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Abstract: In the z- domain, differential subordination is a complex technique of geometric function
theory based on the idea of differential inequality. It has formulas in terms of the first, second and
third derivatives. In this study, we introduce some applications of the third-order differential
subordination for a newly defined linear operator that includes ξ-Generalized-Hurwitz–Lerch
Zeta functions (GHLZF). These outcomes are derived by investigating the appropriate classes of
admissible functions.
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1. Introduction and Terminology

Complex Function Theory (CFT) is a mathematical branch dating back to the 18th century.
It investigates the functions of complex numbers. This branch has attracted the concern of several
researchers. Among the remarkable names are Euler, Gauss, Riemann, Cauchy and others. It has
numerous implementations in diverse fields of mathematics and science. These functions have many
interesting properties that are not owned by real-valued functions. For instance, infinitely differentiable
functions, holomorphic functions, every holomorphic function in the open unit disk can be represented
as a Taylor series, conformal functions (that is, they preserve angles when f ′(z) 6= 0), line integrals,
and all types of handy formulas. The considerable area in CFT is the Geometric Function Theory
(GFT). The study of GFT includes investigating the interaction between the analytical properties of
the complex holomorphic function and the geometrical properties of the image domain. Riemann [1]
in 1851 introduced the first major result in GFT named the Riemann Mapping Theorem. Later,
in 1907, Koebe [2] was a prominent scientist who studied the univalent functions in the open unit disk.
Thereafter, in 1912, Koebe [3] presented a modified version of the Riemann’s mapping theorem by
utilized univalent functions. The theory tends towards the principle of “univalent” and “holomorphic”,
Riemann’s mapping theorem plays a significant role in the collection of both principles. This synthesis
interprets the formula of a domain where the complex functions being defined, for details see [1,4].

On the other hand, differential inequality theory (inequalities including derivatives of functions)
impacted the development of GFT due to it giving much information regarding the behavior of the
holomorphic function. Further, there are many differential implications in which characterization of a
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holomorphic function is settled by a differential condition. For instance, the Noshiro–Warschawski
theorem states that for a holomorphic function in the unit disk, <( f ′(z)) > 0 implies that f is univalent
function in the unit disk. Most of the known differential implications dealt with real-value inequalities
that involved the absolute value, the imaginary part, or the real part of a complex function [4].

The principle of subordination is central to the theory of differential subordination of
complex-valued function which is the generalizing the formula of differential inequality of real-valued
function. Its origins back to Lindelöf [4] in 1909, though Littlewood ([5,6]) and Rogosinski ([7,8])
posed the term and examined the basic outcomes regarding subordination. This principle, as an
advantageous tool, displays its importance to unify the presentation of several geometric classes in
addition to achieving sandwich-type outcomes.

The methods of differential subordination are employed to study upper bounds for holomorphic
functions in the unit disk. This technique inspired numerous researchers to work in GFT.
The implementations and extensions of differential subordination theory have been developed
in this theme and diverse other fields, such as functions of several complex variables, integral
operator theory, meromorphic function theory, harmonic functions theory, differential equations
and partial differential equations. Many papers handled the first-order and second-order differential
subordination methods,but few articles handled the third-order differential subordination method.
In 1935, Goluzin [9] studied the first significant outcome that includes the first-order differential
subordination. Afterwards, Suffridge [10] in 1970 and Robinson [11] in 1947 discussed further
successive investigations into first-order differential subordination. Later, in 1981, Miller and
Mocanu [12] provided a systematic study of the theory of differential subordination. In 1985 [13]
and 1987 [14], they evolved and studied several interesting outcomes on this theory. Next, numerous
important studies were presented by Miller and Mocanu ([15–17]). In 1992, Ponnusamy and Juneja [18]
considered the third-order inequalities and subordination. After that, in 2000, Miller and Mocano in
their monograph [19] provided a marvelous and extensive discussion on this theory with numerous
implementations.

In 2011, Antonino and Miller [20] investigated and extended the second-order differential
subordination to the third-order case. Several authors provided fruitful implementations in the
same direction of study. For their contributions, Tang et al. [21] considered some third-order
differential subordination outcomes for meromorphically p-valent functions associated with the certain
linear operator. At the same time, Tang and Deniz [22] studied a similar problem for holomorphic
functions, involving the generalized Bessel functions. In 2015, Farzana et al. [23] introduced several
third-order differential subordination outcomes for holomorphic functions associated with the
fractional derivative operator. Related to this period, Tang et al. [24] used third-order differential
subordination methods of holomorphic functions associated with generalized Bessel functions to yield
sandwich-type outcomes containing this operator. In the same year, Ibrahim et al. [25] established
some third-order differential subordination outcomes for holomorphic functions associated with
a fractional integral operator (Carlson–Shaffer operator type). Subsequently, the problems of the
third-order differential subordination were studied by El-Ashwah and Hassan [26], El-Ashwah and
Hassan [27], Attiya et al. ([28,29]), Srivastava et al. [30] and Gochhayat and Prajapati [31]. Many of
the studies have not yet been investigated utilizing third-order differential subordination technique.
In this investigation, we impose a new generalized Noor-type linear integral operatorM`

pϑ(z) on
the class Ap of p-valent functions by utilizing ξ-Generalized Hurwitz–Lerch Zeta functions (GHLZF).
Some outcomes concerning an application of the third-order differential subordination for multivalent
functions including operatorM`

pϑ(z) are studied.
Denote by D = {z ∈ C : |z| < 1} the open unit disc in the complex plane C, andH(D) the class

of holomorphic functions in D. For α ∈ C,  ∈ N = {1, 2, 3, ...}, let

H[α, ] = {ϑ ∈ H(D) : ϑ(z) = α + αz + α+1z+1 + ...}, (1)
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and suppose thatH0 ≡ H[0, 1] andH1 ≡ H[1, 1]. Let A denote the class of all holomorphic functions
ϑ in D, normalized by the conditions ϑ(0) = ϑ′(0)− 1 = 0, and of the formula

ϑ(z) = z +
∞

∑
=2

α z, (z ∈ D). (2)

The subclass of A involving holomorphic univalent function is denoted by S , [1]. In [4] the
concept of subordination between holomorphic functions given as: for two functions ϑ1 and ϑ2,
holomorphic in D, the function ϑ1 is said to be subordinate to ϑ2, or ϑ2 superordinate to ϑ1 in D, written
ϑ1 ≺ ϑ2, if there is a holomorphic function h̄ in D with h̄(0) = 0 and |h̄(z)| < 1 for all z ∈ D, such that
ϑ1(z) = ϑ2(h̄(z)). In particular, if the function ϑ2 is univalent in D, then the following characterization
for subordination is gained as:

ϑ1 ≺ ϑ2 if and only if ϑ1(0) = ϑ2(0) and ϑ1(D) ⊂ ϑ2(D).

