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Abstract: Locating arrays (LAs) can be used to detect and identify interaction faults among factors in
a component-based system. The optimality and constructions of LAs with a single fault have been
investigated extensively under the assumption that all the factors have the same values. However,
in real life, different factors in a system have different numbers of possible values. Thus, it is
necessary for LAs to satisfy such requirements. We herein establish a general lower bound on the
size of mixed-level (1̄, t)-locating arrays. Some methods for constructing LAs including direct and
recursive constructions are provided. In particular, constructions that produce optimal LAs satisfying
the lower bound are described. Additionally, some series of optimal LAs satisfying the lower bound
are presented.

Keywords: combinatorial testing; locating arrays; lower bound; construction; mixed orthogonal
arrays

1. Introduction

Testing is important in detecting failures triggered by interactions among factors. As reported
in [1], owing to the complexity of information systems, interactions among components are complex
and numerous. Ideally, one would test all possible interactions (exhaustive testing); however, this is
often infeasible owing to the time and cost of tests, even for a moderately small system. Therefore,
test suites that provide coverage of the most important interactions should be developed. Testing
strategies that use such test suites are usually called combinatorial testing or combinatorial interaction
testing (CIT). CIT has shown its effectiveness in detecting faults, particularly in component-based
systems or configurable systems [2,3].

The primary combinatorial object used to generate a test suite for CIT is covering arrays (CAs).
CAs are applied in the testing of networks, software, and hardware, as well as construction and
related applications [4–6]. In a CA, the factors have the same number of values; however, in real
life, different factors have different numbers of possible values. Thus, mixed-level CAs or mixed
covering arrays (MCAs) are a natural extension of covering arrays, which improve their suitability for
applications [1,7–11]. A CA or MCA as a test suite can be used to detect the presence of failure-triggered
interactions; however, they do not guarantee that faulty interactions can be identified. Consequently,
tests to reveal the location of interaction faults are of interest. To address this problem, Colbourn
and McClary formalized the problem of non-adaptive location of interaction faults and proposed the
notion of locating arrays (LAs) [12].

LAs are a variant of CAs with the ability to determine faulty interactions from the outcomes of
the tests. An LA with parameters d and t is denoted by (d, t)-LA, where d and t represent the numbers
of faulty interactions and of components or factors in a faulty interaction, respectively. t is often called
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strength. When the number of faulty interactions is at most, instead of exactly d, we use the notation
(d̄, t)-LA to denote it. Generally, testing with a (d, t)-LA can not only detect the presence of faulty
interactions, but can also identify d faulty interactions. Similarly, using a (d̄, t)-LA as a test suite allows
one to identify all faulty interactions if the number is at most d.

LAs have been utilized in measurement and testing [13–15]; however, theoretical studies on LAs
are still in an early stage. For example, when the number of factors is arbitrary, only the minimum
number of tests in (1, 1)-LA and (1̄, 1)-LA is known precisely [16]. For other cases, the minimum number
of rows in an LA is known only when the number of factors is small [17,18]. When (d, t) = (1, 2), three
recursive constructions are provided in [19]. Apart from these few direct and recursive constructions,
computational methods are applied to construct (1, 2)-LAs. Some of these methods use a constraint
satisfaction problem (CSP) solver and a satisfiability (SAT) solver [20–22]. Lanus et al. [23] described
a randomized computational search algorithm called partitioned search with column resampling
to construct (1, t)-LAs. Furthermore, column resampling can be applied to construct (1̄, t)-LA with
δ ≤ 4 [24]. The second and third authors extended the notion of LAs to expand the applicability to
practical testing problems. Specifically, they proposed constrained locating arrays (CLAs) which can be
used to detect and locate failure-triggering interactions in the presence of constraints. Computational
constructions for this variant of LAs can be found in [25–27].

Although a few mathematical constructions exist for (1, t)-LAs and (1̄, t)-LAs, these methods
do not treat cases where different factors have difference values. For real-world applications, it is
desirable for LAs to satisfy such requirements. Herein, we focus on mixed-level (1̄, t)-LAs, which is
equivalent to mixed-level (1, t)-LAs, as we show later.

The contribution of this paper can be summarized as follows:

• We provide a lower bound on the size of minimum (i.e., optimal) mixed-level (1̄, t)-LAs in a form
of a mathematical expression.

• We developed several new mathematical constructions of mixed-level (1̄, t)-LAs.
• We prove some conditions that ensure the existence of mixed-level (1̄, t)-LAs that achieve the

aforementioned lower bound. We also provide mathematical constructions for these optimal
mixed-level LAs.

The remainder of the paper is organized as follows. Section 2 provides the definitions of basic
concepts, such as MCAs and LAs. A general lower bound on the size of mixed-level (1̄, t)-LAs is
established in Section 3, which will be regarded as benchmarks for the construction of optimal LAs with
specific parameters. Some methods for constructing LAs including direct and recursive constructions
are provided in Section 4. In particular, some constructions that produce optimal LAs satisfying the
lower bound will be described in this section. Section 5 contains some concluding remarks.

2. Preliminaries

2.1. Definitions and Notations

The notation In represents the set {1, 2, · · · , n}, while the notations N, k and t represent positive
integers with t < k. We herein model CIT as follows. Suppose that k factors denoted by F1, F2, · · · , Fk
exist. The ith factor has a set of vi possible values (levels) from a set Vi, where i ∈ Ik. A test is a k-tuple
(a1, a2, · · · , ak), where ai ∈ Vi for 1 ≤ i ≤ k. A test, when executed, has the following outcome: pass or
fail. A test suite is a collection of tests, and the outcomes are the corresponding set of pass/fail results.
A fault is evidenced by a failure outcome for a test.

Let A = (aij)(i ∈ IN, j ∈ Ik) be an N × k array with entries in the jth column from a set Vj of
vj symbols. A t-way interaction is a possible t-tuple of values for any t-set of columns, denoted by
T = {(i, σi) : σi ∈ Vi, i ∈ I ⊆ Ik, |I| = t}. We denote ρ(A, T) = {r : ari = σi, for all (i, σi) ∈ T} for the set
of rows of A in which the interaction is included. For an arbitrary set T of t-way interactions, we define
ρ(A,T ) = ∪T∈T ρ(A, T). We use the notation It to denote the set of all t-way interactions of A.
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The array A is termed MCAs, denoted by MCAλ(N; t, k, (v1, v2, · · · , vk)) if |ρ(A, T)| ≥ λ for all
t-way interactions T of A. In other words, A is an MCA if each N× t sub-array includes all the t-tuples
λ times at the least. Here, the number of rows N is called the array size. The number λ is termed as
the array index. The number of columns k is called the number of factors (or variables), number of
components or degree. The word “strength” is generally accepted for referring to the parameter t.
When λ = 1, the notation MCA(N; t, k, (v1, v2, · · · , vk)) is used.

When v1 = v2 = · · · = vk = v, an MCAλ(N; t, k, (v1, v2, · · · , vk)) is merely a CAλ(N; t, k, v).
When λ = 1 in a CA, we omit the subscript. Without loss of generality, we often assume that the
symbol set sizes are in a non-decreasing order, i.e., v1 ≤ v2 ≤ · · · ≤ vk. Hereinafter, these assumptions
will continue to be used. When vi = 1, the presence of the ith factor does not affect the properties of
the mixed covering arrays; thus, we often assume that vi ≥ 2 for 1 ≤ i ≤ k.

