
mathematics

Article

Modified King’s Family for Multiple Zeros of Scalar
Nonlinear Functions

Ramandeep Behl 1,†, Munish Kansal 2,†,* and Mehdi Salimi 3,†

1 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
ramanbehl87@yahoo.in

2 School of Mathematics, Thapar Institute of Engineering and Technology, Patiala 147004, India
3 DiGiES & Decisions Lab, University Mediterranea of Reggio Calabria, 89125 Reggio Calabria, Italy;

mehdi.salimi@unirc.it or mehdi.salimi@medalics.org
* Correspondence: munish.kansal@thapar.edu
† These authors contributed equally to this work.

Received: 18 March 2020; Accepted: 12 May 2020; Published: 19 May 2020
����������
�������

Abstract: There is no doubt that there is plethora of optimal fourth-order iterative approaches available
to estimate the simple zeros of nonlinear functions. We can extend these method/methods for
multiple zeros but the main issue is to preserve the same convergence order. Therefore, numerous
optimal and non-optimal modifications have been introduced in the literature to preserve the order of
convergence. Such count of methods that can estimate the multiple zeros are limited in the scientific
literature. With this point, a new optimal fourth-order scheme is presented for multiple zeros with
known multiplicity. The proposed scheme is based on the weight function strategy involving functions
in ratio. Moreover, the scheme is optimal as it satisfies the hypothesis of Kung–Traub conjecture.
An exhaustive study of the convergence is shown to determine the fourth order of the methods under
certain conditions. To demonstrate the validity and appropriateness for the proposed family, several
numerical experiments have been performed. The numerical comparison highlights the effectiveness
of scheme in terms of accuracy, stability, and CPU time.

Keywords: scalar nonlinear equations; multiple zeros; king’s family; optimal method; Kung–Traub
conjecture

1. Introduction

With the rapid growth of the numerical field, various physical and technical applications [1–3] are
justifying the importance for solving the nonlinear equations. Such problems are arise in various fields
of natural and physical sciences, including the heat and fluid flow problems, initial and boundary
value problems, as well as problems associated with global positioning systems (GPS). For retrieving
the solution through an analytical approach is almost inconceivable for any nonlinear equation except
for some of them. Thus, iterative approaches provide an attractive alternative for solving these kinds
of problems. While discussing about the root finding of nonlinear equation of the form f (x) = 0,
where f (x) is real function defined in a domain D ⊆ R, we pictured the classical Newton’s method and
for multiple roots, the modified Newton method [4–6] (also known as Rall’s method was introduced
by E. Schröder in 1870) in mind. The modified Newton method is given by

xt+1 = xt −m
f (xt)

f ′(xt)
. (1)

Equation (1) converges quadratically for multiple roots with given multiplicity m ≥ 1.
Graphically, the sketch of multiple root is visualized from Figure 1. While, there are several one-point
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iterative approaches accessible in the literature, but they are not of practical relevance when presented
from a real context, because of their theoretical shortcomings on convergence order and efficiency
index. Moreover, most of the one-point approaches are computationally expensive and inefficient
when evaluated on academic problems that arise from real life. Multipoint iterative approaches are
therefore better choices to classify as appropriate solvers. One of the advantages of multipoint iterative
methods without memory for scalar nonlinear equations is that we have a conjecture about their
convergence order. For any multipoint method, requiring t functional evaluation can have atmost
2t−1 convergence order, according to the hypothesis of Kung–Traub conjecture [5]. For instance,
modified Newton method evaluating function at two points, and it reaches to the order 22−1, for given
m ≥ 1. Hence, the modified Newton method is optimal in the sense of Kung–Traub Conjecture. Thus,
a board community of researchers suggested several optimal [7–19] and non-optimal [20,21] multipoint
iterative methods for estimating the multiple zeros of a function on the basis of Kung–Traub conjecture.
For instance, Li et al. [9] investigated on the fourth-order scheme for calculating the multiple roots of
an equation as follows: 

yt =xt −
2m

m + 2
f (xt)

f ′(xt)
,

xt+1 =xt − b1
f (xt)

f ′(xt)
− f (xt)

b2 f ′(xt) + b3 f ′(yt)
,

(2)

where b1 = m− m2

2 , b2 = − 1
m , b3 = 1

m( m
m+2 )

m , where m denotes the multiplicity of the desired zero of

given function f .

Figure 1. Multiple root α of f (x) = 0.

Sharma and Sharma [11] suggested the multipoint iterative method of order four, defined below:
yt =xt −

2m
m + 2

f (xt)

f ′(xt)
,

xt+1 =xt − a1w1(xt)− a2w2(xt)− a3
w2

2(xt)

w1(xt)
,

(3)

where w1(xt) =
f (xt)
f ′(xt)

, w2(xt) =
f (xt)
f ′(yt)

, a1 = m
8 (m

3 − 4m + 8), a2 = − 1
4
( m

m+2
)m+1

(m− 1)(m + 2)3,

and a3 = 1
8 (m + 2)4 ( m

m+2
)2m+1.

