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Abstract: The concepts of b-metric spaces and ωt-distance mappings play a key role in solving
various kinds of equations through fixed point theory in mathematics and other science. In this
article, we study some fixed point results through these concepts. We introduce a new kind of
function namely, ℋ -simulation function which is used in this manuscript together with the notion
of ωt-distance mappings to furnish for new contractions. Many fixed point results are proved
based on these new contractions as well as some examples are introduced. Moreover, we introduce
an application on matrix equations to focus on the importance of our work.

Keywords: b-metric spaces; ωt-distance mappings; simulation functions; ℋ -simulation functions;
fixed point

1. Introduction

Let U be a non empty set and f : U → U be a self mapping. A point u′ ∈ U is called a fixed point
of f if f u′ = u′. If d is a metric on U , then f is said to be contraction if there is η ∈ [0, 1) such that
d( f u1, f u2) ≤ ηd(u1, u2), for each u1, u2 ∈ U .

The novelty of fixed point theory in distance spaces appeared in 1922 by Banach [1] and known
later by Banach contraction principle which asserts that a contraction on a complete metric space has
a unique fixed point. Subsequently, several generalizations for this result are investigated, either by
modifying the contraction conditions or by changing the setting of the distance spaces, for example
see [2–14].

One well known generalization of metric spaces is b-metric spaces which were introduced
by Bakhtin [15] and improved and named by Czerwik [16]. Then, it is used to investigate many
fixed point results in the literature. This generalization enriched the fixed point theory in various
ways: theorems, applications and many results. On the other hand, some authors generalized the
notion of b-metric spaces to some spaces such as extended b-metric spaces, extended quasi b-metric
spaces and ωt-distance mappings which were introduced by Kamran et al. [17], Nurwahyu [18] and
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Hussain et al. [19], respectively. For a deeper knowledge concerning distance spaces and fixed point
theory and functional analysis, we refer the reader to [20–22]
Henceforth, we consider the following notations: R the set of reals, N the set of naturals, C the set of
complex numbers, Mn(C) the set of all n× n matrices with complex entries and for a self mapping
f : U → U , ℱ f the set of all fixed points of f in U .

2. Preliminary

The definition of b-metric spaces is given as following:

Definition 1. [15] A function b : U ×U → [0,+∞) is said to be b-metric if there is s ∈ [1,+∞) such that
b satisfies:

(b1) b(u1, u2) = 0 iff u1 = u2,
(b2) b(u1, u2) = b(u2, u1), for all u1, u2 ∈ U ,
(b3) b(u1, u2) ≤ s[b(u1, u2) + b(u2, u3)], for all u1, u2, u3 ∈ U .

The pair (U , b, s) is called a b-metric space.

The notion of ωt-distance mapping was introduced by Hussain et al. [19] in 2014 and given
as following:

Definition 2. [19] A function ω : U ×U → [0,+∞) is said to be an ωt-distance over a b-metric space
(U , b, s) if ω satisfies:

(ω1) ω(u1, u2) ≤ s[ω(u1, u2) + ω(u2, u3)], for all u1, u2, u3 ∈ U ,
(ω2) ω(., u

′
)→ [0,+∞) is s-lower semi-continuous for all u

′ ∈ U ,
(ω3) for any ε > 0, there is γ > 0 such that

ω(u1, u2) ≤ γ and ω(u1, u3) ≤ γ imply b(u2, u3) ≤ ε.

From now on, (U , b, s) is referred to a b-metric space, and ω is referred to an ωt-distance mapping
over (U , b, s).

It is obviously that, every b-metric is an ωt-distance mapping.

Lemma 1. [19] On (U , b, s), suppose we have two sequences (un) and (vn) in U . Let (λn) and (βn) be
sequences in [0,+∞) such that λn → 0 and βn → 0. Then:

1. If ω(un, u) ≤ λn and ω(un, v) ≤ βn for all n ∈ N, then u = v.
2. If ω(un, vn) ≤ λn and ω(un, v) ≤ βn for all n ∈ N, then b(vn, v)→ 0.
3. If ω(un, um) ≤ λn for all n, m ∈ N with m > n, then un is a Cauchy sequence.
4. If ω(u, un) ≤ λn for all n ∈ N, then un is a Cauchy sequence.