Following [12], if, for any T1, T2 ⊆ It with |T1| = |T2| = d, we have

ρ(A, T1) = ρ(A, T2)⇔ T1 = T2,

then the array A is regarded as a (d, t)-LA and denoted by (d, t)-LA(N; k, (v1, v2, · · · , vk)). Similarly,
the definition is extended to permit sets of at most d interactions by writing d̄ in place of d and
permitting instead |T1| ≤ d and |T2| ≤ d. In this case, we use the notation (d̄, t)-LA(N; k, (v1, v2,
· · · , vk)). Clearly, the condition ρ(A, T1) = ρ(A, T2) ⇔ T1 = T2 is satisfied if T1 6= T2 ⇒ ρ(A, T1) 6=
ρ(A, T2). In the following, we fully apply this fact.

We herein focus on (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) in this paper. One of the main problems
regarding (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) is the construction of such LAs having the minimum N
when other parameters have been fixed; however, this is a difficult and challenging problem.
The larger the strength t, the more difficult it is to construct a minimum LA. We use the notation
(1̄, t)-LAN(k, (v1, v2, · · · , vk)) to represent the minimum number N for which a (1̄, t)-LA(N; k, (v1, v2,
· · · , vk)) exists. A (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) is called optimal if N = (1̄, t)-LAN(k, (v1, v2, · · · , vk)).

Lemma 1. [21] Suppose that A is an N × k array. A is a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) if and only if it is
a (1, t)-LA(N; k, (v1, v2, · · · , vk)) and an MCA.

Lemma 1 shows that A is a (1̄, t)-LA if A is an MCA and ρ(A, T1) 6= ρ(A, T2) whenever T1 and T2

are distinct t-way interactions. We use this simple fact hereinafter.

2.2. Applications

As stated in Section 1, testing of information systems is the major application of mixed-level LAs.
For example, suppose that we want to test a web browser-based software system. Also suppose that
using test parameter analysis [2], we have successfully extracted factors and their values to be tested as
shown in Table 1. In this example, a test is a tuple of size k = 3 and there are a total of 2× 2× 3 = 12
possible tests.

Table 1. Factors and values of a web browser-based software system.

Factor Values

Web browser Chrome (0), Edge (1)
Comm protocol IPv4 (0), IPv6 (1)
OS version Home (0), Pro (1), Enterprise (2)

Table 2 shows a set of tests that consists of nine of these possible tests. The test set is identical to
a (1̄, 2)-LA(12; 3, (2, 2, 3)), which is represented by the transpose of the following array.
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0 0 0 0 0 1 1 1 1
0 0 1 1 1 0 0 1 1
1 2 0 1 2 0 2 0 1

Table 2. Test sets corresponding to locating arrays (LAs).

F1: Web Browser F2: Comm Protocol F3: OS Version

1 Chrome IPv4 Pro
2 Chrome IPv4 Enterprise
3 Chrome IPv6 Home
4 Chrome IPv6 Pro
5 Chrome IPv6 Enterprise
6 Edge IPv4 Home
7 Edge IPv4 Enterprise
8 Edge IPv6 Home
9 Edge IPv6 Pro

Due to the property that the (1̄, 2)-LA has, up to one faulty interaction of strength two can always
be located using the outcomes of executing these tests. For example, interaction (Chrome, Pro) is
faulty if and only if the outcomes of tests 1 and 4 are fail and the others are pass. In mathematical
notation, in this case, the interaction is represented as T = {(1, 0), (3, 1)} and the set of all present
faulty interactions is trivially T = {T} (⊆ I2). The rows (tests) that contain the faulty interaction is
ρ(A, T ) = {1, 4}, and by definition, ρ(A, T ′) = {1, 4} never holds for any other T ′ ⊆ I2 such that
|T ′| = 1. The process of locating faulty interactions is schematically presented in Figure 1.

start

Execute all tests and obtain 
test outcome

Choose a new t-way 
interaction T 

Is there any 
FAIL test?

Is �(A, T) 
identical to the 

FAIL tests?

There is no fault

Is there any t-way 

interaction yet to 
be checked?

Assumption on 
faults does not 

hold

���

���

���

��

��

��

T is a faulty 
interaction

end

Figure 1. The process of locating a fault interaction using a (1̄, t)-LA A. ρ(A, T) is the rows (tests)
in which t-way interaction T is included. If no tests failed, then it is concluded that no faults exist.
Otherwise, every t-way interaction T is examined: If ρ(A, T) coincides with the set of FAIL tests, then
T is determined to be faulty. If there is no such T, then it is concluded that the assumption on faults
does not hold. In this case, for example, there can be multiple faults.
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Another application example than information system testing is screening experiments, which aim
to identify interactions that are most influential on a response of a complex system. Compared to
exhaustive full-factorial designs, using locating arrays as experimental designs greatly decreases the
number of design points, thus reducing the cost of experiments. In [13], mixed-level LAs were applied
to the screening experiment for TCP throughput of a mobile wireless network.

3. A Lower Bound on the Size of (1̄, t)-LA(N; k, (v1, v2, · · · , vk))

A benchmark to measure the optimality for (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) is described in this
section. It follows from Lemma 1 that A is a (1̄, t)-LA only if A is an MCA, which implies that
|ρ(A, T)| ≥ 1 for any t-way interaction T of A. Consequently, (1̄, t)-LAN(N; k, (v1, v2, · · · , vk)) ≥
∏k

i=k−t+1 vi, where 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk. Suppose that A is a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) with
N = ∏k

i=k−t+1 vi, where 2vk−t > vk−t+1. Then, A is an MCA(N; t, k, (v1, v2, · · · , vk) by Lemma 1.
Because N = ∏k

t=k−t+1 vi, we have |ρ(A, T)| = 1 for any t-way interaction T ∈ T = {{(k − t +
1, vk−t+1), · · · , (k, vk)} : vi ∈ Vi (k− t + 1 ≤ i ≤ k)}. As N = ∏k

i=k−t+1 vi < 2vk−t ∏k
i=k−t+2 vi, there

exists at least one t-way interaction T′ ∈ T ′ = {{(k− t, vk−t), (k− t + 2, vk−t+2), · · · , (k, vk)} : vi ∈
Vi (k− t ≤ i ≤ k, i 6= vk−t+1)} such that |ρ(A, T′)| = 1. Thus, ρ(A, T′) = ρ(A, T) for a certain T ∈ T .
This contradicts the fact that A is a (1̄, t)-LA. This observation implies the following lemma.

Lemma 2. Let 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk−t, 2vk−t ≤ vk−t+1 ≤ · · · ≤ vk. Then, (1̄, t)-LAN(k, (v1, v2,
· · · , vk)) ≥ ∏k

i=k−t+1 vi.

It is remarkable that the lower bound on the size of (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) in Lemma 2
can be achieved. We will present some infinite classes of optimal (1̄, t)-LA(N; k, (v1, v2, · · · , vk))

satisfying the lower bound in the next section. When vi = vi+1 = · · · = vk−t = vk−t+1, where
i ∈ {1, 2, · · · , k− t}, we can obtain a lower bound on the size of (1̄, t)-LA by a similar argument to the
proof of Theorem 3.1 in [18]. We state it as follows.

Lemma 3. Let 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk. If vi = vi+1 = · · · = vk−t = vk−t+1, where i ∈ {1, 2, · · · , k− t},

then (1̄, t)-LAN(k, (v1, v2, · · · , vk)) ≥
⌈

2 ∑i≤j1<···<jt≤k ∏t
s=1 vjs

1+(k−i+1
t )

⌉
.