The natural generalization of holomorphic univalent function is a p-valent (multivalent) function,
that is, if for each ω, the equation ϑ(z) = ω has at most p roots in a domain D ⊂ C, and if there is ω0

such that the equation ϑ(z) = ω0 has exactly p roots in a Domain D. Let Ap (p ∈ N = {1, 2, 3, ...})
denote the class involves all p-valent functions in D of the form

ϑ(z) = zp +
∞

∑
=p+1

α z, (z ∈ D). (3)

If ϑ is the p-valent function with p = 1, then ϑ is the holomorphic univalent function, [4].
As one of the most remarkable tools, namely Hadamard (convolution) product, utilizes to

formulate assorted operators: differential, integral and convolution operators. The term “Hadamard
product” is attributed to Hadamard in 1899 [1] and defined as: for two functions ϑ` ∈ A of the form
ϑ`(z) = z + ∑∞

=2 α, ` z , ` = 1, 2, their convolution, ϑ1 ∗ ϑ2, is given by

(ϑ1 ∗ ϑ2)(z) = z +
∞

∑
=2

α,1 α,2 z, (z ∈ D). (4)

More generally, the convolution product of two functions ϑ` ∈ Ap of the formula ϑ`(z) =

zp + ∑∞
=p+1 α, ` z , ` = 1, 2, p ∈ N, is the function ϑ1 ∗ ϑ2 given by

(ϑ1 ∗ ϑ2)(z) = zp +
∞

∑
=p+1

α,1 α,2 z, (z ∈ D). (5)

In 1915, Alexander [32] was the first to introduce a linear integral operator which drafted in terms
of the convolution, namely “Alexander operator” as follows: let ϑ ∈ A and IA : A → A be defined as

IAϑ(z) =
∫ z

0

ϑ(t)
t

dt = − log(1− z) ∗ ϑ(z)

= z +
∞

∑
=2

α


z.

(6)
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Later on, in 1965, Libera [33] given another linear integral operator so-called “Libera operator”
IL : A → A by the formula

ILϑ(z) =
2
z

∫ z

0
ϑ(t) dt =

2 [z + log(1− z)]
z

∗ ϑ(z)

= z +
∞

∑
=2

2
 + 1

α z.
(7)

In 1969, Bernardi [34] imposed a more general linear integral operator Iε : A → A, for ϑ ∈ A and
ε > −1, as

Iεϑ(z) =
1 + ε

zε

∫ z

0
ϑ(t) tε dt = z +

∞

∑
=2

(
ε + 1
ε + 

)
z ∗ ϑ(z)

= z +
∞

∑
=2

(
ε + 1
ε + 

)
α z.

(8)

The operator Iε is called the generalized Bernardi–Libera–Livingston integral operator. For ε = 0,
the operator Iε reduces to the Alexander operator IA given by Equation (6) and for ε = 1, it reduces to
the Libera operator IL defined by Equation (7).

Utilizing the convolution technique, in 1975, Ruscheweyh [35] proposed a linear operator as: let
ϑ ∈ A, ℘ > −1 and D℘ : A → A be defined by

D℘ϑ(z) =
z

(1− z)℘+1 ∗ ϑ(z) = z +
∞

∑
=2

Γ(℘+ )

Γ() Γ(℘+ 1)
α z. (9)

For ℘ = v ∈ N0 = N∪ {0}, yields

Dvϑ(z) =
z(zv−1ϑ(z))v

v!
. (10)

Further, D0ϑ(z) = ϑ(z) and D′ϑ(z) = zϑ′(z), z ∈ D. The operator Dv is called the Ruscheweyh
derivative of vth order of ϑ.

Corresponding to the Ruscheweyh operator Dv , v ∈ N0 given by Equation (10), in 1999, Noor [36]
considered the following linear operator: let ϑ ∈ A, v ∈ N0 and Iv : A → A be defined as

Ivϑ(z) = ϑ
(−1)
v (z) ∗ ϑ(z) =

[
z

(1− z)v+1

]−1
∗ ϑ(z)

= z +
∞

∑
=2

Γ( + 1) Γ(v + 1)
Γ(v + )

α z,

(11)

such that

ϑv(z) ∗ ϑ
(−1)
v (z) =

z
(1− z)2 .

Evidently, I0ϑ(z) = zϑ′(z), I1ϑ(z) = ϑ(z), z ∈ D. This reverse relationship between the operators
Iv and Dv gives a a cause for naming the Noor operator an integral operator. The operator Iv is called
as the Noor integral operator of vth order of ϑ.
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Analogous to D℘, ℘ > −1 written by Equation (9), in 2002, Choi, Saigo and Srivastava [37]
defined the linear operator I℘,F : A → A, for ϑ ∈ A, ℘ > −1 and F > 0 by

I℘,Fϑ(z) = ϑ−1
℘ (z) ∗ ϑ(z) =

[
z

(1− z)℘+1

]−1
∗ ϑ(z)

= z +
∞

∑
=2

Γ(F+ − 1) Γ(℘+ 1)
Γ(F) Γ(℘+ )

α z,

(12)

such that

ϑ℘(z) ∗ ϑ−1
℘ (z) =

z
(1− z)F

.