Definition 3. [23] Let Φ denote the set of all functions φ : [1,+∞)→ [1,+∞) that satisfy:
(Φ1) φ is non decreasing and continuous on [1,+∞),
(Φ2) for all u′ > 1, lim

n→+∞
φn(u′) = 1.

Remark 1. [23] If φ ∈ Φ, then φ(1) = 1 and φ(u′) < u′ for all u′ > 1.

Definition 4. [24] Let Θ∗ denotes the set of all functions θ∗ : (0,+∞)→ (1,+∞) that satisfies:
(Θ∗1) θ is non decreasing and continuous on (0,+∞),
(Θ∗2) for each sequence {u′n} in (0,+∞), lim

n→+∞
θ∗(u

′
n) = 1 if and only if lim

n→+∞
tn = 0,

(Θ∗3) there exist α ∈ (0, 1) and γ ∈ (0,+∞) such that lim
υ→0+

θ∗(u)− 1
uα

= γ.
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In this manuscript, we consider the class Θ to be defined as following:

Definition 5. Let Θ denote the set of all continuous functions θ : [0,+∞)→ [1,+∞) that satisfy:
(Θ1) θ is non decreasing on [0,+∞),
(Θ2) for each sequence {u′n} in [0,+∞), lim

n→+∞
θ(u

′
n) = 1 if and only if lim

n→+∞
tn = 0.

Remark 2. If θ ∈ Θ, then θ−1({1}) = 0.

In 2015, Khojasteh et al. [25] introduced the concept of simulation functions in which they used it
to unify several fixed point results in the literature. Then, significant results in fixed point theory using
simulation functions were obtained, for example see [26–32]

Definition 6. [25] A function ζ∗ : [0,+∞) × [0,+∞) → R is called a simulation function if it satisfies
the following:
(ζ∗1) ζ∗(0, 0) = 0,
(ζ∗2) ζ∗(u1, u2) < u1 − u2 for all u1, u2 > 0,
(ζ∗3) If (un) and (u′n) are sequences in [0,+∞) such that lim

n→+∞
un = lim

n→+∞
u′n > 0,

then lim sup
n→+∞

ζ∗(un, u′n) < 0.

Seong-Hoon Cho [33] introduced the following class of functions, namely ℒ -simulation functions
and some new type of contractions by using ℒ -simulation functions:

Definition 7. A function ζ
′

: [1,+∞) × [1,+∞) → R is called ℒ -simulation function if it satisfies
the following:
(ζ
′
1) ζ

′
(1, 1) = 1,

(ζ
′
2) ζ

′
(u, u′) < u′

u ,
(ζ
′
3) For each sequences (un), (u′n) in (1,+∞), with un ≤ u′n for all n ∈ N lim

n→+∞
un = lim

n→+∞
u′n > 1 implies

lim sup
n→+∞

ζ
′
(un, u′n) < 1.

3. Main Results

We begin our work with the definition of ℋ -simulation functions and some examples on this
notion. Then, we introduce the notion of (ωt, θ, φ)-contractions with respect to µ ∈ ℋ to derive
some results.

Definition 8. A function µ : [1,+∞) × [1,+∞) → R is called ℋ -simulation if µ(u, u′) ≤ u′
u for all

u, u′ ∈ [1,+∞).

We denote by ℋ the set of all ℋ -simulation functions.

Remark 3. Let µ ∈ ℋ . If (un), (u′n) are sequences in [1,+∞) with 1 ≤ lim
n→+∞

u′n <

lim
n→+∞

un, then lim sup
n→+∞

µ(un, u′n) < 1.

Now, we provide some examples on ℋ -simulation functions.

Example 1. The following functions belong to ℋ :

1. µ1(u1, u2) =
kur

2
u1

, k, r ∈ (0, 1],

2. µ2(u1, u2) =
min{u1, u2}
max{u1, u2}

,
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3. µ3(u1, u2) =
u2

u1 + | ln( u2
u1
)|

,

4. µ4(u1, u2) =
u2

u1 +
√

u2
,

5. µ5(u1, u2) =
u2

2
1 + u1u2

,

6. Let f1, f2 : (0,+∞)→ (0,+∞) be continuous functions such that f1(r) < r, and f2(r) ≥ r, for each

r ∈ (0,+∞). Define µ6(u1, u2) =
f1(u2)

f2(u1)
.

