

if 〈x, x〉 > 0, 〈x, x〉 = 0 or 〈x, x〉 < 0, then we call x spacelike, lightlike or timelike, respectively. We call
‖x‖ =

√
|〈x, x〉| the norm of a given vector x.

For any x1, x2, x3 ∈ R4
v, the wedge product of them is

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣∣∣
δe1 e2 e3 e4

x1
1 x1

2 x1
3 x1

4
x2

1 x2
2 x2

3 x2
4

x3
1 x3

2 x3
3 x3

4

∣∣∣∣∣∣∣∣∣∣
,

where {e1, e2, e3, e4} stands for a canonical basis of R4
v, xi = (xi

1, xi
2, xi

3, xi
4) and δ = (−1)v, i = 1, 2, 3,

v = 0, 1. Therefore, we have
〈x, x1 ∧ x2 ∧ x3〉 = det(x, x1, x2, x3),

we also say that x1 ∧ x2 ∧ x3 is pseudo-orthogonal to any xi, i = 1, 2, 3.
We define M3(c) ⊂ R4

v the 3-dimensional space forms with constant curvature c. Therefore, we
know that M3(c) is the 3-dimensional Euclidean space R3 if c = 0, M3(c) is the 3-dimensional sphere
space S3 if c = 1, and M3(c) is the 3-dimensional hyperbolic space H3 if c = −1. We assume that S2+|c|

is a (2 + |c|)-dimensional sphere space.
In [12], Honda and Takahashi introduced the notion of framed curves that is a smooth curve

with a moving frame in Rn. Although the framed curve has a moving frame at the singular point, we
still want to construct a Frenet–Serret frame of the framed curve. In [13], Honda introduced a special
framed curve, namely the Frenet type framed base curve, having a Frenet–Serret type frame at the
singular point.

Now we will extend this idea to 3-space forms.

Definition 1. We say that γ = γ(t) : I →M3(c) is a Frenet type framed base curve if there exists a smooth
function α : I → R and a regular curve T : I → S2+|c| satisfying c〈γ(t), T(t)〉 = 0 and γ̇(t) = α(t)T(t) for
all t ∈ I. Then α(t) and T(t) are called a speed function and a unit tangent vector of γ(t), respectively.

By the above definition, t0 is a singular point of γ if and only if α(t0) = 0. Now we construct
a moving frame of γ in 3-dimensional space forms. We give the normal vector of γ(t) by n(t) =

Ṫ(t) + cα(t)γ(t). If 〈Ṫ(t), Ṫ(t)〉 6= cα2(t), then we can define the unit principal normal vector N(t) by

N(t) =
Ṫ(t) + cα(t)γ(t)
‖Ṫ(t) + cα(t)γ(t)‖

.

The binormal vector B can be expressed as{
B(t) = T(t) ∧ N(t), c=0;
B(t) = γ(t) ∧ T(t) ∧ N(t), c=±1.

Therefore, we get an orthonormal frame {T(t), N(t), B(t)} along γ(t) in M3(c).
The Frenet–Serret type formula holds:
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
Ṫ(t) = −cα(t)γ(t) + κ(t)N(t),
Ṅ(t) = −κ(t)T(t) + τ(t)B(t),
Ḃ(t) = −τ(t)N(t),

where κ(t) and τ(t) are the curvature and torsion of γ(t), respectively. Note that κ(t) and τ(t)
are dependent on a choice of parametrization. The condition 〈Ṫ(t), Ṫ(t)〉 6= cα2(t) means that the
curvature does not vanish. We call such γ a non-degenerate curve (cf. [14]).

For any point γ(t) in the curve γ, the geodesics in M3(c) starting at γ(t) with the velocity δ(t) is
defined as

Γγ
t (v) = expγ(t)(vδ(t)) = f (v)γ(t) + g(v)δ(t), v ∈ R,

where the functions f and g are expressed as
f (v) = 1, g(v) = v, M3(c) = R3,
f (v) = cos v, g(v) = sin v, M3(c) = S3,
f (v) = cosh v, g(v) = sinh v, M3(c) = H3,

and c = 0, 1 or −1 if M3(c) is R3, S3 or H3, respectively.

