Article

Numerical Range of Moore-Penrose Inverse Matrices

Mao-Ting Chien (1)
Department of Mathematics, Soochow University, Taipei 111002, Taiwan; mtchien@scu.edu.tw

Received: 29 April 2020; Accepted: 19 May 2020; Published: 20 May 2020

Abstract

Let A be an n-by- n matrix. The numerical range of A is defined as $W(A)=\left\{x^{*} A x\right.$: $\left.x \in \mathbb{C}^{n}, x^{*} x=1\right\}$. The Moore-Penrose inverse A^{+}of A is the unique matrix satisfying $A A^{+} A=$ $A, A^{+} A A^{+}=A^{+},\left(A A^{+}\right)^{*}=A A^{+}$, and $\left(A^{+} A\right)^{*}=A^{+} A$. This paper investigates the numerical range of the Moore-Penrose inverse A^{+}of a matrix A, and examines the relation between the numerical ranges $W\left(A^{+}\right)$and $W(A)$.

Keywords: Moore-Penrose inverse; numerical range; weighted shift matrix

1. Introduction

Let $A \in M_{m, n}$, the $m \times n$ complex matrices, the Moore-Penrose inverse A^{+}is the unique matrix that satisfies the following properties [1,2]:

$$
A A^{+} A=A, A^{+} A A^{+}=A^{+},\left(A A^{+}\right)^{*}=A A^{+}, \text {and }\left(A^{+} A\right)^{*}=A^{+} A
$$

Consider the system of linear equations:

$$
A x=b, b \in \mathbb{C}^{n}
$$

Moore and Penrose showed that $A^{+} b$ is a vector x such that $\|x\|_{2}$ is minimized among all vectors x for which $\|A x-b\|_{2}$ is minimal. The theory and applications of the Moore-Penrose inverse can be found, for examples, in [3-5].

Let M_{n} be the set of $n \times n$ complex matrices. The numerical range of $A \in M_{n}$ is defined as

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\} .
$$

The numerical radius $w(A)$ of A is defined by the identity $w(A)=\max \{|z|: z \in W(A)\}$. The well-known Toeplitz-Hausdorff theorem asserts that $W(A)$ is a convex set containing the spectrum $\sigma(A)$ of A. There are several fundamental facts about the numerical ranges of square matrices:
(a) $W(\beta A+\gamma I)=\beta W(A)+\{\gamma\}, \beta, \gamma \in \mathbb{C}$;
(b) $\quad W\left(U^{*} A U\right)=W(A), U$ unitary;
(c) $\quad W(C \oplus D)=$ convex hull $\{W(C) \cup W(D)\}$, where $C \oplus D=\left(\begin{array}{cc}C & 0 \\ 0 & D\end{array}\right) \in M_{m+n}$ is the direct sum of $C \in M_{m}$ and $D \in M_{n}$;
(d) $\quad W(A) \subset \mathbb{R}$ if and only if A is Hermitian;
(e) If A is normal then $W(A)$ is the convex of $\sigma(A)$.
(For references on the numerical range and its generalizations, see, for instance, ref. [6]).
The numerical range of A^{-1} of a nonsingular matrix is developed in $[7,8]$ for which the spectrum of any matrix is characterized as the intersection of a family of the numerical ranges of the inverses of nonsingular matrices. In this paper, we investigate the numerical ranges of the Moore-Penrose inverses,
and examine the relationship of the numerical ranges between $W\left(A^{+}\right)$and $W(A)$. In particular, we prove in Section 2 that $0 \in W(A)$ if and only if $0 \in W\left(A^{+}\right)$, and