Moreover, Zhou et al. [12] developed the multipoint iterative method based on the weight function,
and one of the particular form is:
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yt =xt −
2m

m + 2
f (xt)

f ′(xt)
,

xt+1 =xt −
m
8

[
m3
(

m + 2
m

)2m ( f ′(yt)

f ′(xt)

)2

− 2m2(m + 3)
(

m + 2
m

)m f ′(yt)

f ′(xt)

+ (m3 + 6m2 + 8m + 8)
] f (xt)

f ′(xt)
.

(4)

Recently, Behl and Hamdan [22] focused on the extension of Ostrowski’s methods for finding the
multiple zeros, and given as: 

yt =xt −m
f (xt)

f ′(xt)
,

xt+1 =xt −m
f (xt)

f ′(xt)

[
1− u

1− 2u

]
Q(u),

(5)

where u =
(

f (yt)
f (xt)

) 1
m and Q(u) is an weight function.

In literature, various researchers analyzed the variants of King’s family for solving the scalar
nonlinear equation with multiplicity m = 1. Recently, Behl and Hamdan [22] extended the Ostrowski’s
method for multiple zero of a function. Whereas Sharma and Sharma [11] focused on the Jarratt’s
method and modified it for computing the multiple roots. Till now for multiple zero function, the King’s
family were not introduced in literature.

It is a challenging problem in the field of numerical analysis, to construct an optimal scheme
of King’s family for approximating the multiple zero of a function. Thus, motivating from this idea,
we have made an attempt to extend the King’s family [23] to optimal multipoint iterative method
for obtaining the desire multiple zero of an input function. For this, we used the weight function
technique. Furthermore, we have shown that the new method illustrates the good coordination with
the numerical section, as it offers the smaller residual errors while estimating the multiple zeros of
a function.

The manuscript is organized as follows: Section 2 first introduces the construction of new fourth-order
scheme in general framework and then its theoretical analysis is provided. Moreover, in Section 3,
several special cases are included, depending on the different weight functions used in the developed
family. Whereas, Section 4 is confined to the numerical experiments that highlight the scheme’s
effectiveness, accuracy, and stability on some intricate real-life problems. Section 5, presents the summary
and conclusions.

2. Construction of the New Fourth-Order Multipoint Iterative Scheme

Consider the suggested iterative scheme as:
yt =xt −m

f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

[
1 + βut

1 + (β− 2)ut

]
utQ(ut),

(6)

where, β ∈ R, the weight function Q(ut) : C → C is an analytic/holomorphic map [24,25] in the

neighborhood of origin (0) with ut =
(

f (yt)
f (xt)

) 1
m . The ut is a multi-valued function. Considering the

principal analytic branches of ut, as it is a multi-valued function. Moreover, it reduces the labour-period,
by considering ut as a principal root known as ut = exp

[
1
m Log

(
f (yt)
f (xt)

)]
, with Log

(
f (yt)
f (xt)

)
=

Log
∣∣∣ f (yt)

f (xt)

∣∣∣+ iArg
(

f (yt)
f (xt)

)
for −π < Arg

(
f (yt)
f (xt)

)
≤ π, where Arg(z) is denotes the principal argument

of z.
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Without evaluating the new functional value, Theorem 1 shows that the proposed scheme
converges with at least fourth-order of convergence. Moreover, the weight function is restricted
under certain conditions and discussed in following theorem.

Theorem 1. Consider the function f : D ⊆ C→ C is an analytic inside the region D, enclosing the desired
zero (say x = αm) of the function f with the multiplicity m ≥ 1. Then, the proposed strategy in Equation (6)
attains the fourth-order of convergence provided it employ the following criteria:

Q(0) = 1, Q′(0) = 0, |Q′′(0)| < ∞. (7)

Moreover, the following error expression is satisfied by the new scheme in Equation (6):

et+1 =

((
1 + 4β + m−Q′′(0)

)
c3

1 − 2mc1c2

2m3

)
e4

t + O(e5
t ), (8)

where error at tth step et = xt − αm and ck =
m!

(m + k)!
f (m+k)(αm)

f (m)(αm)
, k = 1, 2, 3, 4.

Proof. Let us assume that the scheme in Equation (6) has a multiple zero, x = αm with the known
multiplicity m, greater than or equal to one. Expanding f (xt) and f ′(xt) about a point x = αm via the
Taylor series expansion as follow:

f (xt) =
f (m)(αm)

m!
em

t

(
1 +

4

∑
i=1

ciei
t + O(e5

t )

)
, (9)

and

f ′(xt) =
f (m)(αm)

(m− 1)!
em−1

t

(
1 +

4

∑
i=1

m + i
m

ciei
t + O(e5

t )

)
, (10)

respectively.
Further, we have calculated the following expressions, with the use of Equations (9) and (10),

f (xt)

f ′(xt)
=

1
m

et −
c1

m2 e2
t +

(1 + m)c2
1 − 2mc2

m3 e3
t + O(e4

t ), (11)

and
f (yt) = f

(
xt −m

f (xt)

f ′(xt)

)
,

=
f (m)(αm)

m!

( c1

m

)m
e2m

t

[
1 +

2mc2 − (m + 1)c2
1

c1
et

+
(m3 + 3m2 + 3m + 3)c5

1 − 2m(2m2 + 3m + 2)c3
1c2 + 4m2(m− 1)c1c2

2 + 6m2c2
1c3

2mc3
1

e2
t + O(e3

t )

]
.