Note: Every ℒ -simulation function is ℋ -simulation while the converse isn’t true in general as we
can see in the following example.

Example 2. Consider the function µ : [1,+∞)× [1,+∞)→ R which is defined as

µ(u1, u2) = 1 + ln
(

u2

u1

)
.

Then µ ∈ ℋ and µ /∈ ℒ .
Clearly µ(u1, u2) ≤ u2

u1
for all u1, u2 ∈ [1,+∞) and so, µ ∈ ℋ .

To show that µ /∈ ℒ , consider the sequences (un), (u
′
n) in (1,+∞) such that un = 2n+3

n+1 , and u
′
n =

2n+1
n . Then un ≤ u

′
n for all n ∈ N and lim

n→+∞
un = lim

n→+∞
u
′
n = 2, while

lim sup
n→+∞

ζ(un, u
′
n) = lim sup

n→+∞

(
1 + ln

(
2n+1

n
2n+3
n+1

))

= 1 + ln

(
lim sup
n→+∞

(
2n2 + 3n + 1

2n2 + 3n

))
= 1.

Note: µ2, µ3, µ4, µ5 and µ6 described in Example 1 are not members of ℒ .

Definition 9. Suppose there is ω over (U , b, s) with s ∈ [1,+∞). A self mapping
f : U → U is said to be (ωt, θ, φ)-contraction with respect to µ if there exist θ ∈ Θ and φ ∈ Φ such that

µ(θ(sω( f u1, f u2)), φθω(u1, u2)) ≥ 1 f or all u1, u2 ∈ U . (1)

Lemma 2. If f is (ωt, θ, φ)-contraction, then for all u1, u2 ∈ U , we have the following:

1. ω(u1, u2) > 0 implies that ω( f u1, f u2) <
1
s ω(u1, u2),

2. ω(u1, u2) = 0 implies that ω( f u1, f u2) = 0.

Proof. (1) Suppose ω(u1, u2) > 0. Then Condition 1 implies that
1 ≤ µ(θ(sω( f u1, f u2), φθω(u1, u2))

≤ φθω(u1, u2)

θ(sω( f u1, f u2))

<
θω(u1, u2)

θ(sω( f u1, f u2))
.

So θ(sω( f u1, f u2)) < θω(u1, u2). Since θ is non-decreasing, we have
sω( f u1, f u2) < ω(u1, u2) and so, we get the result.

(2) Suppose ω(u1, u2) = 0. By Condition 1, we have

1 ≤ θ(sω( f u1, f u2)) ≤ φθω(u1, u2) = 1.
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Hence the result.

Lemma 3. Suppose there is ω over (U , b, s) with s ∈ [1,+∞). Let f : U → U be an (ω, θ, φ)-contraction
with respect to µ ∈ ℋ . Then ℱ f contains at most one element.

Proof. Assume that there are u, v ∈ ℱ f . First, we claim that ω(u, v) = 0. If ω(u, v) > 0, then Lemma 2
implies that

ω(u, v) = ω( f u, f v) <
1
s

ω(u, v).

a contradiction and so ω(u, v) = 0. Similarly, we can get that ω(u, u) = 0. b(u, v) = 0 and
hence u = v.

On U , let u0 ∈ U and f : U → U be a self mapping. Then we call the sequence (un), where un =

f un−1, n ∈ N the Picard sequence generated by f at u0.

Lemma 4. Suppose there is ω over (U , b, s) with s ∈ [1,+∞). Let f : U → U be an (ω, θ, φ)-contraction
with respect to µ ∈ ℋ . Then

lim
n→+∞

ω(un, un+1) = 0 and lim
n→+∞

ω(un+1, un) = 0 (2)

for any initial point u0 ∈ U , where (un) is the Picard sequence generated by f at u0.