$$
\sigma(A) \subset W(A) \cap \frac{1}{W\left(A^{+}\right)}
$$

if $A A^{+}=A^{+} A$.
Recall that the singular value decomposition of a matrix $A \in M_{m, n}$ with rank k is written as $A=U \Sigma V^{*}$, where $U \in M_{m}$ and $V \in M_{n}$ are unitary, and $\Sigma=\left(s_{i j}\right) \in M_{m, n}$ has $s_{i j}=0$ for all $i \neq j$, and $s_{11} \geq s_{22} \geq \cdots \geq s_{k k}>s_{k+1, k+1}=\cdots=s_{p p}=0, p=\min \{m, n\}$. The entries $s_{11}, s_{22}, \ldots, s_{p p}$ are called the singular values of A (cf. [9]). The following facts list a number of useful properties concerning the Moore-Penrose inverse.
(F1). Assume $A=U \Sigma V^{*} \in M_{m, n}$ is a singular value decomposition of A, then $A^{+}=V \Sigma^{+} U^{*}$.
(F2). If $A \in M_{n}$ is nonsingular, $A^{+}=A^{-1}$.
(F3). If $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{k}, 0, \ldots, 0\right) \in M_{n}, a_{j} \neq 0, j=1, \ldots, k$, then $A^{+}=\operatorname{diag}\left(1 / a_{1}, 1 / a_{2}, \ldots\right.$, $\left.1 / a_{k}, 0, \ldots, 0\right)$.
(F4). For any nonzero vector $x \in \mathbb{C}^{n}=M_{n, 1}, x^{+}=x^{*} /\left(x^{*} x\right)$.
(F5). If $A \in M_{m, n}$, for any unitary matrices $U \in M_{m}$ and $V \in M_{n},(U A V)^{+}=V^{*} A^{+} U^{*}$.
Throughout this paper, we define $1 / a=0$ if $a=0$.

2. Numerical Range

We begin with two examples to observe some properties of the geometry between the numerical ranges $W(A)$ and $W\left(A^{+}\right)$.

Example 1. Consider a rank one matrix

$$
A=\left(\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) \in M_{n}
$$

$\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right| \neq 0$.
By the singular value decomposition of A, we find that

$$
A^{+}=\frac{1}{\alpha}\left(\begin{array}{cccc}
\bar{a}_{1} & 0 & \cdots & 0 \\
\bar{a}_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\bar{a}_{n} & 0 & \cdots & 0
\end{array}\right)
$$

where $\alpha=\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}+\cdots+\left|a_{n}\right|^{2}$. Clearly, both $W(A)$ and $W\left(A^{+}\right)$are elliptic disks.
On the other hand, the following example indicates that $W(A)$ and $W\left(A^{+}\right)$may differ in geometry types.
Example 2. Let $z=-10+10$ i. Consider the matrix

$$
A=\operatorname{diag}(1,1 / z, 1 / \bar{z}) \oplus\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

By (F3), and taking $n=2, a_{1}=a_{2}=1$ in Example 1, we have

$$
A^{+}=\operatorname{diag}(1, z, \bar{z}) \oplus\left(\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 0
\end{array}\right)
$$

Then $W\left(A^{+}\right)=W(\operatorname{diag}(1, z, \bar{z}))$ is a polygon, but $W(A)=W\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\right.$) is an elliptic disk.
The following result can be easily derived from facts (F5) and (F3).

Theorem 1. Let $A \in M_{n}$. Then A is normal (resp. hermitian) if and only if A^{+}is normal (resp. hermitian).
Theorem 1 asserts that both $W(A)$ and $W\left(A^{+}\right)$have the same geometry type, namely convex polygons or line segments, depending on A is normal or hermitian. We show in Theorem 1 that certain non-normal matrices also admit this property.

The following result shows that the spectra of A and A^{+}as well as their numerical ranges simultaneously contain the origin.

Theorem 2. Let $A \in M_{n}$. Then
(i) $0 \in \sigma(A)$ if and only if $0 \in \sigma\left(A^{+}\right)$.
(ii) $0 \in W(A)$ if and only if $0 \in W\left(A^{+}\right)$.
(iii) If A is normal and $\lambda \neq 0$ then $\lambda \in \sigma(A)$ if and only if $1 / \lambda \in \sigma\left(A^{+}\right)$.