(12)

Using Equations (9) and (12), we obtain

ut =

(
f (yt)

f (xt)

) 1
m
=

c1

m
et +

2mc2 − (m + 2)c2
1

m2 e2
t

+
(2m2 + 7m + 7)c3

1 − 2m(3m + 7)c1c2 + 6m2c3

2m3 e3
t + O(e4

t ).

(13)

and [
1 + βut

1 + (β− 2)ut

]
ut =

c1

m
et −

c2
1 − 2c2

m
e2

t +
(2m2 −m− 4β− 1)c3

1 + 2m(1− 3m)c1c2 + 6m2c3

2m3 e3
t + O(e4

t ). (14)
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We conclude from Equation (13) that ut having linear order in et. Therefore, expanding Q(ut) in
the neighborhood of origin (0) as follow:

Q (ut) = Q(0) + utQ′(0) +
1
2!

u2
tQ′′(0) +

1
3!

u3
tQ′′′(0) + O(e4

t )

= Q(0) + c1Q′(0)
m

et +
c2

1(Q′′(0)− 2(m + 2)Q′(0)) + 4c2mQ′(0)
2m2 e2

t

+
c3

1
(
3
(
2m2 + 7(m + 1)

)
Q′(0)− 6(m + 2)Q′′(0) +Q′′′(0)

)
− 6c1c2m((3m + 7)Q′(0)− 2Q′′(0)) + 18c3m2Q′(0)

6m3 e3
t

+ O(e4
t ),

(15)

by adopting Taylor series expansion.
By substituting Equations (11), (14) and (15) in the scheme in Equation (6), we have

et+1 = yt −m
f (xt)

f ′(xt)

[
1 + βut

1 + (β− 2)ut

]
utQ (ut)

=
(1−Q(0))c1

m
e2

t +
c2

1(m(Q(0)− 1) +Q(0)−Q′(0)− 1)− 2c2m(Q(0)− 1)
m2 e3

t

+
1

2m3

[
c3

1(2m2(Q(0)− 1) + m(3Q(0)− 4Q′(0)− 4) + (1− 4β)Q(0)− 6Q′(0) +Q′′(0)− 2)

− 2c1c2m(3m(Q(0)− 1) + 3Q(0)− 4Q′(0)− 4) + 6c3m2(Q(0)− 1)
]
e4

t + O(e5
t ).

(16)

For attaining the fourth-order of convergence by the presented method in Equation (6), the coefficients
of terms e2

t , and e3
t should be zero at the same time. Thus, from Equation (16) the following system of

equations is obtained that involveQ(0), and its first derivativeQ′(0):{
1−Q(0) = 0,

Q′(0) = 0,
(17)

which further yields the following restriction on weight function Q:

Q(0) = 1, Q′(0) = 0. (18)

By substituting Equation (18) in Equation (16), the following error equation and asymptotic
constant is satisfied by scheme defined in Equation (6):

et+1 =

(
1 + 4β + m−Q′′(0)

)
c3

1 − 2mc1c2

2m3 e4
t + O(e5

t ), (19)

where |Q′′(0)| < ∞.
Thus, the Equation (19) justifies that the presented family in Equation (6) reaches to the optimal

convergence order by just evaluating the 3 functional ( f (x), f (y), and f ′(x)) at each iterate. This completes
the proof.

3. Variants of New Family in Equation (6)

It is straightforward to have from Theorem that one can get modified strategies of King’s family
by employing some particular values of Q(ut) and by introducing various forms of weight functions.

Case 1. Considering the following polynomial weight function:

Q(ut) = Au3
t + 1, (20)

where Q′′(0) = 6A, where|A| < ∞.
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In view of Equation (20) and scheme in Equation (6), the new fourth-order optimal family is
obtained as follows: 

yt =xt −m
f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

[
1 + βut

1 + (β− 2)ut

] [
Au4

t + ut

]
.

(21)

Some of the sub-special cases for Equation (21)

(i) When β = 0, and A = 0, the proposed scheme in Equation (21) read as:
yt =xt −m

f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

[
1

1− 2ut

]
ut.

(22)

(ii) For β = −1, and A = 1
2 , the family in Equation (21) becomes:

yt =xt −m
f (xt)

f ′(xt)
,

xt+1 =yt −
m
2

f (xt)

f ′(xt)

[
1− ut

1− 3ut

] [
u4

t + 2ut

]
.

(23)

The above Equation (23) is another particular case of the scheme in Equation (6).

Case 2. Choosing the rational weight function as defined below:

Q(ut) =
1 + A1ut + A2u2

t
1 + A1ut

, provided A1ut 6= −1, (24)

and whereQ′′(0) = 2A2, here A2 is any finite real number. Adopting the weight function in Equation (24)
in the proposed scheme in Equation (6), we have

yt =xt −m
f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

[
1 + βut

1 + (β− 2)ut

] [
ut(1 + A1ut + A2u2

t )

1 + A1ut

]
,

(25)

which is another new type of multipoint family.

