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Abstract: Let A be an n-by-n matrix. The numerical range of A is defined as W(A) = {x*Ax :
x € C",x*x = 1}. The Moore-Penrose inverse A" of A is the unique matrix satisfying AATA =
A ATAAT = AT, (AAT)* = AAT, and (AT A)* = AT A. This paper investigates the numerical
range of the Moore-Penrose inverse AT of a matrix A, and examines the relation between the
numerical ranges W(A™) and W(A).
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1. Introduction

Let A € My, the m X n complex matrices, the Moore-Penrose inverse AT is the unique matrix
that satisfies the following properties [1,2]:

AATA=A, ATAAT = AT, (AAT)* = AAT, and (ATA)" = ATA.
Consider the system of linear equations:
Ax=1b, b e C".

Moore and Penrose showed that A™b is a vector x such that ||x||, is minimized among all vectors
x for which ||Ax — b|| is minimal. The theory and applications of the Moore-Penrose inverse can be
found, for examples, in [3-5].

Let M,, be the set of n x n complex matrices. The numerical range of A € M, is defined as

W(A) = {x"Ax:x € C",x*x = 1}.

The numerical radius w(A) of A is defined by the identity w(A) = max{|z| : z € W(A)}. The
well-known Toeplitz-Hausdorff theorem asserts that W(A) is a convex set containing the spectrum
o(A) of A. There are several fundamental facts about the numerical ranges of square matrices:

@ W(PA+qD) =pW(A)+{7} B1eEC;
(b) W(U*AU) = W(A), U unitary;
cC o0

(0 W(C®D) = convex hull{ W(C)UW(D)}, where C&D = (O D

) € M4y is the direct sum

of Ce My, and D € M,;
(d) W(A) C Rif and only if A is Hermitian;
(e)  If Aisnormal then W(A) is the convex of o(A).
(For references on the numerical range and its generalizations, see, for instance, ref. [6]).
The numerical range of A~! of a nonsingular matrix is developed in [7,8] for which the spectrum

of any matrix is characterized as the intersection of a family of the numerical ranges of the inverses of
nonsingular matrices. In this paper, we investigate the numerical ranges of the Moore—Penrose inverses,
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and examine the relationship of the numerical ranges between W(A™) and W(A). In particular, we
prove in Section 2 that 0 € W(A) if and only if 0 € W(A™), and
o(A) € W(A)A—1
W(AT)

if AAT = ATA.

Recall that the singular value decomposition of a matrix A € My, with rank k is written as
A = ULV*, where U € M;; and V € M, are unitary, and & = (s;;) € My, hass;j = 0 for all i # j,
and s11 > Spp > - > S > Sk+1k+1 = **° = Spp = 0,p= min{m,n}. The entries s11, 522, - - -/ Spp
are called the singular values of A (cf. [9]). The following facts list a number of useful properties
concerning the Moore—Penrose inverse.

(F1). Assume A = UZV* € M, ,, is a singular value decomposition of A, then AT = VETU*.

(F2). If A € M, is nonsingular, AT = A~1.

(F3). If A = diag(ay, ay,...,a,0,...,0) € My, a; #0, j =1,...,k then AT = diag(1/a1,1/ay,...,
1/a,0,...,0).

(F4). For any nonzero vector x € C" = M, 1, x* = x*/ (x*x).

(F5). If A € My, for any unitary matrices U € My, and V € M, (UAV)T = V*ATU*.

Throughout this paper, we define 1/a = 0if a2 = 0.

2. Numerical Range

We begin with two examples to observe some properties of the geometry between the numerical
ranges W(A) and W(A™).

Example 1. Consider a rank one matrix

ap ap an
A = . . . . 6 M}’Z/
0 0 0

lag| + |azg] + - - - + |an| # 0.
By the singular value decomposition of A, we find that

a 0 0
1lam o - 0
At ==
S N
a, 0 0

where o = |a1|? + |aa|? + - - - + |an|?. Clearly, both W(A) and W(A™) are elliptic disks.
On the other hand, the following example indicates that W(A) and W (A™) may differ in geometry types.

Example 2. Let z = —10 + 10i. Consider the matrix

A =diag(1,1/2,1/2) ® ((1) é) .

By (F3), and taking n = 2,a1 = ap = 1 in Example 1, we have
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e (172 0
A —d1ag(1,z,z)@<1/2 NE

Then W(A™1) = W(diag(1,z,2)) is a polygon, but W(A) = W( <1

0 é) ) is an elliptic disk.

The following result can be easily derived from facts (F5) and (F3).
Theorem 1. Let A € M,,. Then A is normal (vesp. hermitian) if and only if A is normal (resp. hermitian).

Theorem 1 asserts that both W(A) and W(A™) have the same geometry type, namely convex
polygons or line segments, depending on A is normal or hermitian. We show in Theorem 1 that certain
non-normal matrices also admit this property.

The following result shows that the spectra of A and A" as well as their numerical ranges
simultaneously contain the origin.

Theorem 2. Let A € M,,. Then

(i) 0€o(A)ifandonlyif0 € o(A™).
(i)  0€ W(A) ifand onlyif0 € W(A™).
(iii)  If Ais normal and A # 0 then A € o(A) ifand only if 1/A € o(A™).