Proof. By the properties $A A^{+} A=A$ and $A^{+} A A^{+}=A^{+}$, we have $\operatorname{det}(A)=0$ if and only if $\operatorname{det}\left(A^{+}\right)=0$. This proves (i).

Suppose A is singular. Then, by $(i), 0 \in W(A)$ if and only if $0 \in W\left(A^{+}\right)$. Suppose A is nonsingular. Then $A^{+}=A^{-1}$, and

$$
\begin{aligned}
W\left(A^{+}\right) & =\left\{\frac{x^{*} A^{+} x}{x^{*} x}: x \neq 0\right\} \\
& =\left\{\frac{(A x)^{*} A^{+}(A x)}{(A x)^{*}(A x)}: x \neq 0\right\} \\
& =\left\{\frac{x^{*} A^{*} A^{+} A x}{x^{*} A^{*} A x}: x \neq 0\right\} \\
& =\left\{\frac{x^{*} A^{*} x}{x^{*} A^{*} A x}: x \neq 0\right\} .
\end{aligned}
$$

Hence

$$
0=\frac{x^{*} A x}{x^{*} x} \in W(A)
$$

for some $x \neq 0$ if and only if

$$
0=\left(\frac{x^{*} A x}{x^{*} x}\right)^{*}=\frac{x^{*} A^{*} x}{x^{*} x} \in W(A)
$$

if and only if $x^{*} A^{*} x=0$ for some $x \neq 0$, which is equivalent to $0 \in W\left(A^{+}\right)$. This proves (ii).
If A is normal with spectrum decomposition $A=U \Lambda U^{*}$, then $A^{+}=U \Lambda^{+} U^{*}$. Suppose the diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, 0, \ldots, 0\right), \lambda_{j} \neq 0, j=1, \ldots, k$. It is easy to see that $\Lambda^{+}=$ $\operatorname{diag}\left(1 / \lambda_{1}, 1 / \lambda_{2}, \ldots, 1 / \lambda_{k}, 0, \ldots, 0\right)$, and thus (iii) follows.

Choose $a_{1}=a_{2}=\cdots=a_{n}=1$ in Example 1. It shows that (iii) of Theorem 2 may fail for non-normal matrices.

As a consequence of Theorem 2, we obtain the following reciprocal convexity.
Theorem 3. Let $z_{1}, z_{2}, \ldots, z_{n}$ be nonzero complex numbers. If

$$
0=\alpha_{1} z_{1}+\alpha_{2} z_{2}+\cdots+\alpha_{n} z_{n}
$$

for some nonnegative $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ with $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=1$, then there exist nonnegative $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ with $\beta_{1}+\beta_{2}+\cdots+\beta_{n}=1$ such that

$$
0=\beta_{1} \frac{1}{z_{1}}+\beta_{2} \frac{1}{z_{2}}+\cdots+\beta_{n} \frac{1}{z_{n}} .
$$

Proof. Consider the diagonal matrix $A=\operatorname{diag}\left(z_{1}, z_{2}, \ldots, z_{n}\right)$. If $0=\alpha_{1} z_{1}+\alpha_{2} z_{2}+\cdots+\alpha_{n} z_{n}$, then $0 \in W(A)$, the convex polygon with vertices $z_{1}, z_{2}, \ldots, z_{n}$. By Theorem 2 (ii), we have that

$$
0 \in W\left(A^{+}\right)=\operatorname{diag}\left(\frac{1}{z_{1}}, \frac{1}{z_{2}}, \ldots, \frac{1}{z_{n}}\right)
$$

which is convex polygon with vertices $\frac{1}{z_{1}}, \frac{1}{z_{2}}, \ldots, \frac{1}{z_{n}}$. Therefore, there exist nonnegative $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ with $\beta_{1}+\beta_{2}+\cdots+\beta_{n}=1$ such that

$$
0=\beta_{1} \frac{1}{z_{1}}+\beta_{2} \frac{1}{z_{2}}+\cdots+\beta_{n} \frac{1}{z_{n}} .
$$