The operator I℘,F is called the Choi–Saigo–Srivastava operator. For ℘ = v and F = 2 reduces to
the Noor integral operator Iv of Equation (11).

In 2002, Liu and Noor [38] provided a linear operator as: for ϑ ∈ Ap, ℘ > −p and I℘+p : Ap → Ap

defined by

I℘+pϑ(z) = ϑ
(−1)
℘+p (z) ∗ ϑ(z) =

[
zp

(1− z)℘+p

]−1
∗ ϑ(z)

= zp +
∞

∑
=p+1

Γ(1 + ) Γ(℘+ p)
Γ(1 + p) Γ(℘+ )

α z,

(13)

such that

ϕ℘+p(z) ∗ ϕ
(−1)
℘+p (z) =

zp

(1− z)p+1 .

Obviously, I0+pϑ(z) = zϑ′(z)/p and I1+pϑ(z) = ϑ(z). The operator I℘+p is an extended
Noor integral operator Iv of Equation (11). In addition, the operator I℘+p is closely related to the
Choi–Saigo–Srivastava operator I℘,F of Equation (12).

The Theory of Hypergeometric Functions (HFT) has been incorporated in GFT. Employing
hypergeometric functions in the proof of the famed problem ”Bieberbach conjecture” by de Branges in
1984 [39] has given complex analysts a renewed attention to study the role of special functions. In this
regard a lot of implementations and generalizations are found. The study of this theory gained an
independent status. The Gauss Hypergeometric Function (GHF), denoted by F (µ, ν; τ; ω), was first
introduced by Gauss in 1812 [39]. It is given as follows: for µ, ν and τ be complex numbers with τ

other than 0,−1,−2, ..., and

F (µ, ν; τ; z) =
∞

∑
=0

(µ)(ν)

(τ)(1)
z = 1 +

µν

τ
z +

µ(µ + 1)ν(ν + 1)
τ(τ + 1)

z2

2!
+ ... (14)

where ($) is the Pochhammer symbol given by

($) :=
Γ($ + )

Γ($)
=

{
1, ( = 0),

$($ + 1)($ + 2)...($ + − 1), ( ∈ N = {1, 2, 3, ...}).
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Another important special function related to GHF is the incomplete beta function ϕp(µ, τ; z)
defined

(
for µ ∈ R, τ ∈ R\Z−0 ,Z−0 = {...,−2,−1, 0}

)
by

ϕp(µ, τ; z) = zF (µ, 1; τ; z) =
∞

∑
=0

(µ)

(τ)
z+p. (15)

Other generalized Noor-type linear integral operators between classes of holomorphic functions
associated with hypergeometric functions and its generalizations have been posed by authors.
For instance, Al-Janaby et al. ([40,41]).

Recently, the theory of Hurwitz–Lerch Zeta functions has a fruitful role in the study operators.
This theory is developed with numerous implementations and generalizations by various researchers.
One may refer to Al-Janaby et al. [42,43], Ghanim [44], Ghanim and Darus [45], Ghanim and
Al-Janaby [46], Rǎducanu and Srivastava [47], Srivastava and Attiya [48], Srivastava et al. [49,50], Xing
and Jose [51], Choi and Srivastava [52], Milovanovic and Rassias [53] and Rassias and Yang [54–57].

In terms of the Hurwitz–Lerch Zeta function Φ(z, γ, η) defined by (see, for example, [58–60])

Φ(z, γ, η) :=
∞

∑
=0

z

( + η)γ
(16)

(η ∈ C \Z−0 , γ ∈ C when |z| < 1, 1 < <(γ) when |z| = 1).

The following new family of the (GHLZF) was considered systematically by Srivastava [61]:

Φ(ρ1,··· ,ρr ,σ1,··· ,σs)
µ1,··· ,µr ;ν1,··· ,νs (z, γ, η; ζ, ξ)

=
1

ξ Γ(γ)

∞

∑
=0

r
∏
i=1

(µi)ρi

(η + )γ ·
s

∏
i=1

(νi)σi

H2,0
0,2

[
(η + )ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ] z

!

(17)

(
0 < min{<(η),<(γ)}, 0 < <(ζ); 0 < ξ

)
,

where (
µi ∈ C (i = 1, · · · , p), νi ∈ C \Z−0 (i = 1, · · · , s), 0 < ρi (i = 1, · · · , r),

0 < σi (i = 1, · · · , q), and 0 5 1 +
s

∑
i=1

σi −
r

∑
i=1

ρi

)
and the equality in the convergence condition holds true for suitably bounded values of |z| given by

|z| < ∇ :=

(
r

∏
i=1

ρ
−ρi
i

)(
s

∏
i=1

σ
σi
i

)
.

Definition 1. The H-function involved in the right-hand side of Equation (17) is the well-known Fox’s
H-function ([62], Definition 1.1) (see also [30,63]) defined by

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]

=
1

2πi

∫
L

Ξ(γ)z−γ dγ
(
z ∈ C \ {0}, | arg(z)| < π

)
,

(18)

an empty product is interpreted as 1, m, n, p and q are integers such that

1 5 m 5 q and 0 5 n 5 p,
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0 < Ai (i = 1, · · · , p) and 0 < Bi (i = 1, · · · , q),

ai ∈ C (i = 1, · · · , p) and bi ∈ C (i = 1, · · · , q)

and L is a suitable Mellin–Barnes type contour separating the poles of the gamma functions

{Γ(bi + Biγ)}m
i=1

from the poles of the gamma functions
{Γ(1− ai + Aiγ)}n

i=1.

It is worthy of mention here that, by using the fact that ([61], p. 1496, Remark 7)

lim
ζ→0

H2,0
0,2

(η + )ζ
1
ξ

∣∣∣∣
(γ, 1),

(
0, 1

ξ

) 
 = ξ Γ(γ) (0 < ξ),

Equation (17) reduces to the following form:

Φ(ρ1,··· ,ρr ,σ1,··· ,σs)
µ1,··· ,µr ;ν1,··· ,νs (z, γ, η; 0, ξ) := Φ(ρ1,··· ,ρr ,σ1,··· ,σs)

µ1,··· ,µr ;ν1,··· ,νs (z, γ, η)

=
∞

∑
=0

r
∏
i=1

(µi)ρi

(η + )γ ·
s

∏
i=1

(νi)σi

z

!
.