Proof. Let (un) be the Picard sequence generated by f at u0. If there is M ∈ N such that
ω(uM, uM+1) = 0, then by Lemma 2, we get that ω(un, un+1) = 0 for all n ≥ M.

Assume that ω(un, un+1) > 0 for all n ∈ N. By Lemma 2, we have

ω(un, un+1) <
1
s

ω(un−1, un).

Thus (ω(un, un+1) : n ∈ N) is a non increasing sequence in [0,+∞). There is c0 ≥ 0 such
that lim

n→+∞
ω(un, un+1) = c0. Suppose to the contrary; that is, c0 > 0. Let an = θsω(un, un+1) and

bn = φθω(un−1, un). Then 1 ≤ lim
n→+∞

bn < lim
n→+∞

an. By (1) and Remark 3, we have

1 ≤ lim sup
n→+∞

ζ(θsω(un, un+1), φθω(un−1, un)) < 1,

a contradiction. lim
n→+∞

ω(un, un+1) = 0. By the same way we can show that lim
n→+∞

ω(un+1, un) = 0.

Lemma 5. Suppose there is ω over (U , b, s) with s ∈ [1,+∞). Let f : U → U be an (ω, θ, φ)-contraction
with respect to µ ∈ ℋ . If there is n0 ∈ N with ω(un0 , un0+1) = 0, then un0+1 ∈ ℱ f . In addition, if there is
n0 ∈ N with ω(un0+1, un0) = 0, then un0 ∈ ℱ f .

Proof. The proof follows from part (a) and part (c) of the definition of ω.

Theorem 1. Suppose (U , b, s) is complete with base s ∈ [1,+∞). Suppose that there are θ ∈ Θ and φ ∈ Φ
such that f : U → U is an (ω, θ, φ)-contraction with respect to µ ∈ ℋ such that:

If ν ∈ X with f ν 6= ν, then inf{ω(u, ν) : u ∈ U} > 0. (3)

Then ℱ f consists of only one element. Moreover, the sequence (un), where un+1 = f un, n ≥ 0 converges for
any u0 ∈ U and lim

n→+∞
un ∈ ℱ f .
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Proof. Let u0 ∈ U and consider the Picard sequence (un) in U generated by f at u0. According to
Lemma 5, if there exists n0 ∈ N such that ω(un0 , un0+1) = 0 or ω(un0+1, un0) = 0, then un0+1 ∈ ℱ f
or un0 ∈ ℱ f , respectively. Therefore, we may assume that for each n ∈ N, ω(un, un+1) 6= 0 and
ω(un+1, un) 6= 0. By Lemma 4, we have lim

n→+∞
ω(un, un+1) = 0 and lim

n→+∞
ω(un+1, un) = 0. Now, we

want to show that lim
n,m→+∞

ω(un, um) = 0, i.e. (un) is a Cauchy sequence.

Assume the contrary; that is, lim
n,m→+∞

ω(un, um) 6= 0. Thus there are ε > 0 and two sub-sequences

(unk ) and (umk ) of (un) such that (mk) is chosen as the smallest index for which

ω(unk , umk ) ≥ ε, mk > nk > k. (4)

This implies that
ω(unk , umk−1) < ε. (5)

Set δk = ω(unK−1, umk ). By Lemma 2, Equations (4) and (5) and (ω1) of the definition of ω, we get
ε ≤ ω(unk , umk ) ≤ 1

s ω(unk−1, umk−1)

≤ [ω(unk−1, umk ) + ω(umk , umk−1)].

By taking the limit inferior as k→ +∞ and taking into account Equation (2), we get

ε ≤ lim inf
k→+∞

δk. (6)

In addition,
ω(unk−1, umk ) ≤ 1

s ω(unk−2, umk−1)

≤ [ω(unk−2, unk ) + ω(unk , umk−1)]

< s[ω(unk−2, unk−1) + ω(unk−1, unk )] + ε].

By taking the limit superior as k→ +∞ and taking into account (2), we get

lim sup
k→+∞

δk ≤ ε. (7)

By Equations (6) and (7), we get

lim
k→+∞

δk = ε. (8)

Now, set γk = ω(unk , umk+1). By Lemma 2, we get

ω(unk , umk+1) ≤
1
s

ω(unk−1, umk ).