Theorem 4. Let $A \in M_{n}$. If $W(A)$ is symmetric with respect to x-axis then

$$
W(A) \cap s^{2} W\left(A^{+}\right) \neq \varnothing
$$

for every singular value s of A.
Proof. Let $A=U \Sigma V^{*}$ be a singular value decomposition of A, where $\Sigma=\operatorname{diag}\left(s_{1}, s_{2}, \ldots, s_{n}\right), s_{1} \geq$ $s_{2} \geq \cdots \geq s_{n} \geq 0$. If $s=0$ is a singular value of A, then A is singular. Hence $0 \in \sigma(A)$, and thus $0 \in W(A) \cap s^{2} W\left(A^{+}\right)$.

If $s \neq 0$ is a nonzero singular value of A, we may assume $s=s_{1}$, then 1 is a singular value of A / s. Choose a unit vector x such that $V^{*} x=\left[\left(V^{*} x\right)_{1}, 0, \ldots, 0\right]^{T}$, with only nonzero first coordinate. Then $x^{*}(A / s) x=\overline{\left(U^{*} x\right)_{1}}\left(V^{*} x\right)_{1}$. Since $W(A / s)$ is symmetric with respect to x-axis, $W(A / s)=$ $W\left((A / s)^{*}\right)$. Hence

$$
\left(\overline{\left(U^{*} x\right)_{1}}\left(V^{*} x\right)_{1}\right)^{*}=\overline{\left(V^{*} x\right)_{1}}\left(U^{*} x\right)_{1} \in W(A / s) .
$$

On the other hand, $s A^{+}=V\left(s \Sigma^{+}\right) U^{*}$. Then

$$
x^{*}\left(s A^{+}\right) x=x^{*} V\left(s \Sigma^{+}\right) U^{*} x=\left(V^{*} x\right)^{*}\left(s \Sigma^{+}\right)\left(U^{*} x\right)=\overline{\left(V^{*} x\right)_{1}}\left(U^{*} x\right)_{1} .
$$

Hence

$$
W(A / s) \cap W\left(s A^{+}\right) \neq \varnothing,
$$

which is equivalent to

$$
W(A) \cap s^{2} W\left(A^{+}\right) \neq \varnothing .
$$

The result of Theorem 4 may fail if the symmetric property of the numerical range of A is omitted. For example, consider the matrix

$$
A=\left(\begin{array}{cc}
1+i & 0 \\
0 & 2+2 i
\end{array}\right)
$$

Then the singular values of A are $s_{1}=\sqrt{2}, s_{2}=\sqrt{8}$, and

$$
A^{+}=\left(\begin{array}{cc}
1 /(1+i) & 0 \\
0 & 1 /(2+2 i)
\end{array}\right) .
$$

In this case, for every singular value $s_{j}, j=1,2$, we have that

$$
W(A) \cap s_{j}^{2} W\left(A^{+}\right)=\varnothing
$$

It is mentioned in $[7,8,10]$, for any nonsingular matrix $A \in M_{n}$,

$$
\begin{equation*}
\sigma(A) \subset W(A) \cap \frac{1}{W\left(A^{-1}\right)} \tag{1}
\end{equation*}
$$

We present the spectrum inclusion in Equation (1) for Moore-Penrose inverses.
Theorem 5. Let $A \in M_{n}$. If $A A^{+}=A^{+} A$ then

$$
\begin{equation*}
\sigma(A) \subset W(A) \cap \frac{1}{W\left(A^{+}\right)} \tag{2}
\end{equation*}
$$

Proof. It is well known that $\sigma(A) \subset W(A)$. Suppose $\lambda \in \sigma(A)$. If $\lambda=0$ then $0 \in W(A)$, and by (ii) of Theorem $2,0 \in W\left(A^{+}\right)$. The inclusion in Equation (2) holds. Assume $\lambda \neq 0$. Choose a unit eigenvector x with $A x=\lambda x$. Then

$$
\begin{equation*}
A^{+} A x=\lambda A^{+} x \tag{3}
\end{equation*}
$$

Using Equation (3), we have

$$
\begin{equation*}
\lambda x=A x=A A^{+} A x=\lambda A A^{+} x \tag{4}
\end{equation*}
$$