Proof. By the properties AATA = A and ATAAT = AT, we have det(A) = 0 if and only if
det(A™) = 0. This proves (7).

Suppose A is singular. Then, by (i),0 € W(A) ifand only if 0 € W(A™). Suppose A is nonsingular.
Then AT = A1, and

*A+
W(AY) = { Six£0)
AJr Ax
= (G 70
x*A*A+Ax
N { x*A*Ax x 7 0}
*A*
{ T AAx #0}
Hence A
x
0= oS W(A)
for some x # 0 if and only if
0= (220 =T  ew)
x*x x*x

if and only if x* A*x = 0 for some x # 0, which is equivalent to 0 € W(A™). This proves (ii).

If A is normal with spectrum decomposition A = UAU*, then AT = UATU*. Suppose the
diagonal matrix A = diag(Aq,Az,...,A,0,...,0), /\]- #0,j=1,...,k Itis easy to see that AT =
diag(1/A1,1/A2,...,1/A,0,...,0), and thus (iii) follows. [

Choose a1 = a, = --- = a, = 1 in Example 1. It shows that (iii) of Theorem 2 may fail for
non-normal matrices.

As a consequence of Theorem 2, we obtain the following reciprocal convexity.

Theorem 3. Let z1,2y,...,z, be nonzero complex numbers. If

O=w1z1+arzo+ - +anzy
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for some nonnegative ay,ay, . .., &, with a1 + ap + - - - + a, = 1, then there exist nonnegative B1, B2, - - -, Bn
with B1 + P2 + -+ - + By = 1 such that

1 1 1
0 = —_ —_ e —_
,31214—,32224- +'ann
Proof. Consider the diagonal matrix A = diag(z1,22,...,2x). If 0 = a1 21 + ap 2y + - - - + &y 2, then
0 € W(A), the convex polygon with vertices z1, 2, . .., z,. By Theorem 2 (ii), we have that

11 1

which is convex polygon with vertices -, -, ..., 7-

with B1 + B2 + - - + By = 1 such that

. Therefore, there exist nonnegative 51, B2, ..., Bn

1 1 1
,31Zl+ﬁzzz+ +ﬁnZn

O
Theorem 4. Let A € M,,. If W(A) is symmetric with respect to x-axis then
W(A)Ns?W(AT) £
for every singular value s of A.

Proof. Let A = UXV* be a singular value decomposition of A, where ¥ = diag(s1,s2,...,51),51 >
Sp > -+ >s, > 0.If s = 0is a singular value of A, then A is singular. Hence 0 € ¢(A), and thus
0€ W(A)Ns*W(AT).

If s # 0 is a nonzero singular value of A, we may assume s = s1, then 1 is a singular value of
A/s. Choose a unit vector x such that V*x = [(V*x)1,0,...,0]T, with only nonzero first coordinate.
Then x*(A/s)x = (U*x)1(V*x);. Since W(A/s) is symmetric with respect to x-axis, W(A/s) =
W((A/s)*). Hence

((U*x)1(V*x)1)* = (V*x)1(U*x) € W(A/s).
On the other hand, s AT = V(s )U*. Then

(s AT)x = x*V(sZH)U*x = (V*x)* (s 1) (U*x) = (V*x)1 (U*x)1.

Hence
W(A/s)NW(s A+) #Q,

which is equivalent to
W(A)NSZW(AT) # @.

O

The result of Theorem 4 may fail if the symmetric property of the numerical range of A is omitted.
For example, consider the matrix
A 1+i 0 Ay
0 242

Then the singular values of A are s; = V2, sp = /8, and

_ (/1 +1) 0
A+< 0 1/(2+2i)>'
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In this case, for every singular value s i j =1,2, we have that
W(A)NstW(AT) = Q.

It is mentioned in [7,8,10], for any nonsingular matrix A € M,,

oc(A) C W(A)N WATT) @

We present the spectrum inclusion in Equation (1) for Moore-Penrose inverses.
Theorem 5. Let A € M. If AAT = AT A then

c(A) C W(A)N Wéﬁ). 2

Proof. Itis well known that 0(A) C W(A). Suppose A € 0(A).If A = 0then0 € W(A), and by (ii) of
Theorem 2,0 € W(A™). The inclusion in Equation (2) holds. Assume A # 0. Choose a unit eigenvector
x with Ax = Ax. Then

ATAx = AATx. 3)
Using Equation (3), we have
Ax = Ax = AATAx = MAA™«x. 4)
The Equation (4) implies
AATx = x. ©)
Again using Equation (3), we have
+ L+
ATx = XA Ax. (6)

From Equations (5) and (6), we have

1 1 1
Y L _ Lk . T
x A x—AxA Ax—/\xAA x—A.

Thus
1 1

v ATx © W(AT)

A=
O

A matrix A € M, satisfying the condition AA™ = A" A in Theorem 5 is called an EP matrix.
Baksalary [11] proposed that the class of EP matrices is characterized as those matrices A for which
the column space of A2 coincides with the column space of A*. Bapat et al. [12], confirmed the
characterization. The EP assumption in Theorem 5 is essential. For instance, takingn = 2,41 = a5 =1
in Example 1, then the eigenvalue 1 of A is notin 1/W(A™) since w(A*) < 1. Note that AAT and
AT A are even unitarily equivalent.