By taking the limit superior to both sides, we get

lim sup
k→+∞

γk ≤
ε

s
. (9)

On the other hand, we have
ε ≤ ω(unk , umk ) ≤ s[ω(unk , umk+1) + ω(umk+1, umk )].

By taking the limit inferior to both sides, we get

ε

s
≤ lim inf

k→+∞
γk. (10)

By Equations (9) and (10), we get

lim
k→+∞

γk =
ε

s
. (11)
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By the properties of θ and φ, we get

φ(θ(ε)) < θ(ε) = θ(s
ε

s
).

Now, by letting ak = θ(sγk) and bk = φ(θ(δk)), then lim
k→+∞

ak > lim
k→+∞

bk ≥ 1. Remark 3 and

Condition (1) yield that
1 ≤ lim sup

k→+∞
µ(ak, bk) < 1,

which is a contradiction. Therefore lim
n,m→+∞

ω(un, um) = 0. Thus Lemma 1 implies that (un) is Cauchy.

There is ν ∈ U such that lim
n→+∞

un = ν.

Since lim
n,m→+∞

ω(un, um) = 0, then for any r > 0 there is k0 ∈ N such that

ω(un, um) ≤ r for all m > n ≥ k0.

The lower semi-continuity of ω implies that

ω(un, ν) ≤ lim inf
p→+∞

ω(un, up) ≤ r for all m > n ≥ k0.

Suppose that f ν 6= ν. Then we have
0 < inf{ω(u, ν) : u ∈ U}
≤ inf{ω(un, ν) : n ≥ k0}
≤ r,

for every r > 0 which is a contradiction. Therefore f ν = ν. The uniqueness of ν follows
from Lemma 3.

Corollary 1. Suppose (U , b, s) is complete with base s ∈ [1,+∞), and there is ω over (U , b, s). Suppose that
there are real numbers a > 1 and λ ∈ (0, 1) such that f : U → U satisfies the following condition:
If u1, u2 ∈ U , then

asω( f u1, f u2) ≤ aλω(u1,u2) − a−λω(u1,u2). (12)

In addition, assume that if ν ∈ X and f ν 6= ν, then

inf{ω(u, ν) : u ∈ U} > 0. (13)

Then ℱ f consists of only one element.

Proof. Define µ : [1,+∞) × [1,+∞) → R, θ : [0,+∞) → [1,+∞) and φ : [1,+∞) → [1,+∞) by

µ(u1, u2) =
u2

2
1 + u1u2

, θ(u) = au and φ(v) = vλ, respectively. Then µ ∈ ℋ , θ ∈ Θ and φ ∈ Φ. We now

show that f is an (ωt, θ, φ)-contraction with respect to µ. From Condition (12), we have

asω( f u1, f u2) ≤ aλω(u1,u2) − a−λω(u1,u2)

iff

a2λω(u1,u2) − asω( f u1, f u2)+λω(u1,u2) ≥ 1

iff
(aλω(u1,u2))2 ≥ 1 + asω( f u1, f u2)aλω(u1,u2)

iff
(aλω(u1,u2))2

1 + asω( f u1, f u2)aλω(u1,u2)
≥ 1
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iff
(φθω(u1, u2))

2

1 + θsω( f u1, f u2)φθω(u1, u2)
≥ 1

iff
µ(θsω( f u1, f u2), φθω(u1, u2)) ≥ 1.

Hence the result follows from Theorem 1.

Corollary 2. Suppose (U , b, s) is complete with base s ∈ [1,+∞), and there is ω over (U , b, s). Suppose that
there is a real number λ ∈ (0, 1) such that f : U → U satisfies the following condition:
If u1, u2 ∈ U , then

|λω(u1, u2)− sω( f u1, f u2)| ≤ eλω(u1,u2) − esω( f u1, f u2). (14)

In addition, suppose that if ν ∈ X if f ν 6= ν, then

inf{ω(u, ν) : u ∈ U} > 0. (15)

Then ℱ f consists of only one element.