The Equation (4) implies

$$
\begin{equation*}
A A^{+} x=x \tag{5}
\end{equation*}
$$

Again using Equation (3), we have

$$
\begin{equation*}
A^{+} x=\frac{1}{\lambda} A^{+} A x \tag{6}
\end{equation*}
$$

From Equations (5) and (6), we have

$$
x^{*} A^{+} x=\frac{1}{\lambda} x^{*} A^{+} A x=\frac{1}{\lambda} x^{*} A A^{+} x=\frac{1}{\lambda}
$$

Thus

$$
\lambda=\frac{1}{x^{*} A^{+} x} \in \frac{1}{W\left(A^{+}\right)}
$$

A matrix $A \in M_{n}$ satisfying the condition $A A^{+}=A^{+} A$ in Theorem 5 is called an EP matrix. Baksalary [11] proposed that the class of EP matrices is characterized as those matrices A for which the column space of A^{2} coincides with the column space of A^{*}. Bapat et al. [12], confirmed the characterization. The EP assumption in Theorem 5 is essential. For instance, taking $n=2, a_{1}=a_{2}=1$ in Example 1, then the eigenvalue 1 of A is not in $1 / W\left(A^{+}\right)$since $w\left(A^{+}\right)<1$. Note that $A A^{+}$and $A^{+} A$ are even unitarily equivalent.

It is shown in [13], under rank additivity $\operatorname{rank}(A+B)=\operatorname{rank}(A)+\operatorname{rank}(B)$, the Moore-Prnrose inverse $(A+B)^{+}$can be represented in terms of A^{+}and B^{+}. Applying the result, there obtains

$$
\begin{equation*}
\left(u u^{*}+v v^{*}\right)^{+}=u u^{*}+v v^{*} \tag{7}
\end{equation*}
$$

for any orthonormal vectors $u, v \in \mathbb{C}^{n}$. We extend Equation (7) to a general result.
Theorem 6. Let $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ be two orthonormal subsets of \mathbb{C}^{n}. If $A=u_{1} v_{1}^{*}+$ $u_{2} v_{2}^{*}+\cdots+u_{r} v_{r}^{*}$ then $A^{+}=v_{1} u_{1}^{*}+v_{2} u_{2}^{*}+\cdots+v_{r} u_{r}^{*}$, and $W\left(A^{+}\right)=W\left(A^{*}\right)$.

Proof. Extend $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ to orthonormal bases $\left\{u_{1}, u_{2}, \ldots, u_{r}, u_{r+1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}\right\}$ of \mathbb{C}^{n}, respectively. Let $U=\left[u_{1} u_{2} \cdots u_{n}\right]$ and $V=\left[v_{1} v_{2} \cdots v_{n}\right]$ be the corresponding unitary matrices. Then

$$
A=U\left(I_{r} \oplus 0_{n-r}\right) V^{*}
$$

Hence, by (F5),

$$
A^{+}=V\left(I_{r} \oplus 0_{n-r}\right) U^{*}
$$

It follows that $A^{+}=A^{*}$, and thus $W\left(A^{+}\right)=W\left(A^{*}\right)$.

3. Bounds on Numerical Radii

Recall that for any nonsingular matrix A, the number $\|A\|\left\|A^{-1}\right\|$ is called the condition number of A with respect to the given matrix norm. The matrix A is ill conditioned if its condition number is large.

For any matrix A, nonsingular or not, we also call the number $\|A\|\left\|A^{+}\right\|$the condition number of the matrix A.