Some of the sub-special cases for Equation (25)

(i) For β = 1
2 , A1 = 1

10 , and A2 = 2, the scheme in Equation (25) reads as
yt =xt −m

f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

[
−ut(ut + 2)(20u2

t + ut + 10)
(ut + 10)(3ut − 2)

]
.

(26)

In this way, we obtain another particular form of fourth-order optimal iterative technique.
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(ii) For β = −2, A1 = 6.45, and A2 = −10, the family in Equation (25) leads us
yt =xt −m

f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

[
ut(400u3

t − 458u2
t + 89ut + 20)

−516u2
t + 49ut + 20

]
,

(27)

a new optimal 4th-order iterative scheme.

Case 3. Consider the another rational function that defines the weight function as:

Q(ut) =
1 + A1ut

1 + A1ut + A2u2
t

, (28)

where Q′′(0) = −2A2, where A2 is the finite real value.
By substituting Equation (28) in Equation (6), the new optimal family of 4th-order can obtained

as follows: 
yt =xt −m

f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

[
1 + βut

1 + (β− 2)ut

] [
ut(1 + A1ut)

1 + A1ut + A2u2
t

]
.

(29)

Some of the sub-special cases for the scheme in Equation (29)

(i) For β = − 1
4 , A1 = 0, and A2 = 1

10 , the family in Equation (6) provides us the special case of
Equation (29) 

yt =xt −m
f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

[
10ut(ut − 4)

(9ut − 4)(u2
t + 10)

]
.

(30)

(ii) For β = 10, A1 = 4, and A2 = −21, the family in Equation (29) read as
yt =xt −m

f (xt)

f ′(xt)
,

xt+1 =yt −m
f (xt)

f ′(xt)

ut(4ut + 1)(10ut + 1)
(8ut + 1)(−21u2

t + 4ut + 1)
,

(31)

is another new fourth-order optimal multipoint method.

4. Numerical Testing and Discussions

This section is aimed to confirm the theoretical aspects by numerical examination. For this,
an attempt is made to demonstrate the comparison of the new approach to practical and academic
structures with the existing strategies. For justifying the proposed scheme in Equation (6), we have
compared our new schemes defined in Equation (26), and Equation (30) denoted by MM1, and MM2,
and compared with the existing methods defined in Equations (2)–(4), denoted by LM, SM, and ZM,
respectively. Moreover, the results are compared with the expression in Equation (5), (for equation
number RM (32) of article [22]).

The numerical outcomes are displayed in Tables 1–6, by comparing our techniques with existing
methods in terms of approximate zeros (xt), absolute residual error of the considered function (| f (xt)|),
absolute difference in two successive approximations |xt+1 − xt|, computational order of convergence
ρ ≈ log | f (xt+1)/ f (xt)|

log | f (xt)/ f (xt−1)|
, t ≥ 2, (see [26,27]), at the last iteration indices (t), and computational time (Time)
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in seconds. We have maintained 2000 significant digits of minimum precision to minimize the round
off error.

As mentioned within the above description, we determine the value of all the functional residual
and the constants till 2000 significant digits, however, we have displayed the value of obtained
approximated zero of the function up-to twenty-five significant digits. Whereas, the absolute error in
the successive approximations |xt+1 − xt| and the residual error | f (xt)| exhibited till two significant
digits along with the exponent power. Moreover, the computational convergence order is shown up-to
five digits. The results are obtained with the help of Mathematica software (version 11.1, Wolfram
Research, Tokyo, Japan).

Note that for calculating the multiplicity m of a root, one may use the following ways:

(i) Traub in [5] proposed the following approximation formula that

m ≈ log | f (x)|
log | f (x)/ f ′(x)| ,

when x is very close to the multiple root of f .

(ii) Lagouanelle in [28] introduced the following expression:

m ≈ f ′(x)2

f ′(x)2 − f (x) f ′′(x)
,

where x is very close to the multiple root of f .

Example 1. (Van der Waals equation of state):
Consider the following Van der Waals equation of state:(

P +
ān2

V2

)
(V − nb̄) = nRT,

where the parameter ā and b̄ (known as Van der Wall’s constants) depends upon critical temperature, and critical
pressure of the specified gas. Evaluate V (volume of the gas) with respect to known values of remaining variables
by calculating the solution of the following equation:

PV3 − (nb̄P + nRT)V2 + ān2V − āb̄n2 = 0.

Thus, the above equations have at least one real root, as it is cubic polynomial. By using the specific values
of the parameters, the following nonlinear function of V = x is obtained:

f (x) = x3 − 5.22x2 + 9.0825x− 5.2675,

having the three zeros: 1.72, 1.75, and 1.75. Thus, the required root is α = 1.75 (as multiplicity is two).

The numerical performance presented in Table 1 shows the better outcomes of the presented
methods MM1, and MM2 with respect to the precision in calculating the multiple root of f (x) = 0,
whereas, MM2 is over-performing in terms of accuracy.
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Table 1. Outcomes for comparison by testing schemes on Example 1.