Proof. Define µ : [1,+∞) × [1,+∞) → R, θ : [0,+∞) → [1,+∞) and φ : [1,+∞) → [1,+∞) by

µ(u1, u2) =
u2

u1 + | ln( u2
u1
)|

, θ(u) = eu and φ(v) = vλ, respectively. Then µ ∈ ℋ , θ ∈ Θ and φ ∈ Φ.

We now show that f is an (ωt, θ, φ)-contraction with respect to µ. From Condition (14), we have

|λω(u1, u2)− sω( f u1, f u2)| ≤ eλω(u1,u2) − esω( f u1, f u2)

iff
eλω(u1,u2) ≥ esω( f u1, f u2) + |λω(u1, u2)− sω( f u1, f u2)|

iff
eλω(u1,u2) ≥ esω( f u1, f u2) +

∣∣∣ln(eλω(u1,u2)−sω( f u1, f u2))
∣∣∣

iff

eλω(u1,u2) ≥ esω( f u1, f u2) +

∣∣∣∣∣ln
(

eλω(u1,u2)

esω( f u1, f u2)

)∣∣∣∣∣
iff

φθω(u1, u2) ≥ θsω( f u1, f u2) +

∣∣∣∣ln( φθω(u1, u2)

θsω( f u1, f u2)

)∣∣∣∣
iff

φθω(u1, u2)

θsω( f u1, f u2) +
∣∣∣ln( φθω(u1,u2)

θsω( f u1, f u2)

)∣∣∣ ≥ 1

iff
µ(θsω( f u1, f u2), φθω(u1, u2)) ≥ 1.

Hence the result follows from Theorem 1.

4. Examples

Next, we illustrate our result by some examples.

Example 3. Suppose U = C. Let f be a self mapping on U via f (z) = αz with α is real number in [−
√

8,
√

8].
To show that ℱ f consist of only one element. Define b : U × U : [0,+∞) via b(z1, z2) = |z1 − z2|2
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and ω : U × U : [0,+∞) via ω(z1, z2) = |z2|2. In addition, define µ : [1,+∞) × [1,+∞) → R by

µ(u, u
′
) =

(u
′
)

1
2

u
.

Moreover, define θ : [0,+∞)→ [1,+∞) via θ(u′) = eu′ and φ : [1,+∞)→ [1,+∞) by φ(u′) =
√

u′.
Then (U , b, s) is complete b-metric space with s = 2 and ω is ωt-distance mapping over(U , b, s), µ ∈ ℋ ,
φ ∈ Φ and θ ∈ Θ.

Now, we show that f is an (ωt, θ, φ)-contraction with respect to µ; i.e.,

1 ≤ φ(θω(z1, z2)
1
2

θ2ω( f z1, f z2)
f or all z1, z2 ∈ U . (16)

Now, for all z1, z2 ∈ U , we have

2ω( f z1, f z2) = 2ω(αz1, αz2)

= 2α2|z2|2

≤ 1
4
|z2|2 =

1
4

ω(z1, z2).

Hence
θ2ω( f z1, f z2) ≤ 1

4
ω(z1, z2)

= e
1
4

ω(z1,z2)

=

√
(eω(z1,z2))

1
2

= φ(θω(z1, z2)
1
2 ).

Utilizing Theorem 1, we get ℱ f consists of only one element.

Example 4. Let U = [0, 1]. Define µ : [1,+∞)× [1,+∞) → R by µ(u, u
′
) =

u
′

u
. Additionally, define

b, ω : U × U → [0,+∞) by b(u1, u2) = (u1 − u2)
2 and ω(u1, u2) =

1
4
(u1 − u2)

2. Moreover, define

θ : [0,+∞)→ [1,+∞) via θ(u′) = eu′ and φ : [1,+∞)→ [1,+∞) by φ(u′) =
(

u′
) 9

32

. Then the function

g : U → U which is defined by g(u) =
1− u3

4− 2u3 has a unique fixed point in U .

Proof. It is clearly that

1. (U , b, s) is a complete b-metric space with s = 2, and also, ω is ωt-distance mapping
over(U , b, s).