Proof. Let A be a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)). We can obtain an N× (k− i + 1) array A′ by selecting
the last (k− i + 1) columns of A (if i = 1, then A′ is merely A). In the array A′, for any i ≤ j1 < · · · <
jt ≤ k, we write n`

j1...jt = |S
`
j1...jt |, where S`

j1...jt =
{
((j1, x1), . . . , (jt, xt))

∣∣|ρ(A′, ((j1, x1), · · · , (jt, xt)))| = `
}

,
` = 1, 2, 3, . . . .

As stated above, |ρ(A, T)| ≥ 1 for any t-way interaction T of A′. Consequently, ∑`≥1 n`
j1 ...jt =

∏t
s=1 vjs and ∑`≥1(` × n`

j1 ...jt) = N hold. It is deduced that n1
j1 ...jt ≥ 2 ∏t

s=1 vjs − N. It is clear

that A′ is a (1, t)-LA by Lemma 1. Thus, in any two of (k−i+1
t ) sets, ρ(A′, S1

j1 ...jt)
′s with i ≤ j1 <

· · · < jt ≤ k share no common elements. Hence, ∑i≤j1<···<jt≤k n1
j1 ...jt ≤ N, which implies that

∑i≤j1<···<jt≤k(2 ∏t
s=1 vjs − N) ≤ ∑i≤j1<···<jt≤k n1

j1 ...jt ≤ N, i.e., N ≥
⌈

2 ∑i≤j1<···<jt≤k ∏t
s=1 vjs

1+(k−i+1
t )

⌉
. Hence,

(1̄, t)-LAN(k, (v1, v2, · · · , vk)) ≥
⌈

2 ∑i≤j1<···<jt≤k ∏t
s=1 vjs

1+(k−i+1
t )

⌉
.

Based on i = 1 and vk−t+1 = · · · = vk = v in Lemma 3, the following corollary can be easily
obtained. It serves as a benchmark for a (1, t)-LA(N; k, v), which was first presented in [18].

Corollary 1. Let v, t and k be integers with t < k. Then, (1, t)-LAN (t, k, v) ≥
⌈

2(k
t )vt

1+(k
t )

⌉
.

In a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)), we often assume that 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk−t ≤ vk−t+1 ≤
· · · ≤ vk. Lemma 2 and Lemma 3 consider the cases vk−t = vk−t+1 and 2vk−t ≤ vk−t+1, respectively.
The left case is vk−t < vk−t+1 < 2vk−t, which is considered in the following lemma.
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Lemma 4. Let 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk. If vk−t < vk−t+1 < 2vk−t, then (1̄, t)-LAN(k, (v1, v2, · · · , vk)) ≥
m, where

m =

 max{
⌈

2 ∑k−t≤j1<···<jt≤k ∏t
s=1 vjs

t+2

⌉
, ∏k

i=k−t+1 vi + ∏k
i=k−t+2 vi}, if t ≥ 2;⌈

2vk−1+2vk
3

⌉
, if t = 1.

Proof. From the above argument, it is known that (1̄, t)-LAN(k, (v1, v2, · · · , vk)) ≥ M = ∏k
i=k−t+1 vi.

Suppose that A is a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)), where N = M + L and L ≥ 0. Select the last (t + 1)
columns of A to form an N × (t + 1) array A′. Clearly, A′ is a (1̄, t)-LA(N; t + 1, (vt, vt+1, · · · , vk)).

Similar to the proof of Lemma 3, we can prove that N ≥
⌈

2 ∑k−t≤j1<···<jt≤k ∏t
s=1 vjs

t+2

⌉
. When t = 1, we can

obtain m =
⌈

2vk−1+2vk
3

⌉
. For t ≥ 2, we prove that N ≥ M + ∏k

i=k−t+2 vi, i.e., L ≥ ∏k
i=k−t+2 vi.

Without loss of generality, suppose that A′ contains two parts: the first part is an M× (t + 1) array B
containing an M× t sub-array comprising all t-tuples over Vk−t+1 ×Vk−t+2 × · · · ×Vk; the left part is
an L× (t + 1) array C; (if L = 0, then B = A′).

If L < ∏k
i=k−t+2 vi, then at least one (t− 1)-way interaction T = {(i, ai) : i ∈ Ik \ Ik−t+1, ai ∈ Vi}

exists such that it is not included by any row of C (If B = A′, then all the (t− 1)-way interactions
satisfy the condition. We can choose an arbitrary one). Hence, we have |ρ(A′, T1)| = 1 for any t-way
interaction T1 ∈ T1 = {T ∪ (k − t + 1, i) : i ∈ Vk−t+1}. Since A is a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)),
|ρ(A′, T2)| ≥ 1 for any t-way interaction T2 ∈ T2 = {T ∪ (k − t, i) : i ∈ Vk−t}. It is clear that
ρ(A′, T1) = ρ(B, T) = ρ(A′, T) = ρ(A′, T2) with |ρ(A′, T1)| = vk−t+1.

Because |T2| = vk−t < |T1| = vk−t+1 < 2|T2|, at least one t-way interaction T′ ∈ T2

exists such that |ρ(A′, T′)| = 1. Otherwise, |ρ(A′, T′)| ≥ 2 for any t-way interaction T′ ∈ T2,
which implies that |ρ(A′, T2)| ≥ 2|T2| = 2vk−t, but |ρ(A′, T2)| = |ρ(A′, T1)| = vk−t+1 < 2vk−t.
It follows that ρ(A′, T′) = ρ(A′, T′1), where T′1 is a certain t-way interaction of T1. It is obvious
that T′ 6= T′1. Consequently, A′ is not a (1, t)-LA. Thus, L ≥ ∏k

i=k−t+2 vi. Consequently, m =

max{
⌈

2 ∑k−t≤j1<···<jt≤k ∏t
s=1 vjs

t+2

⌉
, ∏k

i=k−t+1 vi + ∏k
i=k−t+2 vi} if t ≥ 2.

Combining Lemmas 2–4, a lower bound on the size of (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) can be
obtained, which serves as a benchmark to measure the optimality.

Theorem 1. Let 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk. Then, (1̄, t)-LAN(k, (v1, v2, · · · , vk)) ≥

1. ∏k
i=k−t+1 vi, if 2vk−t ≤ vk−t+1;

2.
⌈

2 ∑i≤j1<···<jt≤k ∏t
s=1 vjs

1+(k−i+1
t )

⌉
, if vi = vi+1 = · · · = vk−t = vk−t+1, where i ∈ {1, 2, · · · , k− t};

3. max{
⌈

2 ∑k−t≤j1<···<jt≤k ∏t
s=1 vjs

t+2

⌉
, ∏k

i=k−t+1 vi + ∏k
i=k−t+2 vi}, if vk−t < vk−t+1 < 2vk−t and t ≥ 2;

4.
⌈

2vk−1+2vk
3

⌉
, if vk−t < vk−t+1 < 2vk−t and t = 1.

Table 3 presents a lower bound on the size of certain mixed-level (1̄, 2)-LAs. The first column lists
the types, while the second column displays the lower bound on the size of mixed-level (1̄, 2)-LAs
with the type. The last column presents the size obtained by simulated annealing [28].

A (1̄, t)-LA(N; k, (v1, v2, . . . , vk)) is called optimal if its size is (1̄, t)-LAN(k, (v1, v2, . . . , vk)).
In what follows, we focus on some constructions for mixed level LAs from combinatorial design
theory. Some constructions that produce optimal LAs satisfying the lower bound in Lemma 2 will also
be provided.
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Table 3. Lower bounds on the size of (1̄, 2)-LA.