(19)

Definition 2. The function Φ(ρ1,··· ,ρr ,σ1,··· ,σs)
µ1,··· ,µr ;ν1,··· ,νs (z, γ, η) involved in Equation (19) is the multiparameter

extension and generalization of the Hurwitz–Lerch Zeta function Φ(z, γ, η) introduced by Srivastava et al. ([64],
p. 503, Equation (6.2)) defined by

Φ(ρ1,··· ,ρr ,σ1,··· ,σs)
µ1,··· ,µr ;ν1,··· ,νs (z, γ, η) =

∞

∑
=0

r
∏
i=1

(µi)ρi

(η + )γ ·
s

∏
i=1

(νi)σi

z

!
(20)

(
r, s ∈ N0; µj ∈ C (j = 1, · · · , r); η, νj ∈ C \Z−0 (j = 1, · · · , s);

ρi, σi ∈ R+ (i = 1, · · · , r; i = 1, · · · , s);

−1 < ∆ when γ, z ∈ C;

∆ = −1 and γ ∈ C when |z| < ∇∗;

∆ = −1 and
1
2
< <(Ξ) when |z| = ∇∗

)
with

∇∗ :=

(
r

∏
i=1

ρ
−ρj
i

)
·
(

s

∏
i=1

σ
σi
i

)
,

∆ :=
s

∑
i=1

σi −
r

∑
i=1

ρi and Ξ := t +
s

∑
i=1

νi −
r

∑
i=1

µi +
r− s

2
.
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In GFT, the third-order differential subordination methodology for holomorphic functions is
indicated by Antonion and Miller [20], which is required in this investigation.

Definition 3 ([20], Definition 2, p. 441). Let J denote the set of holomorphic functions ω that are univalent
on the set D\G(ω), where

G(ω) = {χ ∈ ∂D : lim
z→χ

ω(z) = ∞},

is such that

min |ω′(χ)| = δ > 0

for χ ∈ ∂D\G(ω). Further, let J (α) = {ω(z) ∈ J : ω(0) = α}, J (0) = J0 and J (1) = J1.

Definition 4 ([20], Definition 1, p. 440). Let Γ : C4 ×D −→ C and the function π(z) be univalent in D.
If the function υ(z) is holomorphic in D and satisfies the following third-order differential subordination:

Γ(υ(z), zυ′(z), z2υ′′(z), z3υ′′′(z); z) ≺ π(z), (21)

then υ(z) is called a solution of the differential subordination. A univalent function ω(z) is called a dominant of
the solutions of the differential subordination, or, more simply, a dominant if υ(z) ≺ ω(z) for all υ(z) achieving
Equation (21). A dominant ω̃(z) that achieves ω̃(z) ≺ ω(z) for all dominants ω(z) of Equation (21) is said to
be the best dominant.

The class of admissible functions related to differential subordination is presented next.

Definition 5 ([20], Definition 2, p. 449). Let Λ be a set in C, ω ∈ J and  ∈ N\{1}. The class of admissible
functions denoted by Ω[Λ, ω] consists of those functions Γ : C4 × D −→ C that achieves the following
admissibility condition:

Γ( f , q, x, y; z) /∈ Λ

whenever

f = ω(χ), q = κζω′(χ), <
(

x
q
+ 1
)
≥ κ<

(
ζω′′(χ)

ω′(χ)
+ 1
)

,

and

<
(

y
q

)
≥ κ2<

(
χ2ω′′′(χ)

ω′(χ)

)
,

where z ∈ D, χ ∈ ∂D\G(ω), and κ ≥ .

The following theorem is a key outcome in third-order differential subordination.

Theorem 1 ([20], Definition 2, p. 449). Let υ ∈ H[α, ] with  ≥ 2, and let ω ∈ J (α) and achieve the
following conditions:

<
(

χω′′(χ)

ω′(χ)

)
≥ 0, and

∣∣∣∣ zυ′(z)
ω′(χ)

∣∣∣∣ ≤ κ,
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where z ∈ D, χ ∈ ∂D\G(ω) and κ ≥ . If Λ is a set in C, Γ ∈ Ω[Λ, ω] and

Γ
(

υ(z), zυ′(z), z2υ′′(z), z3υ′′′(z); z
)
∈ Λ,

then

υ(z) ≺ ω(z) (z ∈ D) .

2. Imposed Linear Integral Operator M`
pϑ(z)

This section considers a new generalized Noor-type linear integral operatorM`
pϑ(z) for p-valent

functions associated with the GHLZF in D defined in Equation (17). Setting ρ1 = · · · , ρr = σ1 = · · · =
σs = 1, and µi ∈ C \Z−0 (i = 1, · · · , r) as follows:

Φ(1,··· ,1,1,··· ,1)
µ1,··· ,µr ;ν1,··· ,νs(z, γ, η; ζ, ξ)

=
1

ξ Γ(γ)

∞

∑
=0

r
∏
i=1

(µi)

(η + )γ ·
s

∏
i=1

(νi)

H2,0
0,2

[
(η + )ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ] z

!

=
1

ξ Γ(γ)

∞

∑
=p

r
∏
i=1

(µi)−p

(η + (− p))γ ·
s

∏
i=1

(νi)−p

H2,0
0,2

[
(η + (− p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ] z−p

(− p)!
.