Methods t xt | f (xt)| |xt+1− xt| ρ CPU Time

RM

0 1.8 2.0(−4) 4.8(−2)
1 1.752482846514733146916889 2.0(−7) 2.5(−4)
2 10.7500004339982948258837904 5.7(−15) 4.3(−7)
3 1.750000000000000000000575 9.9(−45) 5.7(−22) 3.9415 0.374

ZM

0 1.8 2.0(−4) 4.7(−2)
1 1.752889533818870707034275 2.7(−7) 2.9(−3)
2 1.750000885938106677419627 2.4(−14) 8.9(−7)
3 1.750000000000000000011407 3.9(−42) 1.1(−20) 3.9311 0.361

LI1

0 1.8 2.0(−4) 4.7(−2)
1 1.752523213564796124343964 2.1(−7) 2.5(−3)
2 1.750000409392763577418605 5.0(−15) 4.1(−7)
3 1.750000000000000000000390 4.6(−45) 3.9(−22) 3.9453 0.375

SM

0 1.8 2.0(−4) 4.7(−2)
1 1.752635974832068545325330 2.3(−7) 2.6(−3)
2 1.750000520632870976970862 8.1(−15) 5.2(−7)
3 1.750000000000000000001105 3.7(−44) 1.1(−21) 3.9415 0.376

MM1

0 1.8 2.0(−4) 4.8(−2)
1 1.751727697259551849018861 9.4(−8) 1.7(−3)
2 1.750000022800442863424761 1.6(−17) 2.3(−8)
3 1.750000000000000000000000 1.2(−56) 6.3(−28) 3.9990 0.313

MM2

0 1.8 2.0(−4) 4.8(−2)
1 1.751675437187118274346379 8.9(−8) 1.7(−3)
2 1.750000034386502521339945 3.5(−17) 3.4(−8)
3 1.750000000000000000000000 1.5(−54) 7.1(−27) 3.9757 0.344

Example 2. (Problem of Planck’s radiation law):
Now, consider the defined below problem of Planck’s radiation law which measures the spectral density of

electromagnetic radiations released by a black-body at a given temperature, at thermal equilibrium [29] as:

Φ(λ) =

(
8πhc

λ5

)(
exp

(
ch

λkBT

)
− 1
)−1

, (32)

where T, λ, kB, h, and c denotes the absolute temperature of the black-body, wavelength of radiation, Boltzmann
constant, Plank’s constant, and speed of light in the medium (vacuum), respectively. We are interested to
determine the wavelength λ which results to the maximum energy density Φ(λ).

Further, the first derivative of Φ is equated to zero, which corresponds to the maximum value of Φ at:

ch
λkBT exp

(
ch

λkBT

)
exp

(
ch

λkBT

)
− 1

= 5. (33)

If x = ch
λkBT , then Equation (33) is satisfied when

f (x) = 5 exp(−x) + x− 5 = 0. (34)

Thus, the solutions of Equation (34), results the maximum values of λ, and is means by the given
below expression:

λ ≈ ch
αkBT

, (35)

where α is a solution of Equation (34). Our desired root is x = 4.9651142317442 with multiplicity m = 1.
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The numerical outcomes for Equation (34) are illustrated in Table 2. It can be declared by observing the
results that the MM1 and MM2 methods have smaller residual errors in contrast to the existing methods when
the accuracy of root is computed in multi-precision arithmetic. Moreover, the time consumed by new methods
while computing the results is lesser with respect to other techniques, which justifying the attempt of developing
the new scheme.

Table 2. Outcomes for comparison by testing schemes on Example 2.

Methods t xt | f (xt)| |xt+1− xt| ρ CPU Time

RM

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231923295299252763 3.5(−11) 1.8(−10)
2 4.965114231744276303698759 2.5(−44) 1.3(−43)
3 4.965114231744276303698759 7.0(−177) 3.6(−176) 4.0000 0.469

ZM

0 5.0 6.7(−3) 3.5(−2)
1 4.965114232182517130938556 8.5(−11) 4.4(−10)
2 4.965114231744276303698759 2.2(−42) 1.1(−41)
3 4.965114231744276303698759 9.5(−169) 4.9(−168) 4.0000 0.547

LI1

0 5.0 6.7(−3) 3.5(−2)
1 4.9651142321500576086511740 7.8(−11) 4.1(−10)
2 4.965114231744276303698759 1.5(−42) 7.6(−24)
3 4.965114231744276303698759 1.9(−169) 9.7(−169) 4.0000 0.531

SM

0 5.0 6.7(−3) 3.5(−2)
1 4.965114232153670143191299 7.9(−11) 4.1(−10)
2 4.965114231744276303698759 1.5(−42) 8.0(−42)
3 4.965114231744276303698759 2.3(−169) 1.2(−168) 4.0000 0.422

MM1

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231898958327178771 3.0(−11) 1.5(−10)
2 4.965114231744276303698759 1.2(−44) 6.2(−44)
3 4.965114231744276303698759 3.2(−178) 1.6(−177) 4.0000 0.375

MM2

0 5.0 6.7(−3) 3.5(−2)
1 4.965114231903813303678618 3.1(−11) 1.6(−10)
2 4.965114231744276303698759 1.4(−44) 7.3(−44)
3 4.965114231744276303698759 6.1(−178) 3.2(−177) 4.0000 0.390