Type Minimum Size Simulated Annealing

(2,3,4) 16 16
(3,3,4) 17 17
(2,4,4) 16 16

(2,2,3,4) 16 16
(2,2,5,5) 25 25
(2,3,3,4) 17 17

4. Constructions of (1̄, t)-LA(N; k, (v1, v2, · · · , vk))

Some constructions and existence results for (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) are presented in
this section.

4.1. Methods for Constructing (1̄, t)-LA(N; k, (v1, v2, · · · , vk))

In this subsection, we modify some constructions for MCAs to the case of (1̄, t)-LAs. The next two
lemmas provide the “truncation” and “derivation” constructions, which were first used to construct
mixed CAs.

Lemma 5. (Truncation) Let 2 ≤ v1 ≤ v2 ≤ · · · ≤ vi−1 ≤ vi ≤ vi+1 ≤ · · · ≤ vk. Then, (1̄, t)-LAN(k−
1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)) ≤ (1̄, t)-LAN(k, (v1, v2, . . . , vi−1, vi, vi+1, · · · , vk)).

Proof. Let A be a (1̄, t)-LA(N; k, (v1, v2, . . . , vi−1, vi, vi+1, · · · , vk)) with N = (1̄, t)-LAN(k, (v1, v2, . . . ,
vi−1, vi, vi+1, · · · , vk)). Delete the ith column from A to obtain a (1̄, t)-LA(N; k − 1, (v1, v2, · · · , vi−1,
vi+1, · · · , vk)). Thus, (1̄, t)-LAN(k− 1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)) ≤ N = (1̄, t)-LAN(k, (v1, v2, . . . ,
vi−1, vi, vi+1, · · · , vk)).

Lemma 6. (Derivation) Let 2 ≤ v1 ≤ v2 ≤ · · · ≤ vi−1 ≤ vi ≤ vi+1 ≤ · · · ≤ vk. Then vi · (1̄, t− 1)-LAN
(k− 1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)) ≤ (1̄, t)-LAN(k, (v1, v2, · · · , vi−1, vi, vi+1, · · · , vk)), where t ≥ 2.

Proof. Let A be a (1̄, t)-LA(N; k, (v1, v2, . . . , vk)) with N = (1̄, t)-LAN(k, (v1, v2, . . . , vk)). By Lemma 1, A
is an MCA and a (1, t)-LA. For each x ∈ {0, 1, · · · , vi − 1}, taking the rows in A that involve the symbol x
in the ith columns and omitting the column yields an MCA(Nx; t−1, k−1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)).
We use A(x) to denote the derived array. Next, we prove that A(x) is a (1, t − 1)-LA(Nx; k −
1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)). In fact, for any (t− 1)-way interactions T1 and T2 with T1 6= T2, if
ρ(A(x), T1) = ρ(A(x), T2), we can form two t-way interactions T′1 and T′2 by inserting (i, x) into T1 and
T2, respectively. Hence, ρ(A, T′1) = ρ(A, T′2), where |ρ(A, T′1)| = |ρ(A(x), T1)| but T′1 6= T′2. Consequently,
A is not a (1, t)-LA. It is clear that Ni ≥ (1̄, t− 1)-LAN(k− 1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)) for 0 ≤ i ≤
vi − 1. Thus, N = N0 + N1 + · · ·+ Nvi−1 ≥ vi · (1̄, t− 1)-LAN(k− 1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)).

The following product construction can be used to produce a new LA from old LAs, which is
a typical construction in combinatorial design.

Construction 1. (Product Construction) If both a (1̄, t)-LA(N1; k, (v1, v2, . . . , vk)) and an MCA(N2; t, k, (s1,
s2, . . . , sk)) exist, then a (1̄, t)-LA(N1N2; k, (v1s1, v2s2, . . . , vksk)) exists, where t < k. In particular, if both a
(1̄, t)-LA(N1; k, (v1, v2, . . . , vk)) and a (1̄, t)-LA(N2; k, (s1, s2, . . . , sk)) exist, then a (1̄, t)-LA(N1N2; k, (v1s1,
v2s2, . . . , vksk)) also exists, where t < k.

Proof. Let A = (aij) (i ∈ IN1 , j ∈ Ik) and B = (bij) (i ∈ IN2 , j ∈ Ik) be the given (1̄, t)-LA(N1; k, (v1, v2,
. . . , vk)) and MCA(N2; t, k, (s1, s2, . . . , sk)), respectively. We form an N1N2× k array as follows. For each
row (ai1, ai2, · · · , aik) of A and each row (bh1, bh2, · · · , bhk) of B, include the row ((ai1, bh1), (ai2, bh2),
· · · , (aik, bhk)) as a row of A, where 1 ≤ i ≤ N1, 1 ≤ h ≤ N2.
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From the typical method in design theory, the resultant array A is an MCA(N1N2; t, k, (v1s1, v2s2,
. . . , vksk)), as both A and B are MCAs. By Lemma 1, we only need to prove that A is a (1, t)-LA. Suppose
that ρ(A, T1) = ρ(A, T2), where T1 = {(i, (ahi, bci)) : i ∈ I, |I| = t, I ⊂ {1, 2, · · · , k}, h ∈ IN1 , c ∈ IN2}
and T2 = {(j, (ah′ j, bc′ j)) : j ∈ I′, |I′| = t, I′ ⊂ {1, 2, · · · , k}, h′ ∈ IN1 , c′ ∈ IN2} with T1 6= T2.
It is noteworthy that the projection on the first component of T1 and T2 is the corresponding
t-way interaction of A, while the projection on the second component is the corresponding t-way
interaction of B. Therefore, A is not a (1, t)-LA. The first assertion is then proved because a
(1̄, t)-LA(N2; k, (s1, s2, . . . , sk)) is an MCA(N2; t, k, (s1, s2, . . . , sk)). The second assertion can be proven
by the first assertion.

The following construction can be used to increase the number of levels for a certain factor.

Construction 2. If a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) exists, then a (1̄, t)-LA(2N; k, (v1, v2, · · · , vi−1, a,
vi+1, · · · , vk)) exists, where i ∈ {1, 2, 3, · · · , k} and vi < a ≤ 2vi.

Proof. Let A = (aij), (i ∈ IN, j ∈ Ik) be the given (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) with entries in the
ith column from a set Vi of size vi. For a certain i ∈ Ik, we replace the symbols 0, 1, · · · , a− vi − 1 in
the ith column of A by vi, vi + 1, · · · , a− 1, respectively. We denote the resultant array by A′. Clearly,
permuting the symbols in a certain column does not affect the property of (1̄, t)-LAs. Thus, A′ is also
a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)), where entries in the ith column of A′ from the set {a − vi, a − vi +

1, · · · , vi − 1, vi, vi + 1, · · · , a− 1}. Subsequently, write M = (AT|(A′)T)T. It is easy to prove that M is a
(1, t)-LA(2N; k, (v1, v2, · · · , vi−1, a, vi+1, · · · , vk)) and an MCA(2N; t, k, (v1, v2, · · · , vi−1, a, vi+1, · · · , vk)).
By Lemma 1, M is the desired array.

The following example illustrates the idea in Construction 2.

Example 1. The transpose of the following array is a (1̄, 2)-LA(12; 5, (2, 2, 2, 2, 3))

0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1 1 0 0 1
0 0 1 0 1 0 1 1 1 0 1 0
0 2 1 0 1 1 2 0 1 0 2 2

Replace the symbols 0, 1 by 2, 3 in the 3th column, respectively. Juxtapose two such arrays from top to
bottom to obtain the following array M; we list it as its transpose to conserve space.