Theorem 7. Let $0 \neq A \in M_{n}$. Then, for the spectral norm $\|$.$\| ,$

$$
1 \leq\|A\|\left\|A^{+}\right\| \leq 4 w(A) w\left(A^{+}\right)
$$

Proof. If $A \neq 0$, there exists x such that $A x \neq 0$. Then $A A^{+} A x=A x, 1 \in \sigma\left(A A^{+}\right)$. Since $A A^{+}$is idempotent and hermitian, it follows that $W\left(A A^{+}\right)=[0,1]$. Thus, $w\left(A A^{+}\right)=1$. By the numerical radius inequality $w(A) \leq\|A\| \leq 2 w(A)$ (cf. [6] p. 44), we obtain that

$$
1=w\left(A A^{+}\right)=\left\|A A^{+}\right\| \leq\|A\|\left\|A^{+}\right\| \leq 4 w(A) w\left(A^{+}\right)
$$

Let $A \in M_{n}$ be a weighted shift matrix

$$
A=\left(\begin{array}{ccccc}
0 & a_{1} & 0 & \cdots & 0 \tag{8}\\
0 & 0 & a_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{n-1} \\
0 & \cdots & \cdots & 0 & 0
\end{array}\right)
$$

It is well known that $W(A)$ is a circular disk centered at the origin. The radius of the circle has attracted the attention of many authors, see for example, refs. [14-17]. In particular, if $a_{1}=a_{2}=$ $\cdots=a_{n-1}=1, w(A)=\cos (\pi /(n+1)(c f .[15,17])$. For weighted shift matrices, upper bounds of the numerical radii are found in $[14,16]$. The Moore-Penrose inverse provides an upper bound and a lower bound for the numerical radii of certain weighted shift matrices.

Theorem 8. Let $A \in M_{n}$ be a weighted shift matrix defined by Equation (8). Then

$$
A^{+}=\left(\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 0 \tag{9}\\
1 / a_{1} & 0 & \ddots & \ddots & \vdots \\
0 & 1 / a_{2} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 1 / a_{n-1} & 0
\end{array}\right) .
$$

Furthermore,

(i) $W(A)$ and $W\left(A^{+}\right)$are circular disks centered at the origin, and

$$
\frac{1}{4} \leq w(A) w\left(A^{+}\right) \leq \frac{\max \left|a_{k}\right|}{\min \left|a_{k}\right|} \cos ^{2}\left(\frac{\pi}{n+1}\right)
$$

where the minimum is taken over those k with $a_{k} \neq 0$.
(ii) If $a_{k} a_{n-k}=1$ for all $k=1,2, \ldots,[n / 2]$ then $W\left(A^{+}\right)=W(A)$, and

$$
\frac{1}{2} \leq w(A)=w\left(A^{+}\right) \leq \max \left\{\left|a_{k}\right|, 1 /\left|a_{k}\right|: k=1,2, \ldots,[n / 2]\right\} \cos \left(\frac{\pi}{n+1}\right)
$$

Proof. Assume a singular value decomposition of A is

$$
A=U \Sigma V^{*}
$$

where

$$
U=I_{n}, \Sigma=\left(\begin{array}{ccccc}
\left|a_{1}\right| & 0 & \cdots & \cdots & 0 \\
0 & \left|a_{2}\right| & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \left|a_{n-1}\right| & 0 \\
0 & \cdots & \cdots & 0 & 0
\end{array}\right), V^{*}=\left(\begin{array}{ccccc}
0 & e^{i \theta_{1}} & 0 & \cdots & 0 \\
0 & 0 & e^{i \theta_{2}} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & e^{i \theta_{n-1}} \\
1 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

and $a_{k}=\left|a_{k}\right| e^{i \theta_{k}}, k=1,2, \cdot \cdot, n-1$. Direct computations on $A^{+}=V \Sigma^{+} U^{*}$ obtain the representation in Equation (9) of A^{+}. It is easy to see that A^{+}in Equation (9) is permutationally equivalent to the weighted shift matrix

$$
\left(\begin{array}{ccccc}
0 & 1 / a_{n-1} & 0 & \cdots & 0 \tag{10}\\
0 & 0 & 1 / a_{n-2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 1 / a_{1} \\
0 & \cdots & \cdots & 0 & 0
\end{array}\right)
$$