(22)

Thus, from Equation (22), we derive a new function as:

Ψν1,...,νs
µ1,...,µr (γ, η; ζ, ξ,℘) := ξ Γ(γ) Υ

[
zpΦ(1,··· ,1,1,··· ,1)

µ1,··· ,µr ;ν1,··· ,νs(z, γ, η; ζ, ξ)

]

= zp +
∞

∑
=p+1

Υ
r

∏
i=1

(µi)−p

(η + (− p))γ ·
s

∏
i=1

(νi)−p

H2,0
0,2

[
(η + (− p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ] z

(− p)!
,

(23)

where Υ is defined as:

Υ =
ηγ

H2,0
0,2

[
η ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ] .
(24)



Mathematics 2020, 8, 845 10 of 21

By employing the principle of convolution product of `th order of GHLZF, we yield

N `,ν1,...,νs
p,µ1,...,µr (γ, η; ζ, ξ,℘) := Ψν1,...,νs

µ1,...,µr (γ, η; ζ, ξ,℘) ∗ ... ∗Ψν1,...,νs
µ1,...,µr (γ, η; ζ, ξ,℘)︸ ︷︷ ︸

`−times

= zp +
∞

∑
=p+1

[ Υ
r

∏
i=1

(µi)−p H2,0
0,2

[
(η + (− p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]

(η + (− p))γ
s

∏
i=1

(νi)−p (− p)!

]`
z.

(25)

Next, we present a new function
(
N `,ν1,...,νs

p,µ1,...,µr (γ, η; ζ, ξ,℘)
)−1

given by

(
N `,ν1,...,νs

p,µ1,...,µr (γ, η; ζ, ξ,℘)
)−1

= zp +
∞

∑
=p+1

[ (η + (− p))γ
s

∏
i=1

(νi)−p (− p)!

Υ
r

∏
i=1

(µi)−p H2,0
0,2

[
(η + (− p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]
]` [

(℘+ p)−p

(− p)!

]
z,

(26)

such that,(
N `,ν1,...,νs

p,µ1,...,µr (γ, η; ζ, ξ,℘)
)
∗
(
N `,ν1,...,νs

p,µ1,...,µr (γ, η; ζ, ξ,℘)
)−1

=
zp

(1− z)℘+p

= zp +
∞

∑
=p+1

(℘+ p)−p

(− p)!
z, (℘ > −1) .

Therefore, from Equation (26), we consider the following linear operator:M`,ν1,...,νs
p,µ1,...,µr (γ, η; ζ, ξ,℘) :

Ap −→ Ap , which is defined by

M`,ν1,...,νs
p,µ1,...,µr (γ, η; ζ, ξ,℘) ϑ(z) =

(
N `,ν1,...,νs

p,µ1,...,µr (γ, η; ζ, ξ,℘)
)−1
∗ ϑ(z)

= zp +
∞

∑
=p+1

[ (η + (− p))γ
s

∏
i=1

(νi)−p (− p)!

Υ
r

∏
i=1

(µi)−p H2,0
0,2

[
(η + (− p))ζ

1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) ]
]` [

(℘+ p)−p

(− p)!

]
α z.

(27)

Remark 1. For suitably specializing the parameters of `, p, ζ, ξ, γ, η, s, r, νi and µi, the operatorM`
pϑ(z)

defined in Equation (27) can be reduced to various operators previously mentioned. Thus, we have the following
special cases:

1. For ` = p = γ = η = 1, ζ = 0, s = 1, ν1 = 1, r = 2, µ1 = 2 and µ2 = 1 in Equation (27), we yield
the Ruscheweyh operator given in Equation (9).

2. For ` = p = γ = η = 1, ζ = 0, s = 2, ν1 = ν2 = 1, r = 3, µ1 = 2 and µ2 = µ3 = ℘ + 1,
the operator Equation (27) reduce to the Noor operator defined by Equation (11).

3. For ` = γ = 1, ζ = 0, s = 2, ν1 = η, ν2 = 1, r = 3, µ1 = η + 1 µ2 = µ2 = ℘+ p, the operator
Equation (27), we have the extended Noor operator given by Equation (13).

4. For ` = 1, ζ = 0, s = 2, γ = 1, ν1 = η, ν2 = τ, r = 3, µ1 = η + 1, µ2 = 1, and µ3 = µ,
the operator Equation (27) provides the Noor-type integral operator defined by [65].
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5. For ` = p = γ = η = 1, ζ = 0, s = 2, ν1 = 1, ν2 = τ, r = 3, µ1 = 2, µ2 = µ, and µ3 = ν,
the operator Equation (27) provides the Noor integral operator given in [66].

6. For ` = p = γ = η = 1, ζ = 0, s = 1, ν1 = τ, r = 3, µ1 = 2, µ2 = µ, and µ3 = ν, the operator
Equation (27) reduce to the generalized Noor-type linear integral operator defined in [67].

7. For ` = p = γ = η = 1, ζ = 0 s = 2, ν1 = ν2 = 1, r = 3, µ1 = µ2 = 2 and µ3 = ℘+ 1, the operator
Equation (27) reduce to Alexander operator given in Equation (6).

8. For ` = p = γ = η = 1, ζ = 0 s = 1, ν1 = 1, r = 2, µ1 = 2 and µ2 = ℘+ 1, the operator Equation
(27) is reduced to ϑ(z) given by Equation (2).

For convenience, Equation (27) is written as

M`
pϑ(z) ≡M`,ν1,...,νr

p,µ1,...,µr (γ, η; ζ, ξ,℘) ϑ(z). (28)

This operator achieves the differential recurrence relation

Az
p
[
M`

pϑ(z)
]′
=M`+1

p ϑ(z)− (1− A)M`
pϑ(z),

(29)

where A =

p

[
(η+(−p))γ

s
∏

i=1
(νi)−p (−p)!− Υ

r
∏

i=1
(µi)−p H2,0

0,2

(η+(−p))ζ
1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) 
]

(−p) Υ
r

∏
i=1

(µi)−p H2,0
0,2

(η+(−p))ζ
1
ξ

∣∣∣∣ (γ, 1),
(

0, 1
ξ

) 
. Throughout

this paper, the generalized Noor-type linear integral operator will be denoted byM`
pϑ(z).

3. Differential Subordination with M`
pϑ(z)

This section introduces certain appropriate class of admissible functions and studies some
third-order differential subordination outcomes for the operatorM`

pϑ(z) defined by Equation (27).