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1 1 0 0 1 2 2 2 3 2 3 3 3 3 2 2 3
0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0
0 2 1 0 1 1 2 0 1 0 2 2 0 2 1 0 1 1 2 0 1 0 2 2

It is easy to verify that M is a (1̄, 2)-LA(24; 5, (2, 2, 4, 2, 3)).
Replace the symbol 0 by 2 in the 3th column. Juxtapose two such arrays from top to bottom to

obtain the following array M′; we list it as its transpose to conserve space.

0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1 1 0 0 1 2 2 2 1 2 1 1 1 1 2 2 1
0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0
0 2 1 0 1 1 2 0 1 0 2 2 0 2 1 0 1 1 2 0 1 0 2 2

It is easy to verify that M′ is a (1̄, 2)-LA(24; 5, (2, 2, 3, 2, 3)).

Remark 1. Construction 2 may produce an optimal (1̄, t)-LA. For example, a (1̄, 2)-LA(16; (2, 2, 3, 4)) is
shown in Table 1. By Construction 2, we can obtain a (1̄, 2)-LA(32; (2, 2, 3, 8)), which is optimal by Lemma 4.
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Fusion is an effective construction for MCAs from CAs, for example, see [29]. As with CAs, fusion
for (1̄, t)-LAs guarantees the extension of uniform constructions to mixed cases; however, fusion for
a (1̄, t)-LA(N; k, v) may not produce mixed-level (1̄, t)-LAs. This problem can be circumvented by
introducing the notion of detecting arrays (DAs). Suppose that all the factors have the same levels.
If, for any T ⊆ It with |T | = d and any T ∈ It, we have ρ(A, T) ⊆ ρ(A, T )⇔ T ∈ T , then the array
A is called a (d, t)-DA or a (d, t)-DA(N; k, v).

Construction 3. (Fusion) Suppose that A is a (1, t)-DA(N; k, v) with t ≥ 2. If A is also a (d v
vi
e, t)-LA(N;

k, v), then a (1̄, t)-LA(N; k, (v, · · · , v, vi, v, · · · , v)) exists, where 2 ≤ vi < v.

Proof. Let A be a (1, t)-DA(N; k, v) over the symbol set V of size v. Suppose that ai(i = 1, 2, · · · , vi)

are positive integers with a1 + a2 + · · ·+ avi = v. It is clear that there exists a certain ai such that
ai = d v

vi
e and ai ≥ aj, where 1 ≤ i 6= j ≤ vi. We select a1, a2, · · · , avi elements from V in the ith

column of A to form the element sets Ai(1 ≤ i ≤ vi), respectively. The elements in Ai(1 ≤ i ≤ vi)

are identical with 1, 2, · · · , vi, respectively. Then, we obtain an N × k array A′. Clearly, A′ is an MCA.
We only need to prove that A′ is a (1, t)-LA by Lemma 1, i.e., for any two distinct t-way interactions
T1 = {(a1, ua1), · · · , (at, uat)} and T2 = {(b1, sb1), · · · , (bt, sbt)}, we have ρ(A′, T1) 6= ρ(A′, T2). It is
clear that ρ(A, T1) = ρ(A′, T1) and ρ(A′, T2) = ρ(A, T2) when i 6∈ {a1, · · · , at} and i 6∈ {b1, · · · , bt}.
Hence, ρ(A′, T1) 6= ρ(A′, T2).

When i ∈ {a1, · · · , at} and i 6∈ {b1, · · · , bt}, we can obtain a t-way interaction T′1 = {(a1, ua1),
· · · , (i, a), · · · , (at, uat)} of A, where a ∈ Aui . If ρ(A′, T1) = ρ(A′, T2), then ρ(A, T′1) ⊂ ρ(A′, T1) =

ρ(A′, T2) = ρ(A, T2); however, T′1 6= T2; as such, it is a contradiction that A is a (1, t)-DA(N; k, v). If
i 6∈ {a1, · · · , at} and i ∈ {b1, · · · , bt}, then the similar argument can prove the conclusion.

When i ∈ {a1, · · · , at} and i ∈ {b1, · · · , bt}, it is clear that ρ(A′, T1) 6= ρ(A′, T2) if ui 6= si.
The case ui = si remains to be considered. Without loss of generality, suppose that aj elements are
identical with ui. It is clear that T1 and T2 can be obtained from T1 and T2 by fusion, respectively,
where T1 and T2 are sets of t-way interactions with |T1| = |T2| = aj. If ρ(A′, T1) = ρ(A′, T2), then
ρ(A′, T1) = ρ(A, T1) = ρ(A′, T2) = ρ(A, T2). It is a contradiction that A is a (d v

vi
e, t)-LA(N; k, v)

because the existence of (d v
vi
e, t)-LA(N; k, v) implies the existence of (aj, t)-LA(N; k, v) [12].

Constructions 2 and 3 provide an effective and efficient method to construct a mixed-level
(1̄, t)-LA from a (1, t)-LA(N; k, v). The existence of (d, t)-DA(N; k, v) with d ≥ 1 implies the existence
of (d, t)-LA(N; k, v) [12]. Hence, the array A in Construction 3 can be obtained by a (d, t)-DA(N; k, v),
which is characterized in terms of super-simple OAs. The existence of super-simple OAs can be found
in [17,30–34]. It is noteworthy that the derived array is not optimal. In the remainder of this section,
we present two “Roux-type” recursive constructions [35].

Construction 4. If both a (1̄, t)-LA(N1; k, (v1, v2, · · · , vk)) and a (1̄, t− 1)-LA(N2; k− 1, (v1, v2, · · · , vi−1,
vi+1, · · · , vk)) exist, then a (1̄, t)-LA(N1 + eN2; k, (v1, v2, · · · , vi−1, vi + e, vi+1, vi+2 · · · , vk)) exists, where
e ≥ 0.

Proof. Let A and B be the given (1̄, t)-LA(N1; k, (v1, v2, · · · , vk)) and (1̄, t− 1)-LA(N2; k− 1, (v1, v2,
· · · , vi−1, vi+1, · · · , vk)), respectively. Clearly, if e = 0, then A is the required array. Now, suppose that
e ≥ 1. Insert a column vector (j, j, · · · , j) of length N2 to the front of the ith column of B to form an
N2 × k array Bj, where j ∈ {vi, vi + 1, vi + 2, · · · , vi + e− 1}. Let M = (AT |BT

vi
|BT

vi+1| · · · |BT
vi+e−1)

T .
Clearly, M is an MCA(N1 + eN2; t, k, (v1, v2, · · · , vi−1, vi + e, vi+1, vi+2 · · · , vk)) [9]. By Lemma 1, we
only need to prove that M is a (1, t)-LA, i.e., ρ(M, T1) 6= ρ(M, T2) for any two distinct t-way interactions
T1 and T2, where T1 = {(a1, ua1), · · · , (at, uat)} and T2 = {(b1, sb1), · · · , (bt, sbt)}. Next, we distinguish
the following cases.
Case 1. i 6∈ {a1, · · · , at} and i 6∈ {b1, · · · , bt}