Example 3. (Fractional conversion of a reactant in chemical reactor):
Considering the fractional conversion of a given species A (please, refer to [30] for further details of this problem)
in terms of x as

f (x) =
−x

x− 1
+ 5 log

[
0.4− 0.5x
0.4(1− x)

]
+ 4.45977. (36)

If x > 0 or x < 1, then there is no significant meaning of the above defined fractional conversion.
Which indicates that the x is bounded in its complementary region i.e., 0 ≤ x ≤ 1. Moreover,
this problem is not defined for the x ∈ [0.8, 1], and this region is nearly to the required root α ≈
0.757396246253753879459641297929. Furthermore, this function has some other properties, which make
the solution tougher to estimate. For instance, when x = 1.098, the test problem has an infeasible solution,
whereas its derivative is very close to zero for 0 ≤ x ≤ 0.5.

The outcomes for this test function are determined in Table 3. Clearly, it indicates that the proposed
scheme works faster than others with greater accuracy. Although, LI show higher accuracy but results
with higher computational time, whereas our methods results earlier.
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Table 3. Outcomes for comparison by testing schemes on Example 3.

Methods t xt | f (xt)| |xt+1− xt| ρ CPU Time

RM

0 0.75 0.53 7.4 (−3)
1 0.7574254324545007554731111 2.3 (−3) 2.9 (−5)
2 0.7573962462537595049877312 4.5 (−13) 5.6 (−15)
3 0.7573962462537538794596413 6.2 (−52) 7.8 (−54) 3.9999 0.423

ZM

0 0.75 0.53 7.5 (−3)
1 0.7574561453539206869998600 4.8 (−3) 6.0 (−5)
2 0.7573962462539628865065368 1.7 (−11) 2.1 (−13)
3 0.7573962462537538794596413 2.5 (−45) 3.1 (−47) 3.9997 0.374

LI

0 0.75 0.53 7.4 (−3)
1 0.7573971767293504371600571 7.4 (−5) 9.3 (−7)
2 0.7573962462537538794598735 1.9 (−20) 2.3 (−22)
3 0.7573962462537538794596413 7.2 (−83) 9.0 (−85) 4.0000 0.414

SM

0 0.75 0.53 7.4 (−3)
1 0.7574019238603881881123733 4.5 (−4) 5.7 (−6)
2 0.7573962462537538816233893 1.7 (−16) 2.2 (−18)
3 .7573962462537538794596413 3.6 (−66) 4.6 (−68) 4.0000 0.391

MM1

0 0.75 0.53 7.4 (−3)
1 0.7573785486502861269668355 1.4 (−3) 1.8 (−5)
2 0.7573962462537534666510670 3.3 (−14) 4.1 (−16)
3 0.7573962462537538794596413 9.7 (−57) 1.2 (−58) 4.0001 0.297

MM2

0 0.75 0.53 7.4 (−3)
1 0.7573915463347229318601339 3.7 (−4) 4.7 (−6)
2 0.7573962462537538785756882 7.1 (−17) 8.8 (−19)
3 0.7573962462537538794596413 8.8 (−68) 1.1 (−69) 4.0000 0.281

Example 4. Continuous stirred tank reactor:
Consider the following sequence of reaction taken place in reactor (for further study, refer [31])

a + R→ b, b + R→ c, c + R→ d, d + R→ e (37)

In the above sequence, the components a and R are supplied with the rate t and q− t, respectively to the
reactor. For draft of simple feedback from control system, Douglas [32] analyzed this problem in detail and
introduced the following expression to study the transfer function of the reactor.

Kc
2.98(x + 2.25)

4.35 + x)(1.45 + x)(2.85 + x)2 = −1, (38)

where Kc stands for the gain of the proportional controller. The control system is stable for values of KC that
yields roots of the transfer function having negative real part. If we choose KC = 0, we get the poles of the
open-loop transfer function as roots of the nonlinear equation:

f (x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875, (39)

given as: x = 1.45, 2.85, 2.85, 4.35. Thus, one of root have multiplicity is equal to two. Hence, it is our
desired root.

From Table 4, we can observe that the new methods MM1, MM2, and the existing RM method
show equivalent accuracy of the desired result and resulting well with lesser residual error and
difference in successive obtained approximations in comparison to the other considered methods.
Along with this, numerical convergence order is justifying our theoretical analysis.
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Example 5. The characteristic polynomial of non-singular matrix

B =


29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8

7 4 3 1 −3

 ,

is defined as a function:
f (x) = (x− 2)4(x + 1). (40)

Clearly, the characteristic function in Equation (40) has one of the zeros with multiplicity m = 4.
Thus, the desired root is α = 2, while testing the schemes.

The numerical outcomes of the nonlinear function in Equation (40) depicts that the newly
proposed schemes MM1 and MM2 have splendid outcomes in the view of less residual error and
estimation of the convergence order. Moreover, the results are achieved faster than other techniques.

Table 4. Outcomes for comparison by testing schemes on Example 4.