Definition 6. Let A be a set in C, ω ∈ J0 and  ∈ N\{1}. The class of admissible functions ΣM[A, ω]

consists of those functions U : C4 ×D −→ C that satisfy the following admissibility condition:

U(u1, u2, u3, u4; z) /∈ A

whenever

u1 = ω(χ), u2 =
κχω′(χ) + p(1−A)

A ω(χ)
p
A

,

<
(

p
[
u3 − 2(1− A)u2 + (1− A)2u1

]
A[u2 − (1− A)u1]

)
≥ κ<

(
ζω′′(χ)

ω′(χ)
+ 1
)

,

and

<
(

p2[u4 − (1− A)3u1]− p[3A + 3p(1− A)][u3 − 2(1− A)u2 + (1− A)2u1]

A2[u2 − (1− A)u1]
− 3p2(1− A)2

A2 + 2
)

≥ κ2<
(

χ2ω′′′(χ)

ω′(χ)

)
,

where z ∈ D, χ ∈ ∂D\G(ω), and κ ≥ .
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Theorem 2. Let U ∈ ΣM[A, ω]. If ϑ ∈ Ap and ω ∈ J0 achieve the following conditions:

<
(

χω′′(χ)

ω′(χ)

)
≥ 0,

∣∣∣∣∣M`+1
p ϑ(z)− (1− A)M`

pϑ(z)
ω′(χ)

∣∣∣∣∣ ≤ |A| κp
, (30)

and

{U
(
M`

pϑ(z),M`+1
p ϑ(z),M`+2

p ϑ(z),M`+3
p ϑ(z); z

)
: z ∈ D} ⊂ A, (31)

then

M`
pϑ(z) ≺ ω(z), (z ∈ D) . (32)

Proof. Define the following holomorphic function υ(z) in D by

υ(z) =M`
pϑ(z). (33)

From Equations (29) and (33), we have

M`+1
p ϑ(z) =

zυ′(z) + p(1−A)
A υ(z)

p
A

. (34)

Further computations show that

M`+2
p ϑ(z) =

z2υ′′(z) +
[
1 + 2p(1−A)

A

]
zυ′(z) + p2(1−A)2

A2 υ(z)

p2

A2

, (35)

and

M`+3
p ϑ(z) =

z3υ′′′(z) +
[
3 + 3p(1−A)

A

]
z2υ′′(z) +

[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
zυ′(z) + p3(1−A)3

A3 υ(z)

p3

A3

. (36)

Define the parameters u1, u2, u3 and u4 as:

u1 = f , u2 =
g + p(1−A)

A f
p
A

, (37)

u3 =
h +

[
1 + 2p(1−A)

A

]
g + p2(1−A)2

A2 f

p2

A2

, (38)

and

u4 =
t +
[
3 + 3p(1−A)

A

]
h +

[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
g + p3(1−A)3

A3 f

p3

A3

. (39)
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Now, we define the transformation Γ : C4 ×D −→ C as follows:

Γ( f , g, h, t; z) = U(u1, u2, u3, u4; z)

= U

(
f ,

g + p(1−A)
A f

p
A

,
h +

[
1 + 2p(1−A)

A

]
g + p2(1−A)2

A2 f

p2

A2

,

t + 3
[
1 + p(1−A)

A

]
h +

[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
g + p3(1−A)3

A3 f

p3

A3

; z

)
.

(40)

By utilizing Theorem 1 and Equations (33) to (36), and from Equation (40), we yield

Γ
(

υ(z), zυ′(z), z2υ′′(z), z3υ′′′(z); z
)
= U

(
M`

pϑ(z),M`+1
p ϑ(z),M`+2

p ϑ(z),M`+3
p ϑ(z); z

)
. (41)

Therefore, Equation (31) becomes

Γ
(

υ(z), zυ′(z), z2υ′′(z), z3υ′′′(z); z
)
∈ A.

A computation utilizing Equations (37), (38) and (39) acquire

h
q
+ 1 =

p
[
u3 − 2(1− A)u2 + (1− A)2u1

]
A[u2 − (1− A)u1]

,

and

t
q
=

p2[u4 − (1− A)3u1]− p[3A + 3p(1− A)][u3 − 2(1− A)u2 + (1− A)2u1]

A2[u2 − (1− A)u1]
− 3p2(1− A)2

A2 + 2.

We also note that

∣∣∣∣ zυ′(z)
ω′(χ)

∣∣∣∣ =
∣∣∣∣∣∣

p
A

[
M`+1(z)− (1− A)M`(z)

]
ω′(χ)

∣∣∣∣∣∣ ≤ κ.

Hence, the admissibility condition for U ∈ ΣM[A, ω] in Definition 8 is equivalent to the
admissibility condition of Γ ∈ Ω2[A, ω] as given in Definition 5 and by Theorem 1, we obtain

M`
pϑ(z) ≺ ω(z).

The proof of Theorem 2 is complete.

If A 6= C is a simply connected domain, then A = h̄(D) for some conformal mapping h̄(z) of D
onto A. In this case the class ΣM[h̄(D), ω] is written as Σ′M[h̄, ω]. The following outcome is a directly
consequence of Theorem 2.

Theorem 3. Let U ∈ ΣM[h̄, ω]. If ϑ ∈ Ap and ω ∈ J0 achieve the following condition (28) given as follows:

<
(

χω′′(χ)

ω′(χ)

)
≥ 0,

∣∣∣∣∣M`+1
p ϑ(z)− (1− A)M`

pϑ(z)
ω′(χ)

∣∣∣∣∣ ≤ |A| κp
,
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and

U
(
M`

pϑ(z),M`+1
p ϑ(z),M`+2

p ϑ(z),M`+3
p ϑ(z); z

)
≺ h(z), (42)

then

M`
pϑ(z) ≺ ω(z), (z ∈ D) . (43)

The next outcome is an extension of Theorem 3 to the case where the behavior of ω(z) on ∂D is
not known.