The circularity of $W(A)$ and $W\left(A^{+}\right)$follows a well known result that the numerical range of any weighted shift matrix is a circular disk centered at the origin (cf. [14]), and the numerical range of the transpose of a matrix equals the numerical range of the matrix itself. Moreover, by Theorem 3 in [14], the numerical radius

$$
w(A) \leq \cos \left(\frac{\pi}{n+1}\right) \max _{k}\left|a_{k}\right|
$$

Together with Theorem 7, the assertion (i) follows.
If $a_{k} a_{n-k}=1$ for all $k=1,2, \ldots,[n / 2]$, then A^{+}is permutationally equivalent to the matrix in Equation (10) which is exactly equal to A. Thus $W\left(A^{+}\right)=W(A)$. Suppose $c=\max \left\{\left|a_{k}\right|, 1 /\left|a_{k}\right|: k=\right.$ $1,2, \ldots,[n / 2]\}$. Then $\min \left\{\left|a_{k}\right|, 1 /\left|a_{k}\right|: k=1,2, \ldots,[n / 2]\right\}=1 / c$, and the numerical radius inequality follows from (i).

The lower bound $1 / 4$ in (i) is sharp as can be easily seen by taking $n=2$ and $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
Funding: This work was partially supported by Ministry of Science and Technology, Taiwan, under NSC 99-2115-M-031-004-MY2.

Acknowledgments: The author thanks the referees for their helpful comments and suggestions on earlier versions.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Moore, E. On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 1920, 26, 394-395.
2. Penrose, R. A generalized inverse for matrices. Proc. Camb. Philos. Soc. 1955, 51, 406-413. [CrossRef]
3. Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Applications; Springer: New York, NY, USA, 2003.
4. Lee, B.-G.; Park, Y. Distance for Bézier curves and degree reduction. Bull. Aust. Math. Soc. 1997, 56, 507-515. [CrossRef]
5. Mond, B.; Pečarić, J.E. Inequalities with weights for powers of generalised inverses. Bull. Aust. Math. Soc. 1993, 48, 7-12. [CrossRef]
6. Horn, R; Johnson, C.R. Topics in Matrix Analysis; Cambridge University Press: New York, NY, USA, 1991.
7. Hochstenbach, M.E.; Singer D.A.; Zachlin P.F. Eigenvalue inclusion regions from inverses of shifted matrices. Linear Algebra Its Appl. 2008, 429, 2481-2496. [CrossRef]
8. Zachlin, P.F. On the Field of Values of the Inverse of a Matrix. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2007. Available online: http:/ /rave.ohiolink.edu/etdc/view?acc_num= case1181231690 (accessed on 29 March 2020).
9. Horn, R.; Johnson, C.R. Matrix Analysis; Cambridge University Press: New York, NY, USA, 1985.
10. Manteuffel, T.A.; Starke, G. On hybrid iterative methods for non-symmetric systems of linear equations. Numer. Math. 1996, 73, 489-506. [CrossRef]
11. Baksalary, O.M. Characterization of EP Matrices. Image 2009, 43, 44.
12. Bapat, R. Characterization of EP Matrices. Image 2010, 44, 36.
13. Fill, J.A.; Fishkind, D.E. The Moore-Penrose Generalized Inverse for Sums of Matrices. SIAM J. Matrix Anal. Appl. 2000, 21, 629-635. [CrossRef]
14. Chien, M.T. On the numerical range of tridiagonal operators. Linear Algebra Its Appl. 1996, 246, 203-214. [CrossRef]
15. Eiermann, M. Fields of values and iterative methods. Linear Algebra Its Appl. 1993, 180, 167-197. [CrossRef]
16. Linden, H . Containment regions for zeros of polynomials from numerical ranges of companion matrices. Linear Algebra Its Appl. 2002, 350, 125-145. [CrossRef]
17. Marcus, M.; Shure, B.N. The numerical range of certain 0,1-matrices. Linear Multilinear Algebra 1979, 7, 111-120. [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).