In this case, because A is a (1̄, t)-LA, ρ(A, T1) 6= ρ(A, T2), ρ(M, T1) 6= ρ(M, T2) as A is part of M.
Case 2. i 6∈ {a1, · · · , at} and i ∈ {b1, · · · , bt} or i ∈ {a1, · · · , at} and i 6∈ {b1, · · · , bt}
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When i 6∈ {a1, · · · , at} and i ∈ {b1, · · · , bt}, if si 6∈ {vi, vi + 1, · · · , vi + e− 1}, then ρ(A, T1) 6=
ρ(A, T2). Thus, ρ(M, T1) 6= ρ(M, T2). If si ∈ {vi, vi + 1, · · · , vi + e − 1}, then T2 must be included
by rows of Bi, where i ∈ {vi, vi + 1, · · · , vi + e− 1}; however, it must not be included by any row
of A. Clearly, T1 must be included by some rows of A. Consequently, ρ(M, T1) 6= ρ(M, T2). When
i ∈ {a1, · · · , at} and i 6∈ {b1, · · · , bt}, the same argument can prove the conclusion.
Case 3. i ∈ {a1, · · · , at} and i ∈ {b1, · · · , bt}

Clearly, ρ(M, T1) 6= ρ(M, T2) holds whenever ui 6= si. If ui = si 6∈ {vi, vi + 1, · · · , vi + e− 1}, then
ρ(A, T1) 6= ρ(A, T2), which implies that ρ(M, T1) 6= ρ(M, T2). If ui = si ∈ {vi, vi + 1, · · · , vi + e− 1},
then T1 and T2 must be included by some rows for a certain Bi, where i ∈ {vi, vi + 1, · · · , vi + e− 1}.
Because B is a (1̄, t− 1)-LA, ρ(Bi, T1) 6= ρ(Bi, T2), which implies ρ(M, T1) 6= ρ(M, T2).

More generally, we have the following construction.

Construction 5. Let p ≥ 0, q ≥ 0 and 1 ≤ i < j ≤ k. If a (1̄, t)-LA(N1; k, (v1, v2, · · · , vi−1, vi, vi+1, · · · ,
vj−1, vj, vj+1, · · · , vk)), (1̄, t− 1)-LA(N2; k− 1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)), a (1̄, t− 1)-LA(N3; k−
1, (v1, v2, · · · , vj−1, vj+1, · · · , vk)) and (1̄, t− 2)-LA(N4; k− 2, (v1, v2, · · · , vi−1, vi+1, · · · , vj−1, vj+1, · · · ,
vk)) exist, then a (1̄, t)-LA(N; k, (v1, v2, · · · , vi−1, vi + p, vi+1, · · · , vj−1, vj + q, vj+1, · · · , vk)) exists, where
N = N1 + pN2 + qN3 + pqN4.

Proof. We begin with a (1̄, t)-LA(N1; k, (v1, v2, · · · , vi−1, vi, vi+1, · · · , vj−1, vj, vj+1, · · · , vk)), an N1 × k
array A that is on V1× · · ·×Vi−1×V′i ×Vi+1× · · ·×Vj−1×V′j ×Vj+1× · · ·×Vk. Let H1 and H2 be two
sets with |H1| = p and |H2| = q such that H1

⋂
V′i = ∅ and H2

⋂
V′j = ∅, respectively. Suppose that B′,

an N2× (k− 1) array, is a (1̄, t− 1)-LA(N2; k− 1, (v1, v2, · · · , vi−1, vi+1, · · · , vk)), which is on V1× · · ·×
Vi−1×Vi+1× · · · ×Vk. For each row (a1, a2, · · · , ai−1, ai+1, · · · , ak) of B′, add x ∈ H1 to obtain a k-tuple
(a1, a2, · · · , ai−1, x, ai+1, · · · , ak). Then, we obtain a pN2 × k array from B′, denoted by B. Similarly,
from a (1̄, t− 1)-LA(N3; k− 1, (v1, v2, · · · , vj−1, vj+1, · · · , vk)), we obtain a qN3× k array, denoted by C.
For each pair (x, y) ∈ H1 × H2, we construct k-tuple (a1, a2, · · · , ai−1, x, ai+1, · · · , aj−1, y, aj+1, · · · , ak)

for each row of the given (1̄, t− 2)-LA(N4; k− 2, (v1, v2, · · · , vi−1, vi+1, · · · , vj−1, vj+1, · · · , vk)). These
tuples result in a pqN4 × k array, denoted by D.

Denote V′i ∪ H1 = Vi, V′j ∪ H2 = Vj and F =


A
B
C
D

. We claim that F, an (N1 + pN2 + qN3 +

pqN4)× k array, is a (1̄, t)-LA(N; k, (v1, v2, · · · , vi−1, vi + p, vi+1, · · · , vj−1, vj + q, vj+1, · · · , vk) which
is on V1 × · · · ×Vi−1 ×Vi ×Vi+1 × · · · ×Vj−1 ×Vj ×Vj+1 × · · · ×Vk.

Clearly, F is an MCA (N; t, k, (v1, v2, · · · , vi−1, vi + p, vi+1, · · · , vj−1, vj + q, vj+1, · · · , vk). To prove
this assertion, we only need to demonstrate that ρ(F, Ta) 6= ρ(F, Tb) for any two distinct t-way
interactions Ta = {(a1, ua1), · · · , (at, uat)} and Tb = {(b1, vb1), · · · , (bt, vbt)}. By similar argument as
the proof of Construction 4, we can prove the conclusion except for the case where i, j ∈ {a1, a2, · · · , at}
and i, j ∈ {b1, b2, · · · , bt}, ui = vi ∈ H1, and uj = vj ∈ H2. In this case, Ta and Tb are only included by
some rows of D. If ρ(F, Ta) = ρ(F, Tb), then ρ(D, Ta) = ρ(D, Tb) = ρ(F, Ta) = ρ(F, Tb). Consequently,
ρ(D, Ta \ {(i, ui), (j, uj)}) = ρ(D, Tb \ {(i, ui), (j, uj)}), which implies that ρ(D′, Ta \ {(i, ui), (j, uj)}) =
ρ(D′, Tb \ {(i, ui), (j, uj)}) by the construction of D. It is a contradiction with D′ being a (1̄, t −
2)-LA(N4; k− 2, (v1, v2, · · · , vi−1, vi+1, · · · , vj−1, vj+1, · · · , vk)). The proof is completed.

4.2. Constructions and Existence of Optimal (1̄, t)-LA(∏k
i=k−t+1 vi; k, (v1, v2, · · · , vk))

Let 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk. An N × k array A is called MCA∗2(∏
k
i=k−t+1 vi; t, k, (v1, v2, · · · , vk))

if |ρ(A, T)| = 1 for any t-way interaction T ∈ T = {{(k− t + 1, vk−t+1), · · · , (k, vk)} : vi ∈ Vi (k−
t + 1 ≤ i ≤ k)} and |ρ(A, T′)| ≥ 2 for any t-way interaction T′ 6∈ T . If an optimal (1̄, t)-LA(N; k,
(v1, v2, · · · , vk)) with N = ∏k

i=k−t+1 vi exists, then the following condition must be satisfied.
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Lemma 7. Let 2 ≤ v1 ≤ v2 ≤ · · · ≤ vk−t, 2vk−t ≤ vk−t+1 ≤ vk−t+2 ≤ · · · ≤ vk. If A is an optimal
(1̄, t)-LA(N; k, (v1, v2, · · · , vk)) with N = ∏k

i=k−t+1 vi. Then, A is an MCA∗2(N; t, k, (v1, v2, · · · , vk)).