3. Bertrand Curves of Frenet Type Framed Base Curves in 3-Space Forms

In [14], Honda and Takahashi added the existence condition of Bertrand curves in R3. They
stressed that the Bertrand mate must be a non-degenerate curve. Through the above definition of
Frenet type framed base curve, we know that the Frenet type framed base curve is a non-degenerate
curve. Now we give the definition of the Bertrand curve of a Frenet type framed base curve in M3(c).

Definition 2. A Frenet type framed base curve γ = γ(t) : I →M3(c) is called a Bertrand curve of a Frenet
type framed base curve if there is another Frenet type framed base curve β = β(t) : I →M3(c) (γ 6= β) such
that the principal normal geodesics of γ and β are parallel at corresponding points. We call β the Bertrand mate
of γ.

Assume that γ(t) is a Bertrand curve of a Frenet type framed base curve and β(t) is the Bertrand
mate of γ, then there exists a constant a satisfying

β(t) = f (a)γ(t) + g(a)N(t).

Then we have some conclusions similar to the regular curve case in M3(c), for more detail [6,7].

Proposition 1. Let γ be a Bertrand curve of a Frenet type framed base curve in M3(c) and β be the Bertrand
mate of γ, then the following properties hold.

(1) The tangent vectors of γ make a constant angle with the tangent vectors of β at corresponding points.
(2) The binormal vectors of γ make a constant angle with the binormal vectors of β at corresponding points.

In the paper, we assume that f (a)g(a) 6= 0. Otherwise, we have the fact that γ = ±β or γ is a
regular Bertrand curve in M3(c).

Proposition 2. Let γ be a Bertrand curve of a Frenet type framed base curve in M3(c) and β be the Bertrand
mate of γ. Then there exist two constants a and θ satisfying the following formulas

(1) (α(t) f (a)− κ(t)g(a)) sin θ = τ(t)g(a) cos θ,
(2) (αβ(t) f (a) + εκβ(t)g(a)) sin θ = τβ(t)g(a) cos θ,
(3) α(t)αβ(t) cos2 θ = (α(t) f (a)− κ(t)g(a))(αβ(t) f (a) + εκβ(t)g(a)),
(4) α(t)αβ(t) sin2 θ = τ(t)τβ(t)g2(a),
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where ε = ±1, θ is the constant angle between the tangent vectors of γ and β, κ(t), τ(t), α(t), κβ(t), τβ(t)
and αβ(t) denote the curvature, torsion and speed function of γ and β, respectively.

Proposition 3. If γ is a plane Frenet type framed base curve in M3(c), then γ is a Bertrand curve. If γ is a
Frenet type framed base curve in M3(c) and plane curve β is the Bertrand mate of γ, then γ is a plane curve.

Theorem 1. A Frenet type framed base curve γ in M3(c) is a Bertrand curve if and only if (1) γ is a plane curve
or (2) λ1κ(t) + λ2τ(t) = α(t) and λ2κ(t)− λ1τ(t) + cλ1λ2α(t) 6= 0, where λ1( 6= 0) and λ2 are constants.

Proof. Firstly, we suppose that γ is a space Bertrand curve. By Proposition 2 (1), we obtain

λ1κ(t) + λ2τ(t) = α(t),

for constants λ1 = g(a)/ f (a) and λ2 = g(a) cos θ/ f (a) sin θ. Let

β(t) = f (a)γ(t) + g(a)N(t)

be the Bertrand mate of γ. We assume Tβ(t) = cos θT(t) + sin θB(t). Taking the derivative of Tβ, we
obtain the following formula

κβ(t)Nβ(t) = (cαβ(t) f (a)− cα(t) cos θ)γ(t) + (cαβ(t)g(a) + κ(t) cos θ − τ(t) sin θ)N(t).

Because of the definition of Bertrand curves, we have

d
dv
|v=a Γγ

t (v) = εNβ(t).

By f 2(a) + cg2(a) = 1 and λ1 cos θ = λ2 sin θ, then we have

εκβ(t) =
f (a) sin θ(λ2κ(t)− λ1τ(t) + cλ1λ2α(t))

λ1
.

Since the Bertrand mate β is a non-degenerate curve, that means κβ(t) 6= 0, for all t ∈ I. Therefore that
concludes the proof.