Methods t xt | f (xt)| |xt+1− xt| ρ CPU Time

RM

0 −2.89 34 (−3) 4.0 (−2)
1 −2.850000002897936091688825 1.8 (−17) 2.9 (−9)
2 −2.850000000000000000000000 3.4 (−73) 4.0 (−37)
3 −2.850000000000000000000000 4.8 (−296) 1.5 (−148) 4.0000 0.235

ZM

0 −2.89 34 (−3) 4.0 (−2)
1 −2.850000005791740889942378 7.0 (−17) 5.8 (−9)
2 −2.850000000000000000000000 3.5 (−70) 1.3 (−35)
3 −2.850000000000000000000000 2.0 (−283) 3.1 (−142) 3.9999 0.266

LI

0 −2.89 34 (−3) 4.0 (−2)
1 −2.850000005791466192809057 7.0 (−17) 5.8 (−9)
2 −2.850000000000000000000000 3.4 (−70) 1.3 (−35)
3 −2.850000000000000000000000 4.0 (−283) 3.1 (−142) 4.0000 0.282

SM

0 −2.89 34 (−3) 4.0 (−2)
1 −2.850000005791534880147705 7.0 (−17) 5.8 (−9)
2 −2.850000000000000000000000 3.4 (−70) 1.3 (−35)
3 −2.850000000000000000000000 2.0 (−283) 3.1 (−142) 4.0000 0.250

MM1

0 −2.89 34 (−3) 4.0 (−2)
1 −2.850000002897111461553972 1.8 (−17) 2.9 (−9)
2 −2.850000000000000000000000 3.4 (−73) 4.0 (−37)
3 −2.850000000000000000000000 4.4 (−296) 1.5 (−148) 4.0000 0.234

MM2

0 −2.89 34 (−3) 4.0 (−2)
1 −2.850000002897276257647646 1.8 (−17) 2.9 (−9)
2 −2.850000000000000000000000 3.4 (−73) 4.0 (−37)
3 −2.850000000000000000000000 4.5 (−296) 1.5 (−148) 4.0000 0.219
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Table 5. Outcomes for comparison by testing schemes on Example 5.

Methods t xt | f (xt)| |xt+1− xt| ρ CPU Time

RM

0 2.5 9.4 (−2) 5.0 (−1)
1 2.001161286804071669996589 1.8 (−12) 1.2 (−3)
2 2.000000000000127370423081 2.6 (−52) 1.3 (−13)
3 2.000000000000000000000000 1.2 (−211) 1.9 (−53) 3.9999 0.297

ZM

0 2.5 9.4 (−2) 5.0 (−1)
1 2.002099196572935106235141 1.9 (−11) 2.1 (−3)
2 2.000000000002635107113493 4.8 (−47) 2.6 (−12)
3 2.000000000000000000000000 1.9 (−189) 6.6 (−48) 3.9995 0.421

LI

0 2.5 9.4 (−2) 5.0 (−1)
1 2.002046745900269802911623 1.8 (−11) 2.0 (−3)
2 2.000000000002313832097351 2.9 (−47) 2.3 (−12)
3 2.000000000000000000000000 2.1 (−190) 3.8 (−48) 3.9995 0.422

SM

0 2.5 2.2 (−1) 5.0 (−1)
1 2.002070658506889233693277 1.8 (−11) 2.1 (−3)
2 2.000000000002455359338550 3.6 (−47) 2.5 (−12)
3 2.000000000000000000000000 5.7 (−190) 4.9 (−48) 3.9995 0.266

MM1

0 2.5 9.4 (−2) 5.0 (−1)
1 2.000631307074392969408765 1.6 (−13) 6.3 (−4)
2 2.000000000000003719387941 1.9 (−58) 3.7 (−15)
3 2.000000000000000000000000 4.0 (−238) 4.5 (−60) 3.9999 0.188

MM2

0 2.5 9.4 (−2) 5.0 (−1)
1 2.000698820155283179400838 2.4 (−13) 7.0 (−4)
2 2.000000000000007811109281 3.7 (−57) 7.8 (−15)
3 2.000000000000000000000000 2.2 (−232) 1.2 (−58) 3.9999 0.201

Example 6. Consider the another nonlinear testing sample from [6], as follows:

f (x) = −(x− cos(x))5.

The above test function has one of the multiple zero at α = 0.739085133215161 with m = 5.

The results of this test problem is shown in Table 6. We can observe from the numerical tests
showed in this table that results by presented methods achieve are much effective in minimum time
period than its competitors.
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Table 6. Outcomes for comparison by testing schemes on Example 6.

Methods t xt | f (xt)| |xt+1− xt| ρ CPU Time

RM

0 1.0 2.1 (−2) 2.6 (−1)
1 0.7392038427966442566755797 3.1 (−19) 1.2 (−4)
2 0.7390851332151606510075209 9.4 (−85) 9.4 (−18)
3 0.7390851332151606416553121 8.0 (−347) 3.6 (−70) 4.0000 0.422

ZM

0 1.0 2.1 (−2) 2.6 (−1)
1 0.7392757027128889858592349 3.3 (−18) 1.9 (−4)
2 0.7390851332151607350417478 9.3 (−80) 9.3 (−17)
3 0.7390851332151606416553121 6.0 (−326) 5.4 (−66) 4.0000 0.375