It is shown in [13], under rank additivity rank(A + B) = rank(A) + rank(B), the Moore-Prnrose
inverse (A + B)™ can be represented in terms of A" and BT. Applying the result, there obtains

(uu* + vo*)* = uu* + vo* )
for any orthonormal vectors 1, v € C". We extend Equation (7) to a general result.

Theorem 6. Let {uy,uy,...,u,} and {v1,vy,...,0.} be two orthonormal subsets of C". If A = ujvf +
upvh + -+ - + u vy then AT = vguf +voub + - - - + vuf, and W(AT) = W(A*).
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Proof. Extend {uy,uy,...,u,} and {vy,vs,...,v,} to orthonormal bases {u1,uy, ..., Uy, tyi1,...,Un}
and {v1,v2,...,0y,0p11,...,0n} of C", respectively. Let U = [uq up - -+ uy]and V = [v1 vy - - - v,] be
the corresponding unitary matrices. Then

A = U(Ir @ Onfr)v*.

Hence, by (F5),
At = V(L @0, _,)U*.
It follows that AT = A*, and thus W(AT) = W(A*). O
3. Bounds on Numerical Radii

Recall that for any nonsingular matrix A, the number || A|| || A~!|| is called the condition number
of A with respect to the given matrix norm. The matrix A is ill conditioned if its condition number
is large.

For any matrix A, nonsingular or not, we also call the number ||A|| | AT the condition number
of the matrix A.

Theorem 7. Let 0 # A € M,,. Then, for the spectral norm ||.||,
1< [[AJIAT] < 4w(A)w(AT).

Proof. If A # 0, there exists x such that Ax # 0. Then AATAx = Ax,1 € 0(AA™). Since AA™ is
idempotent and hermitian, it follows that W(AA™) = [0,1]. Thus, w(AA™") = 1. By the numerical
radius inequality w(A) < ||A|| < 2w(A) (cf. [6] p. 44), we obtain that

1=w(AAT) = [AAT]| < A AT < dw(A)w(AT).
O

Let A € M, be a weighted shift matrix

0 a; O 0
0 0 ar
A= (8)
An—1
0 0 0

It is well known that W(A) is a circular disk centered at the origin. The radius of the circle has
attracted the attention of many authors, see for example, refs. [14-17]. In particular, if a1 = a, =
<o =ay_1 =1, w(A) = cos(rt/(n+ 1) (cf. [15,17]). For weighted shift matrices, upper bounds of
the numerical radii are found in [14,16]. The Moore-Penrose inverse provides an upper bound and a
lower bound for the numerical radii of certain weighted shift matrices.

Theorem 8. Let A € M,, be a weighted shift matrix defined by Equation (8). Then

0 0 - ... 0
1/{11 0 .
At = 0 1/ay . . |- )

0 I V7
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Furthermore,

(i)  W(A) and W(A™) are circular disks centered at the origin, and

max |ag|  ,

s°(

T
n+1

< w(A)w(AT) <
< w(A)w( )_min\ak|

),

NI

where the minimum is taken over those k with aj # 0.
(ii)  Ifaga, =1forallk =1,2,...,[n/2] then W(AT) = W(A), and

<w(A) =w(A") < max{|ay|,1/|ax| : k=1,2,...,[n/2]} cos( ).

T
n+1

N~

Proof. Assume a singular value decomposition of A is

A =UZV?,
where
lay] 0 - e 0 0 ¢ o ... 0
0 ap] "o . 0 0 ¢ I
U=1I,%= : LvE= o : ,
: la,_1] 0 0o . et
o - .- 0 0 1 0 0 0

and a; = |ag|e®%, k =1,2,"*.,n — 1. Direct computations on A* = VZ+U* obtain the representation
in Equation (9) of A™. It is easy to see that A" in Equation (9) is permutationally equivalent to the
weighted shift matrix

0 1/a,-1 0 -0
0 0 1/a,->

: . 1/&1
0 0 0

The circularity of W(A) and W(A™) follows a well known result that the numerical range of any
weighted shift matrix is a circular disk centered at the origin (cf. [14]), and the numerical range of the
transpose of a matrix equals the numerical range of the matrix itself. Moreover, by Theorem 3 in [14],
the numerical radius

s
w(A) < cos(n+1) max lag|.

Together with Theorem 7, the assertion (i) follows.

If aga, = 1forallk = 1,2,...,[n/2], then A" is permutationally equivalent to the matrix in
Equation (10) which is exactly equal to A. Thus W(A™) = W(A). Suppose ¢ = max{|ax|,1/|ax| : k =
1,2,...,[n/2]}. Then min{|ay|,1/|ax| : k =1,2,...,[n/2]} = 1/c, and the numerical radius inequality
follows from (i). O

The lower bound 1/4 in (i) is sharp as can be easily seen by taking n =2 and A = (g é) .
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