Corollary 1. Let A ⊂ C and let ω(z) be univalent in D, ω(0) = 0. Let U ∈ ΣM[A, ωε] for some ε ∈ (0, 1)
where ωε(z) = ω(εz). If ϑ ∈ Ap achieves

<
(

χω′′ε (χ)

ω′ε(χ)

)
≥ 0,

∣∣∣∣∣M`+1
p ϑ(z)− (1− A)M`

pϑ(z)
ω′ε(χ)

∣∣∣∣∣ ≤ |A| κp
,

and

U
(
M`

pϑ(z),M`+1
p ϑ(z),M`+2

p ϑ(z),M`+3
p ϑ(z); z

)
∈ A,

then

M`
pϑ(z) ≺ ω(z),

where z ∈ D and χ ∈ ∂D\G(ωε).

Proof. By utilizing Theorem 3, we haveM`
pϑ(z) ≺ ωε(z). Then we get the outcome from ωε(z) ≺

ω(z).

The next outcome is an immediate consequence of Corollary 1.

Corollary 2. Let A ⊂ C and let ω(z) be univalent in D, ω(0) = 0. Let U ∈ ΣM[h̄, ωε] for some ε ∈ (0, 1)
where ωε(z) = ω(εz). If ϑ ∈ Ap achieves

<
(

χω′′ε (χ)

ω′ε(χ)

)
≥ 0,

∣∣∣∣∣M`+1
p ϑ(z)− (1− A)M`

pϑ(z)
ω′ε(χ)

∣∣∣∣∣ ≤ |A| κp
,

and

U
(
M`

pϑ(z),M`+1
p ϑ(z),M`+2

p ϑ(z),M`+3
p ϑ(z); z

)
≺ h̄(z), (44)

then

M`(z) ≺ ω(z),

where z ∈ D and χ ∈ ∂D\G(ωε).

The following outcome gives the best dominant of the differential subordination of Equation (40).
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Theorem 4. Let h̄(z) be univalent in D. Let U : C4 ×D −→ C. Suppose that the differential equation:

U

(
ω(z),

zω′(z) + p(1−A)
A ω(z)

p
A

,
z2ω′′(z) +

[
1 + 2p(1−A)

A

]
zω′(z) + p2(1−A)2

A2 ω(z)

p2

A2

,

z3ω′′′(z) + 3
[
1 + p(1−A)

A

]
zω′′(z) +

[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
zω′(z) + p3(1−A)3

A3 ω(z)

p3

A3

; z

)
= h̄(z),

(45)

has a solution ω(z) with ω(0) = 0 which achieves Equation (30). If ϑ ∈ Ap achieves Equation (44) and

U
(
M`

pϑ(z),M`+1
p ϑ(z),M`+2

p ϑ(z),M`+3
p ϑ(z); z

)
, (46)

is holomorhic in D, then

M`
pϑ(z) ≺ ω(z), (47)

and ω(z) is the best dominant.

Proof. By utilizing Theorem 3 that ω(z) is a dominant of Equation (44). Since ω(z) achieves Equation
(45), it is also a solution of Equation (44) and therefore ω(z) will be dominated by all dominants. Thus
ω(z) is the best dominant.

In the case ω(z) = Qz (Q > 0) and in view of Definition 8, the class of admissible functions
ΣM[A, ω] denoted by ΣM[A,Q] is defined below:

Definition 7. Let A be a set in C and Q > 0. The class of admissible functions ΣM[A,Q] consists of those
functions U : C4 ×D −→ C that achieve the admissibility condition

U

(
Qeiθ ,

[
κA
p

+ (1− A)

]
Qeiθ ,

L+
[[

1 + 2p(1−A)
A

]
κ + p2(1−A)2

A2

]
Qeiθ

p2

A2

,

V +
[
1 + p(1−A)

A

]
3L+

[[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
κ + p3(1−A)3

A3

]
Qeiθ

p3

A3

)
/∈ A,

(48)

where z ∈ D, <(Le−iθ) ≥ (κ − 1)κQ and <(Ve−iθ) ≥ 0 for all real θ and κ ∈ N\{1}.

Corollary 3. Let U ∈ ΣM[A,Q]. If ϑ ∈ Ap achieves the following conditions:

∣∣∣M`+1
p ϑ(z)− (1− A)M`

pϑ(z)
∣∣∣ ≤ |A| κQ

p
, (49)

and

U
(
M`

pϑ(z),M`+1
p ϑ(z),M`+2

p ϑ(z),M`+3
p ϑ(z); z

)
∈ A, (50)

then ∣∣∣M`(z)
∣∣∣ < Q(z).
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In the case A = ω(D) = {z1 : |z1| < Q}, (Q > 0), for simplification we denote by ΣM[Q] to the
class ΣM[A,Q].

Corollary 4. Let U ∈ ΣM[Q]. If ϑ ∈ Ap achieves the following conditions

∣∣∣M`+1
p ϑ(z)− (1− A)M`

pϑ(z)
∣∣∣ ≤ |A| κQ

p
,

and ∣∣∣U (M`
pϑ(z),M`+1(z),M`+2

p ϑ(z),M`+3
p ϑ(z); z

)∣∣∣ < Q, (51)

then ∣∣∣M`
pϑ(z)

∣∣∣ < Q.

Corollary 5. If κ ≥ 2, Q > 0. If ϑ ∈ Ap achieves

∣∣∣M`+1
p ϑ(z)−M`

pϑ(z)
∣∣∣ < (κ − p) |A| Q

p
,

then ∣∣∣M`
pϑ(z)

∣∣∣ < Q.

Proof. Let U (u1, u2, u3, u4; z) = u2 − u1. Utilizing Corollary 3 with A = h̄(D) and

h̄(z) =
(κ − p) |A| Q

p
z, (Q > 0, z ∈ D).

We have to find the condition so that U ∈ ΣM[A,Q], that is, the admissibility condition of
Equation (48) is achieved. This follows since

∣∣∣∣∣U
(
Qeiθ ,

[
κA
p

+ (1− A)

]
Qeiθ ,

L+
[[

1 + 2p(1−A)
A

]
κ + p2(1−A)2

A2

]
Qeiθ

p2

A2

,

V +
[
1 + p(1−A)

A

]
3L+

[[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
κ + p3(1−A)3

A3

]
Qeiθ

p3

A3

)∣∣∣∣∣

=

∣∣∣∣∣
[

κ

p
− 1
]

AQeiθ

∣∣∣∣∣= (κ − p) |A| Q
p

.