2. µ ∈ ℋ (see Example 2).
3. φ ∈ Φ and θ ∈ Θ.

To show that ℱg consists of only one element, it suffices to show that

µ(θ2ω( f u1, f u2), φθω(u1, u2) ≥ 1 f or all u1, u2 ∈ U ;

i.e., we want to show that

θ2ω(gu1, gu2) ≤ φθω(u1, u2) f or all u1, u2 ∈ U .
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Now,

2ω(gu1, gu2) =
1
2

(
1− u3

1
4− 2u3

1
−

1− u3
2

4− 2u3
2

)2

=
1
8

(
(u1 − u2)(u2

1 + u1u2 + u2
2)

(2− u3
1)

2(2− u3
2)

2

)2

≤ 9
128

(
u1 − u2

)2

=
9

32
ω(u1, u2).

θ2ω(gu1, gu2) = e2ω(gu1,gu2) ≤ e
9

32 ω(u1,u2) =

(
eω(u1,u2)

) 9
32

= φθω(u1, u2).

Hence, Theorem 1 ensures that ℱg consists of only one element. Using MATLAB, we can find that
the fixed point of g is u ' 0.248076921333013.

5. Applications

In this section, we highlight the novelty of our work by introducing some applications by
utilizing Theorem 1.

Next, we show that for any real number n ≥ 2, the equation

√
2u =

1 + un

n + un (17)

has a unique solution in [0,1].

Theorem 2. Let U = [0, 1]. Define µ : [1,+∞)× [1,+∞) → R by µ(u, u
′
) = 1 + ln(

u
′

u
). Additionally,

define b, ω : U ×U → [0,+∞) by b(u1, u2) = (u1 − u2)
2 and ω(u1, u2) =

1
4
(u1 − u2)

2. Moreover, define

θ : [0,+∞) → [1,+∞) via θ(u′) = eu′ and φ : [1,+∞) → [1,+∞) by φ(u′) =
(

u′
) (n−1)2

n2

. Then for the

function f : U → U which defined by f (u) =
1 + un

n
√

2 +
√

2un
, the set ℱ f consists of only one element.

Proof. It is obviously that:

1. (U , b, s) is a complete b-metric space with s = 2. In addition, ω is an ωt-distance mapping
over(U , b, s).

2. µ ∈ ℋ (see Example 2).
3. φ ∈ Φ and θ ∈ Θ.

To show that ℱ f consists of only one element, it suffices to prove that

µ(θ2ω( f u1, f u2), φθω(u1, u2) ≥ 1 f or all u1, u2 ∈ U , (18)

which is equivalent to prove that

θ2ω( f u1, f u2) ≤ φθω(u1, u2) f or all u1, u2 ∈ U . (19)
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Now,

2ω( f u1, f u2) =
1
2

(
1 + un

1

n
√

2 +
√

2un
1

−
1 + un

2

n
√

2 +
√

2un
2

)2

=
1

4(n + un
1 )

2(n + un
2 )

2

(
(n− 1)(un

1 − un
2 )

)2

≤ (n− 1)2

4n4

(
un

1 − un
2

)2

≤ (n− 1)2

4n4

(
n(u1 − u2)

)2

=
(n− 1)2

4n2

(
u1 − u2

)2

=
(n− 1)2

n2 ω(u1, u2).

θ2ω( f u1, f u2) = e2ω( f u1, f u2) ≤ e
(n−1)2

n2 ω(u1,u2) =

(
eω(u1,u2)

) (n−1)2

n2

= φθω(u1, u2).

Hence, Theorem 1 ensures that ℱ f consists of only one element. There is u ∈ U such that f u = u;

i.e., u =
1 + un

n
√

2 +
√

2un
. Hence Equation (17) has a unique solution.

Now, we use Theorem 1 to confirm that for all Q, Ai, Bi ∈ Mn(C), for i ∈ {1, 2, · · · , k}, the
matrix equation

X = Q +
k

∑
i=1

(AiXBi), (20)

where
k

∑
i=1
‖Ai‖ ‖Bi‖ = λ < 1 has a unique solution.