Proof. Let A be the given optimal (1̄, t)-LA(N; k, (v1, v2, · · · , vk)) with N = ∏k
t=k−t+1 vi. Then, A is

an MCA(N; t, k, (v1, v2, · · · , vk) by Lemma 1. Because N = ∏k
t=k−t+1 vi, we have |ρ(A, T)| = 1 for

any t-way interaction T ∈ T . It follows that |ρ(A, T′)| ≥ 2 for any t-way interaction T′ of A from
the definition of (1̄, t)-LA, where T′ 6∈ T . Hence, A is an MCA∗2(∏

k
i=k−t+1 vi; t, k, (v1, v2, · · · , vk)),

as desired.

Clearly, an MCA∗2(N; t, k, (v1, v2, · · · , vk)) is not always a (1̄, t)-LA(N; k, (v1, v2, · · · , vk)). Next,
we present a special case of MCA∗2 , which produces optimal (1̄, t)-LAs. First, we introduce the notion
of mixed orthogonal arrays (MOAs).

An MOA, or MOA(N; t, k, (v1, v2, · · · , vk)) is an N × k array with entries in the ith column from
a set Vi of size vi such that each N × t sub-array contains each t-tuple occurring an equal number of
times as a row. When v1 = v2 = · · · = vk = v, an MOA is merely an orthogonal array, denoted by
OA(N; t, k, v).

The notion of mixed or asymmetric orthogonal arrays, introduced by Rao [36], have received
significant attention in recent years. These arrays are important in experimental designs as universally
optimal fractions of asymmetric factorials. Without loss of generality, we assume that v1 ≤ v2 ≤
· · · ≤ vk. By definition of MOA, all t-tuples occur in the same number of rows for any N × t sub-array
of an MOA. This number of rows is called index. It is obvious that (k

t) indices exist. We denote
it by λ1, λ2, · · · , λ

(k
t)

. If λi 6= λj for any i 6= j, then an MOA is termed as a pairwise distinct index

mixed orthogonal array, denoted by PDIMOA(N; t, k, (v1, v2, · · · , vk)). Moreover, if λi = 1 for a certain
i ∈ {1, 2, · · · , (k

t)} holds, then it is termed as PDIMOA∗(N; t, k, (v1, v2, · · · , vk)). It is clear that N =

∏k
i=k−t+1 vi in the definition of PDIMOA∗.

Example 2. The transpose of the following array is a PDIMOA ∗(24; 2, 3, (2, 4, 6)). 1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0
2 2 2 2 2 2 1 1 1 1 1 1 3 3 3 3 3 3 0 0 0 0 0 0
1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0



The following lemma can be easily obtained by the definition of PDIMOA∗; therefore, we omit
the proof herein.

Lemma 8. Suppose that v1 ≤ v2 ≤ · · · ≤ vk. If A is a PDIMOA∗(∏k
i=k−t+1 vi; t, k, (v1, v2, · · · , vk)), then

v1 < v2 < · · · < vk and vi|vj, where 1 ≤ i ≤ k− t and k− t + 1 ≤ j ≤ k.

Lemma 9. Let 2 < v1 < v2 < · · · < vk. If a PDIMOA(N; t, k, (v1, v2, . . . , vk)) exists, then a
(1̄, t)-LA(N; k, (v1, v2, . . . , vk)) exists. Moreover, if N = ∏k

i=k−t+1 vi, then the derived (1̄, t)-LA is optimal.

Proof. Let A be a PDIMOA(N; t, k, (v1, v2, . . . , vk)). Clearly, A is an MCA. By Lemma 1, we only need
to prove that T1 6= T2 implies ρ(A, T1) 6= ρ(A, T2), where T1 and T2 are two t-way interactions. In fact,
if ρ(A, T1) = ρ(A, T2), then |ρ(A, T1)| = |ρ(A, T2)|, which contradicts the definition of a PDIMOA.
The optimality can be obtained by Theorem 1.

We construct an optimal (1̄, t)-LA(N; k, (v1, v2, . . . , vk)) with N = ∏k
i=k−t+1 vi in terms of

PDIMOA∗. First, we have the following simple and useful construction for PDIMOA∗. A similar
construction for MOAs was first stated in [37].



Mathematics 2020, 3, 128 12 of 16

Construction 6. Let b = r1r2 · · · rm < v2 < · · · < vk and r1 < r2 < · · · < rm. If a PDIMOA∗

(∏k
i=k−t+1 vi; t, k, (r1r2 · · · rm, v2, v3, · · · vk)) exists, then a PDIMOA∗(∏k

i=k−t+1 vi; t, k + m − 1, (r1, r2,
· · · , rm, v2, v3, · · · , vk)) also exists.

Proof. Let A be PDIMOA∗(N; t, k, (b, v2, v3, · · · vk)) with b = r1r2, · · · rm. We can form an N × (k +
m− 1) array A′ by replacing the symbols in Vb by those of Vr1 ×Vr2 × · · · ×Vrm . It is easily verified
that A′ is the required PDIMOA∗.

The following construction can be obtained easily; thus, we omit its proof.

Construction 7. Let a1 < a2 < · · · < ak and b1 < b2 < · · · < bk. If both a PDIMOA∗(∏k
i=k−t+1 ai; t, k, (a1,

a2, · · · , ak)) and a PDIMOA∗(∏k
i=k−t+1 bi; t, k, (b1, b2, · · · , bk)) exist, then a PDIMOA∗(∏k

i=k−t+1 aibi; t, k,
(a1b1, a2b2, · · · , akbk)) exists. In particular, if both a PDIMOA∗(∏k

i=k−t+1 ai; t, k, (a1, a2, · · · , ak)) and an
OA(t, k, v) exist, then a PDIMOA∗(∏k

i=k−t+1 aivt; t, k, (a1v, a2v, · · · , akv)) exists.

Next, some series of optimal mixed-level (1̄, t)-LAs are presented. First, we list some known
results for later use.

Lemma 10. [38] An OA(vt; t, t + 1, v) exists for any integer v ≥ 2, t ≥ 2.

The existence of PDIMOA∗(t, t + 1, (v1, v2, · · · , vt, vt+1))
′s is determined completely by the

following theorem.

Theorem 2. Let v1 < v2 < · · · < vt+1. A PDIMOA∗(∏t+1
i=2 vi; t, t + 1, (v1, v2, · · · , vt, vt+1)) exists if and

only if v1|vi for 2 ≤ i ≤ t + 1.

Proof. The necessity can be easily obtained by Lemma 8. For sufficiency, we write vi = v1ri for
i = 2, 3, · · · , t + 1. Clearly, ri ≥ 2 and ri 6= rj for 2 ≤ i 6= j ≤ t + 1. We list all t-tuples from Zr2 × Zr3 ×
· · · × Zrt+1 to form an MOA(∏t+1

i=2 ri; t, t, (r2, r3, · · · , rt, rt+1)), which is also a PDIMOA∗(∏t+1
i=2 ri; t, t +

1, (1, r2, r3, · · · , rt, rt+1). Apply Construction 7 with an OA(vt
1; t, t + 1, v1) given by Lemma 10 to obtain

the required PDIMOA∗.

More generally, we have the following results.

Theorem 3. Let v1 < v2 < · · · < vk and vi = kiv1v2 · · · vk−t, where ki ≥ 2, i = k− t + 1, k− t + 2, · · · , k.
Then, a PDIMOA∗(∏k

i=k−t+1 vi; t, k, (v1, v2, · · · , vk)) exists.