The required outcome is obtained.

Corollary 6. If κ ≥ 2, Q > 0. If ϑ ∈ Ap achieves

∣∣∣M`+2
p ϑ(z)−M`+1

p ϑ(z)
∣∣∣ <

[
2
(

1 +
∣∣∣1 + p(1−2A)

A

∣∣∣)+ ∣∣∣ p2(A−1)
A

∣∣∣]Q
p2

|A|2
,
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then ∣∣∣M`
pϑ(z)

∣∣∣ < Q.

Proof. Let U (u1, u2, u3, u4; z) = u3 − u2. Utilizing Corollary 3 with A = h̄(D) and

h̄(z) =

[
2
(

1 +
∣∣∣1 + p(1−2A)

A

∣∣∣)+ ∣∣∣ p2(A−1)
A

∣∣∣]Q
p2

|A|2
z, (Q > 0, z ∈ D).

It is enough to show that U ∈ ΣM[A,Q], that is, the admissibility condition of Equation (48) is
achieved. This follows since∣∣∣∣∣U

(
Qeiθ ,

[
κA
p

+ (1− A)

]
Qeiθ ,

L+
[[

1 + 2p(1−A)
A

]
κ + p2(1−A)2

A2

]
Qeiθ

p2

A2

,

V +
[
1 + p(1−A)

A

]
3L+

[[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
κ + p3(1−A)3

A3

]
Qeiθ

p3

A3

)∣∣∣∣∣

=

∣∣∣∣∣∣
L+

[
1 + p(1−2A)

A

]
κQeiθ +

[
p2(A−1)

A

]
Qeiθ

p2

A2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
Le−iθ +

[
1 + p(1−2A)

A

]
κQ+

[
p2(A−1)

A

]
Q

p2

A2 e−iθ

∣∣∣∣∣∣

≥
<(Le−iθ) +

∣∣∣1 + p(1−2A)
A

∣∣∣ κQ+
∣∣∣ p2(A−1)

A

∣∣∣Q
p2

|A|2
≥

[
2
(

1 +
∣∣∣1 + p(1−2A)

A

∣∣∣)+ ∣∣∣ p2(A−1)
A

∣∣∣]Q
p2

|A|2
.

This completes the proof.

Corollary 7. If κ ≥ 2, Q > 0. If ϑ ∈ Ap achieves

∣∣∣M`+2
p ϑ(z)−M`+1

p ϑ(z)
∣∣∣ <

[
2

( ∣∣∣2 + 3p(1−A)
A

∣∣∣+ ∣∣∣ p(1−A)
A

(
1 + 3p(1−A)

A
)∣∣∣ )+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣]Q

p3

|A|3
,

then ∣∣∣M`
pϑ(z)

∣∣∣ < Q.

Proof. Let U (u1, u2, u3, u4; z) = u4 − A
p u3. Using Corollary 3 with A = h̄(D) and

h̄(z) =

[
2

( ∣∣∣2 + 3p(1−A)
A

∣∣∣+ ∣∣∣ p(1−A)
A

(
1 + 3p(1−A)

A
)∣∣∣ )+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣]Q

p3

|A|3
z, (Q > 0, z ∈ D).
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It is adequate to show that U ∈ ΣM[A,Q], that is, the admissibility condition of Equation (48) is
achieved. This follows since∣∣∣∣∣U
(
Qeiθ ,

[
κA
p

+ (1− A)

]
Qeiθ ,

L+
[[

1 + 2p(1−A)
A

]
κ + p2(1−A)2

A2

]
Qeiθ

p2

A2

,

V +
[
1 + p(1−A)

A

]
3L+

[[
1 + 3p(1−A)

A + 3p2(1−A)2

A2

]
κ + p3(1−A)3

A3

]
Qeiθ

p3

A3

)∣∣∣∣∣

=

∣∣∣∣∣∣
V +

[
2 + 3p(1−A)

A

]
L+

[
p(1−A)

A
(
1 + 3p(1−A)

A
)]

κQeiθ +
[

p2(1−A)2

A2

(
p(1−A)

A − 1
)]
Qeiθ

p3

A3

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Ve−iθ +

[
2 + 3p(1−A)

A

]
Le−iθ +

[
p(1−A)

A
(
1 + 3p(1−A)

A
)]

κQ+
[

p2(1−A)2

A2

(
p(1−A)

A − 1
)]
Q

p3

A3 e−iθ

∣∣∣∣∣∣

≥
<(Ve−iθ) +

∣∣∣2 + 3p(1−A)
A

∣∣∣<(Le−iθ) +
∣∣∣ p(1−A)

A
(
1 + 3p(1−A)

A
)∣∣∣ κQ+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣Q

p3

|A|3

≥
(κ − 1)κQ

∣∣∣2 + 3p(1−A)
A

∣∣∣+ ∣∣∣ p(1−A)
A

(
1 + 3p(1−A)

A
)∣∣∣ κQ+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣Q

p3

|A|3

≥

[
2

( ∣∣∣2 + 3p(1−A)
A

∣∣∣+ ∣∣∣ p(1−A)
A

(
1 + 3p(1−A)

A
)∣∣∣ )+

∣∣∣ p2(1−A)2

A2

(
p(1−A)

A − 1
)∣∣∣]Q

p3

|A|3
.

The required outcome is derived.

4. Conclusions and Future Directions

In the terms of the ξ-Generalized Hurwitz–Lerch Zeta functions (GHLZF) in the z- domain, a new
generalized Noor-type linear integral operator is introduced. This operator was utilized to study new
classes of holomorphic functions in D. In addition, new applications of the third-order differential
subordination outcome that involves this new operator were investigated. The third-order differential
inequalities were imposed in this work to show the uppercase of this new generalized Noor-type linear
integral operator in D.
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