LI

0 1.0 2.1 (−2) 2.6 (−1)
1 0.7392723206615554833661534 3.0 (−18) 1.9 (−4)
2 0.7390851332151607264738339 5.8 (−80) 8.5 (−17)
3 0.7390851332151606416553121 7.7 (−327) 3.6 (−66) 4.0000 0.390

SM

0 1.0 2.1 (−2) 2.6 (−1)
1 0.7392740635455635715487264 3.2 (−18) 1.9 (−4)
2 0.7390851332151607307959473 7.4 (−80) 8.9 (−17)
3 0.7390851332151606416553121 2.2 (−326) 4.4 (−66) 4.0000 0.312

MM1

0 1.0 2.1 (−2) 2.6 (−1)
1 0.7391483908290041120587025 1.3 (−20) 6.3 (−5)
2 0.7390851332151606418924910 9.9 (−93) 2.4 (−19)
3 0.7390851332151606416553121 3.0 (−381) 4.7 (−77) 4.0000 0.266

MM2

0 1.0 2.1 (−2) 2.6 (−1)
1 0.7391573362095670075029553 2.6 (−20) 7.2 (−5)
2 0.7390851332151606422333790 8.5 (−91) 5.8 (−19)
3 0.7390851332151606416553121 9.9 (−373) 2.4 (−75) 4.0000 0.250

Example 7. Kepler’s law of planetary motion says that a plant revolve around sun in a elliptic order. Assume
that the point (x, y) defines the position of plant at time t, which can be evaluated by following expressions:

x = a cos(E− e),

y = a
√

1− e2 sin(E),

where E stands for eccentric anomaly and e stands for the eccentricity of the ellipse.
To determine the position (x, y), we need to compute E, which can be calculated by the use of Kepler’s

equation of motion:
M = E− e sin(E), 0 < e < 1,

where M is the mean anomaly. The above equation relates the mean anomaly M to the eccentric anomaly E of an
elliptic orbit with eccentricity e. Thus to compute E, one can solve the following nonlinear function

f (E) = M− E + e sin(E). (41)

For testing the various iterative methods, we consider M = 0.01, e = 0.9995, and initial approximation
as M + e. The approximate zero of the function defined in above equation is α ≈ 0.3899777749463621.
The results are demonstrated in Table 7, which manifest that the proposed methods are winning in each aspects
of comparisons.
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Table 7. Outcomes for comparison by testing schemes on Example 7.

Methods t xt | f (xt)| |xt+1− xt| ρ CPU Time

RM

0 1.0095 1.5 (−1) 5.0 (−1)
1 0.5136967453894586609159624 1.3 (−2) 1.2 (−1)
2 0.3927585763241378068015195 2.1 (−4) 2.8 (−3)
3 0.3899777774038898109598081 1.9 (−10) 2.5 (−9) 3.4161 0.500

ZM

0 1.0095 1.5 (−1) 4.7 (−1)
1 0.5430573479124553561348711 1.7 (−2) 1.5 (−1)
2 0.3977607771502995641956331 6.0 (−4) 7.8 (−3)
3 0.3899780202671430167582084 1.9 (−8) 2.5 (−7) 3.1292 0.470

LI

0 1.0095 1.5 (−1) 5.3 (−1)
1 0.4837367205082459147025189 8.9 (−3) 9.3 (−2)
2 0.3904615029476423930256901 3.7 (−5) 4.8 (−4)
3 0.3899777749469492864763083 4.4 (−14) 5.9 (−13) 3.7385 0.500

SM

0 1.0095 1.5 (−1) 5.1 (−1)
1 0.5000749322403258106055786 1.1 (−2) 1.1 (−1)
2 0.3912225515544090451760855 9.4 (−5) 1.2 (−3)
3 0.3899777749887829300491702 3.2 (−12) 4.2 (−11) 3.6262 0.531

MM1

0 1.0095 1.5 (−1) 5.3 (−1)
1 0.4840808276844397285896050 8.9 (−3) 9.4 (−2)
2 0.3902438322588099864282668 2.0 (−5) 2.7 (−4)
3 0.3899777749463368088536943 1.9 (−15) 2.5 (−14) 3.7860 0.390

MM2

0 1.0095 1.5 (−1) 5.4 (−1)
1 0.4665777847560329405454156 7.0 (−3) 7.6 (−2)
2 0.3900984734994537560943818 9.1 (−6) 1.2 (−4)
3 0.3899777749463631190000837 7.1 (−17) 9.4 (−16) 3.8534 0.422

5. Summary and Conclusions

The main remarks of the study are:

1. A new optimal variant of King’s family for finding the desired multiple zero of a given function
is developed.

2. The presented multipoint iterative scheme uses function at two values and involves only the first
derivative at one point of each iteration.

3. The structure of the scheme is dependent upon the weight function under certain conditions.
With the aid of weight function, various fourth order schemes can be obtained.

4. A wide range of real-life applications is introduced in the numerical segment to validate the
efficacy of the suggested modified family as compared to the alternative methods.

(a) From the experimental outcomes, we can point out that the new tools provide superior
results for the considered test functions in terms of precision and accuracy.

(b) Moreover, the time used for evaluating the desired results by new methods indicates the
effectiveness over the other techniques.
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