Proof. Let M = v1v2 · · · vk−t. Then, vi = Mki, where i = k − t + 1, · · · , k. By Theorem 2,
a PDIMOA∗(N; t, t + 1, (M, vk−t+1, · · · , vk)) with N = ∏k

i=k−t+1 vi exists. Apply Construction 6
to obtain a PDIMOA∗(∏k

i=k−t+1 vi, t, k, (v1, v2, · · · , vk)) as desired.

Theorem 4. Let v1 ≤ v2 ≤ v3 with v2 ≥ 2v1. Then, an optimal (1̄, 2)-LA(v2v3; 3, (v1, v2, v3)) exists.

Proof. First, we construct a v2v3 × 3 array A = (aij) : ai+rv3,1 = (i − 1 + r) mod v1, where i =

1, 2, · · · , v3 and r = 0, 1, · · · , v2 − 1; ai,2 =
⌊

i−1
v3

⌋
and ai,3 = (i− 1) mod v3 for i = 1, 2, · · · , v2v3.

We prove that A is an optimal (1̄, 2)-LA. Optimality is guaranteed by Theorem 1. It is clear that
A is MCA∗2(v2v3, (v1, v2, v3)). Consequently, |ρ(A, {(1, a), (2, b)})| ≥ 2, |ρ(A, {(1, c), (3, d)})| ≥ 2 and
|ρ(A, {(2, e), (3, f )})| = 1, where a, c ∈ V1, b, e ∈ V2, d, f ∈ V3. It is clear that ρ(A, {(1, a), (2, b)}) 6=
ρ(A, {(2, e), (3, f )}) and ρ(A, {(1, c), (3, d)}) 6= ρ(A, {(2, e), (3, f )}). We only need to prove ρ(A,
{(1, a), (2, b)}) 6= ρ(A, {(1, c), (3, d)}). In fact, by construction, ρ(A, {(1, a), (2, b)}) ⊂ {rv3 + 1, rv3 +

2, · · · , (r + 1)v3} for a certain r ∈ {0, 1, 2, · · · , v2 − 1} but {i, i + v1v3} ⊂ ρ(A, {(1, c), (3, d)}), where
i ∈ {1, 2, · · · , v1v3}, which implies ρ(A, {(1, a), (2, b)}) 6= ρ(A, {(1, c), (3, d)}). Thus, A is a (1̄, t)-LA
by Lemma 1.
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The following example illustrates the idea in Theorem 4.

Example 3. The transpose of the following array is an optimal (1̄, 2)-LA(42; 3, (3, 6, 7))

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Theorem 5. Let 2 < w < v with v ≥ 2w. Then, an optimal (1̄, 1)-LA(v; w + 1, (w, w, · · · , w, v)) exists.

Proof. First, we construct a 2w× (w + 1) array A = (aij) as follows:

A =



0 0 · · · 0 0
1 1 · · · 1 1
...

...
...

...
...

w− 1 w− 1 · · · w− 1 w− 1
0 1 · · · w− 1 w
1 2 · · · 0 w + 1
...

...
...

...
w− 1 0 · · · w− 2 2w− 1


When v > 2w, let C = (cij) be a (v − 2w) × (w + 1) array with ci,(w+1) = i − 1 for i = 2w +

1, 2w + 2, · · · , v and ci,j be an arbitrary element for {0, 1, · · · , w− 1}with i = 2w + 1, 2w + 2, · · · , v, j =
1, 2, · · · , w. Let M = A and N = (AT |CT)T . It is easy to prove that M and N are the required arrays if
v = 2w and v > 2w, respectively.

The following results need the notion of a Latin square. A Latin square of order n is an n× n array
of n symbols in which each symbol occurs exactly once in each row and in each column. The diagonal
of such a square is a set of entries that contains exactly one representative of each row and column,
respectively. A transversal is a diagonal in which none of the symbols are repeated. For n 6= 2, 6, there
exists a Latin square of order n with n distinct transversals [39].

Theorem 6. Let 2 < w 6= 6 and v ≥ 3w. Then, an optimal (1̄, 1)-LA(v; 2wb
v−2w

w c + 1, (w, w, · · · , w, v)) exists.

Proof. Let L0 = (aij)w×w with aij = i − 1, where i = 1, 2, · · · , w, j = 1, 2, 3, · · · , w. For 2 < w 6= 6,
a latin square of order w with w disjoint transversals, denoted by L1, exists. We take each of the w
disjoint transversals from L1 as a column to form a w × w array L2, which, clearly, is also a Latin
square. Let π = (1, 2, 3, · · · , w). The permutation π is applied to the columns of L to obtain a new
array denoted by L(π). If L is a Latin square of w, then L(π), L(π2), · · · , L(πw−1) are also Latin squares
of order w. The corresponding 1, 2, · · · , w columns of L(πi) and L(π j) for 0 ≤ i 6= j ≤ w− 1 have no
common symbols.

Let A =

 L0 L0

L1 L2

L1 L(π)
2

 be a 3w× 2w array. It is easy to verify that A is a (1̄, 1)-LA(3w; 2w, w).

For each part

 Lx

Ly

Lz

 of A, we can construct a 4w×w2 array of the form


Lx Lx · · · Lx

Ly Ly · · · Ly

Lz Lz · · · Lz

Lz L(π)
z · · · L(πw−1)

z

.

Next, juxtapose these resultant arrays to obtain a 4w× 2w2 array A′, which is easily verified to be
a (1̄, 1)-LA(4w; 2w2, w). Continue this process until the (

⌊ v−2w
w
⌋
+ 2)w × 2wb

v−2w
w c array B can be

obtained. Clearly, B is a (1̄, 1)-LA((
⌊ v−2w

w
⌋
+ 2)w; 2wb

v−2w
w c, w).
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Let V = (0, 1, 2, · · · , v− 1)T . Suppose C is a (v− (
⌊ v−2w

w
⌋
+ 2)w)× 2wb

v−2w
w c array with entries

from {0, 1, · · · , w− 1}, where v 6= kw. Write B′ = B; if v = kw, B′ = (BT |CT)T if v 6= kw. It is easy to
verify that M = (B′|V) is the required array.

The following theorem considers the case w = 2.

Theorem 7. Let v ≥ 4 be a positive integer. Then an optimal (1̄, 1)-LA(v; 2v − 2v− 1, (2, 2, · · · , 2, v)) exists.

Proof. Let V = (0, 1, 2, · · · , v− 1)T . We only need to construct a (1̄, 1)-LA(v; 2v− 2v− 2, 2), A, because
(A|V) is the required array. As v ≥ 4, the number of occurrences of 0, 1 should be at least 2. It is easy to
prove that all the different column vectors of length v with entries from {0, 1} form the (1̄, 1)-LA(v; k, 2)
as desired. Thus, all that remains is to calculate the number of all the different column vectors. Write x
and y as the number of 0s and 1s in a column vector of length v, respectively. Clearly, x + y = v and
x ≥ 2, y ≥ 2. Because there exist x positions with 0s, the number of different column vectors is (v

x).
Consequently, the number of all the different column vectors is (v

2) + · · ·+ ( v
v−2) = 2v − 2v− 2.

5. Concluding Remarks

LAs can be used to generate test suites for combinatorial testing and identify interaction faults in
component-based systems. In this study, a lower bound on the size of (1̄, t)-LAs with mixed levels was
determined. In addition, some constructions of (1̄, t)-LAs were proposed. Some of these constructions
produce optimal locating arrays. Based on the constructions, some infinite series of optimal locating
arrays satisfying the lower bound in Lemma 2 were presented. Obtaining new constructions for
mixed-level (1̄, t)-LAs and providing more existence results are potential future research directions.
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