Let Y = Mn(C) and consider the spectral norm ‖.‖ : Y → [0,+∞) which known as ||A|| = s1,
where s1 ≥ s2 ≥ · · · ≥ sn are the singular-values of A. Clearly (Y , ‖.‖) is a Banach space since Y is
a finite dimensional norm space.

Theorem 3. Let Q, Ai, Bi ∈ Y for i ∈ {1, 2, · · · , k} be such that
k

∑
i=1
‖Ai‖ ‖Bi‖ = λ < 1. Then the

matrix in Equation (20) has a unique solution in Y . Moreover, for any matrix X0 ∈ Y , the sequence

Xn+1 = Q +
k

∑
i=1

(AiXnBi) converges to the solution of Equation (20).

Proof. Let b, ω : Y ×Y → [0,+∞) be defined as b(X, Y) = ‖X−Y‖ and ω(X, Y) = 1
3‖X−Y‖. Then,

clearly b is a b-metric on Y with base s = 1 and ω is an ωt-distance mapping. Let µ : [1,+∞) ×
[1,+∞)→ R, θ : [0,+∞)→ [1,+∞) and φ : [1,+∞)→ [1,+∞) be defined as following: µ(u1, u2) =

u2

u1
, θ(t) = et and φ(t) = tλ. Define f : Y → Y by f X = Q +

k

∑
i=1

(AiXBi).

Now, we prove that f is (ωt, θ, φ)-contraction with respect to µ. To see this, let X, Y ∈ Y . Then,
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ω( f X, f Y) =
1
3

∥∥∥∥∥ k

∑
i=1

(AiXBi)−
k

∑
i=1

(AiYBi)

∥∥∥∥∥
=

1
3

∥∥∥∥∥ k

∑
i=1

((AiXBi)− (AiYBi))

∥∥∥∥∥
=

1
3

∥∥∥∥∥ k

∑
i=1

(Ai(X−Y)Bi)

∥∥∥∥∥
≤ 1

3

k

∑
i=1
‖(Ai(X−Y)Bi)‖

≤ 1
3

k

∑
i=1
‖Ai‖ ‖(X−Y)‖ ‖Bi‖

=
1
3
‖(X−Y)‖

k

∑
i=1
‖Ai‖ ‖Bi‖

= λ ω(X, Y).

eω( f X, f Y) ≤ eλω(X,Y) =
(

eω(X,Y)
)λ

. Hence, θsω( f X, f Y) ≤ φθω(X, Y). Consequently, ℱ f consists
of only one element. The matrix in Equation (20) has a unique solution.

To illumine our application, consider the following example

Example 5. Let A1, A2, B1, B2, Q ∈ M4(C) be given as following:

A1 =


0 0 0.5 −0.5
0 0 0.5 0.5
0 1 0 0
1 0 0 0

 , B1 =


0.15 0.15 0 0
0.15 0.15 0 0

0 0 0.02 0
0 0 0.02 0.04



A2 =


0.025 0.05 0 0
0.05 0.05 0 0

0 0 0.1 0.1
0 0 0.1 0.1

 , B2 =


0 0 0.5 0.5
0 0 0 0.5
0 1 0 0
1 0 0 0

 , and

Q =


1 −1 1 −3
1 5 3 2
9 1 3 1
1 6 5 2

 .

One can find that
2

∑
i=1
‖Ai‖ ‖Bi‖ = 0.5 < 1. Theorem 3 implies that the matrix equation X = Q +

A1XB1 + A2XB2 has a unique solution, and the sequence Xn+1 = Q + A1XnB1 + A2XnB2, for n ≥ 0
converges to the unique solution for any initial matrix X0.

For instance, if we start at initial matrix X0 =


1 2 1 3
1 −2 3 4
−2 5 4 1
3 8 10 1

 , we find the solution using

MATLAB at the 10th iteration which is X '


1.4681 −0.3926 1.0598 −2.7607
2.7171 6.9520 3.2511 2.3746

10.9803 3.3849 3.7461 2.2526
1.6913 7.0959 5.5996 3.0472

 .
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30. Radenović, S.; Chandok, S. Simulation type functions and coincidence points. Filomat 2018, 32, 141–147.
[CrossRef]
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