Conversely, let us assume that λ1κ(t) + λ2τ(t) = α(t) for certain constants λ1( 6= 0) and λ2. We
define another curve β in M3(c) given by β(t) = f (a)γ(t) + g(a)N(t), where a is a constant number
such that g(a) = λ1 f (a). By taking the derivative of β, we see that

αβ(t)Tβ(t) = f (a)τ(t)
√

λ2
1 + λ2

2
λ2T(t) + λ1B(t)√

λ2
1 + λ2

2

.

Therefore, we assume that

Tβ(t) =
λ2T(t) + λ1B(t)√

λ2
1 + λ2

2

.

Continuing to take the derivative, we get

κβ(t)Nβ(t) = (cαβ(t) f (a)− λ2cα(t)√
λ2

1 + λ2
2

)γ(t) + (cαβ(t)g(a) +
λ2κ(t)− λ1τ(t)√

λ2
1 + λ2

2

)N(t)

=
f (a)(λ2κ(t)− λ1τ(t) + cλ1λ2α(t))√

λ2
1 + λ2

2

(−cg(a)γ(t) + f (a)N(t)).

Therefore, the principal normal vector of β(t) is
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Nβ(t) = −εcg(a)γ(t) + ε f (a)N(t).

Then we obtain the principal normal geodesic starting at a point β(t0)

Γβ
t0
(v) = f (v)β(t0) + g(v)Nβ(t0) = f (v + εa)γ(t0) + g(v + εa)N(t0).

For a regular Bertrand curve γ, if the torsion of γ vanishes at some point, then γ is a plane curve.
However, for a Bertand curve of a Frenet type framed base curve, if there exists t0 satisfying τ(t0) = 0,
then it is either a plane curve or a space curve which has singular points. So we can see that these
points at which torsion vanishes have relationships with the singular points of Bertrand curves. Under
the above assumption, we come to the following conclusion.

Corollary 1. Let γ be a Bertrand curve of a Frenet type framed base curve in M3(c) and β be the Bertrand

mate of γ. Then αβ(t) = ± f (a)τ(t)
√

λ2
1 + λ2

2 and α(t) = f (a)τβ(t)
√

λ2
1 + λ2

2.

Proof. By the above discussion, we know αβ(t) = ± f (a)τ(t)
√

λ2
1 + λ2

2. Using the Frenet frame of γ,
the Frenet frame of β can be expressed as

β(t) = f (a)γ(t) + g(t)N(t),

Tβ(t) = cos θT(t) + sin θB(t),

εNβ(t) = −cg(a)γ(t) + f (a)N(t),

εBβ(t) = − sin θT(t) + cos θB(t).

Since Ḃβ(t) = −τβ(t)Nβ(t), then τβ(t) = α(t) sin θ/λ1 f (a). Meanwhile, we have λ1 =

sin θ
√

λ2
1 + λ2

2.

4. Mannheim Curves of Frenet Type Framed Base Curves in 3-Space Forms

Definition 3. A Frenet type framed base curve γ = γ(t) : I →M3(c) is called a Mannheim curve of a Frenet
type framed base curve if there is another Frenet type framed base curve β = β(t) : I →M3(c) (γ 6= β) such
that the principal normal geodesic of γ and the binormal geodesic of β are parallel at corresponding points. We
call β the Mannheim mate of γ.

Suppose that γ(t) and β(t) are a pair of Mannheim curves of Frenet type framed base curves,
then there is a constant a satisfying

β(t) = f (a)γ(t) + g(a)N(t).

More details are available from [9,10].

Theorem 2. A Frenet type framed base curve γ in M3(c) is a Mannheim curve if and only if it simultaneously
satisfies the following equations,

(1) f (a)κ(t) + cg(a)α(t) 6= 0,
(2) f (a)(κ̇(t)τ(t)− κ(t)τ̇(t)) + cg(a)(α̇(t)τ(t)− α(t)τ̇(t)) 6= 0,
(3) α(t)κ(t)( f 2(a)− cg2(a)) + cα2(t) f (a)g(a) = f (a)g(a)(κ2(t) + τ2(t)).
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Proof. Let γ(t) be a Mannheim curve of a Frenet type framed base curve in M3(c) and β(t) be
a Mannheim mate of γ. Suppose that β(t) = f (a)γ(t) + g(a)N(t) and a is a constant such that
f (a)g(a) 6= 0. Differentiating β(t) with respect to t,

αβ(t)Tβ(t) = ( f (a)α(t)− g(a)κ(t))T(t) + g(a)τ(t)B(t). (1)

Assume that there is a function θ(t) : I → R such that

Tβ(t) = cos θ(t)T(t) + sin θ(t)B(t). (2)

Due to (1) and (2), we have

( f (a)α(t)− g(a)κ(t)) sin θ(t) = g(a)τ(t) cos θ(t). (3)

By differentiating (2) with respect to t,

κβ(t)Nβ(t) = (c f (a)αβ(t)− cα(t) cos θ(t))γ(t) + (cg(a)αβ(t) + κ(t) cos θ(t)− τ(t) sin θ(t))N(t)

− sin θ(t)θ̇(t)T(t) + cos θ(t)θ̇(t)B(t).

Since β is the Mannheim mate of γ, then

Bβ(t) = ε(−cg(a)γ(t) + f (a)N(t)).

We have known that Nβ is orthogonal to Bβ and β, then

c f (a)αβ(t)− cα(t) cos θ(t) = 0, (4)

cg(a)αβ(t) + κ(t) cos θ(t)− τ(t) sin θ(t) = 0. (5)

We apply f 2(a) + cg2(a) = 1 and obtain

αβ(t) = f (a)α(t) cos θ(t)− g(a)κ(t) cos θ(t) + g(a)τ(t) sin θ(t), (6)

( f (a)κ(t) + cg(a)α(t)) cos θ(t) = f (a)τ(t) sin θ(t).

We assume f (a)κ(t) + cg(a)α(t) 6= 0, and then

cos θ(t) =
f (a)τ(t) sin θ(t)

f (a)κ(t) + cg(a)α(t)
. (7)

We put (7) in (3), then

α(t)κ(t)( f 2(a)− cg2(a)) + cα2(t) f (a)g(a) = f (a)g(a)(κ2(t) + τ2(t)).

By differentiating (5), (6) and applying (7), we obtain

κβ(t) = θ̇(t) =
f 2(a)(κ̇(t)τ(t)− κ(t)τ̇(t)) + cg(a) f (a)(α̇(t)τ(t)− α(t)τ̇(t))

f 2(a)τ2(t) + ( f (a)κ(t) + cg(a)α(t))2 .

Since β(t) is a non-degenerate curve, that is κβ(t) 6= 0, the proof is complete.
Conversely, for some curve in M3(c), its curvature and torsion satisfy

f (a)α(t)− g(a)κ(t) = λ(t)g(a)τ(t), (8)

λ(t) =
f (a)τ(t)

f (a)κ(t) + cg(a)α(t)
. (9)
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We define a curve β(t) by using f (a) and g(a), β(t) = f (a)γ(t) + g(t)N(t). We assume that

Tβ(t) = cos θ(t)T(t) + sin θ(t)B(t),

where λ(t) = cos θ(t)/ sin θ(t). By direct differentiating, we easily find that (4), (5) are satisfied.
Moreover, we see that

κβ(t) = θ̇(t), Nβ(t) = − sin θ(t)T(t) + cos θ(t)B(t).

By taking the derivative of Nβ(t) and applying (8) and (9), we have Bβ(t) = ε(−cg(a)γ(t) + f (a)N(t))
and f (v± a)γ(t) + g(v± a)N(t) = f (v)β(t) + g(v)Bβ(t). Therefore, γ is a Mannheim curve of Frenet
type framed base curve.

Next, we will study the existence condition of Mannheim mates of Frenet type framed base curves
in M3(c). By the similar method used in Theorem 2, we come to the following theorem.

Theorem 3. A Frenet type framed base curve β in M3(c) is a Mannheim mate if and only if τ2
β(t)− cα2

β(t) 6= 0,
( f 2(a)α2

β(t) + g2(a)τ2
β(t))κβ(t) = f (a)g(a)(τβ(t)α̇β(t)− τ̇β(t)αβ(t)).

Corollary 2. Let γ be a Mannheim curve of a Frenet type framed base curve and β be the Mannheim mate of
γ, then

αβ(t) = g(a)τ(t)

√
1 +

(
f (a)τ(t)

f (a)κ(t) + cg(a)α(t)

)2

and γ is a regular curve.

Therefore, we know that the torsion of a Mannheim curve of a Frenet type framed base curve
vanishes at the singular point of the Mannheim curve. And there does not exist singular Mannheim
curve of a Frenet type framed base curve in 3-space forms.
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