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Abstract: The use of priorities allows us to improve the quality of service of inhomogeneous
customers in telecommunication networks, inventory and health-care systems. An important modern
direction of research is to analyze systems in which priority of a customer can be changed during
his/her stay in the system. We considered a single-server queuing system with a finite buffer,
where two types of customers arrive according to a batch marked Markov arrival process. Type 1
customers have non-preemptive priority over type 2 customers. Low priority customers are able to
receive high priority after the random amount of time. For each non-priority customer accepted into
the buffer, a timer, which counts a random time having a phase type distribution, is switched-on.
When the timer expires, the customer with some probability leaves the system unserved and with
the complimentary probability gains the high priority. Such a type of queues is typical in many
health-care systems, contact centers, perishable inventory, etc. We describe the behavior of the system
by a multi-dimensional continuous-time Markov chain and calculate a number of the stationary
performance measures of the system including the various loss probabilities as well as the distribution
function of the waiting time of priority customers. The illustrative numerical examples giving insights
into the system behavior are presented.

Keywords: changing priority queue; batch marked Markov arrival process; phase-type time
distribution; waiting time

1. Introduction

Queuing theory is very useful for solving the problems of optimal sharing and scheduling
restricted resources in many real world systems. The important branch of this theory is devoted to
the consideration of queuing systems that are designed to provide service to heterogeneous flows
of customers. These flows may have different value for the system and, therefore, more important
flows may deserve a special treatment. This led to the idea to introduce certain priority classes
and provide a privilege to the customers from the class with higher priority. Priorities are divided
into preemptive and non-preemptive. For example, if the priority defines the choice of the type
of the customer that will receive service, preemptive priority suggests immediate interruption of
service of a customer if the customer from higher priority class arrives. Non-preemptive priority
works only at service completion moments. Next service is provided to the customer from the queue
which has the highest priority among waiting for service. Another kind of the priorities classification
distinguishes the static and dynamic priorities. Static priorities are strictly fixed and decision making
is defined only by these priorities without account of the current lengths of queues of different types
of customers. Dynamic priorities take these lengths into account. Generally speaking, the dynamic
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priorities are more effective than the static ones. However, the field of their application is narrower
because sometimes the queue lengths are not completely observable and management of control is
expensive. Therefore, the static priorities are still popular in many real world systems.

The main disadvantage of the classical static priorities is their inflexibility and possible unfairness
with respect to low-priority customers. If congestion occurs, the non-priority customers have very
small chance to receive service within a reasonable amount of time while the priority customers are
serviced quickly. To overcome this disadvantage, various improvements of the static priorities can be
offered, e.g., restriction of too fast access of priority customers or mandatory service of a non-priority
customer after service in turn of some fixed number of the priority customers. Another popular
improvement consists of the possibility of increasing the priority of the customer during his/her
staying in the queue. There are works where the customer accumulates the priority from some initial
value, which depends on the priority of the customer, according to some linear or non-linear function
(again, depending on the priority of the customer) during the stay of the customer in the system.
Among these works we can mention papers [1–5]. Another bunch of the works assume that the increase
of the priority occurs not deterministically according to some functional dependence, but randomly,
after certain random amount of time. Because our paper makes the analogous assumption, to clarify
the novelty of our model and results, we overview the related results in Table 1.

Table 1. Results for queues with changing priority.

Paper
Number of Arrival Service Distribution

Main ResultPriority Flow Time of Time Till
Classes Distribution Priority Change

[6] N M M M Ergodicity condition

[7] N M M M Bounds and tails
MAP for high priority asymptotics

[8,9] N MMAP PH Cox Ergodicity condition

[10] 2 M M M Optimization via MDP

[11] 2 M M M Asymptotic distribution
of queue

[12] 2 M M M Optimization via MDP

Our 2 BMMAP PH PH Distribution of queue
paper length and waiting time

In this table, the standard Kendall’s denotations are used. In particular, the symbol M denotes the
exponential distribution of the corresponding variables (inter-arrival and service times as well as the
time until the increase of the priority), the symbol PH denotes the phase type distribution.

It is clear from this table that our paper surpasses all cited papers, except [8,9], where N
priority classes are considered, whereas we considered only two classes; however, we allow batch
arrivals of customers and obtain not just ergodicity condition (as it is done in [8,9]) but exactly
compute the stationary distribution of the system states and waiting time for priority customers.
No other paper from this table gives the exact formulas for these distributions. It is worth to note
also that, except [8,9], all papers assume the exponential distribution of inter-arrival and service
times as well as the time until the increase of the priority. We assume a much more general phase
type (PH) distributions and the batch marked Markov arrival process (BMMAP). This is very
important for potential real-world applications. One of popular applications of such kind of models
is in the field of health-care. This application is mentioned in practically all cited above papers.
For example, we considered queuing system suits for description of operation of the emergency
department in a hospital, including an operation room and a team of necessary doctors and nurses.
Patients, which suffered in an accident, are delivered to this hospital. There, they are subjected to triage.
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This triage is performed by a physician called sorting medic, which decides whether the patient needs
very urgent treatment (and, consequently, receives high priority) or can wait for a while (receives low
priority). During the waiting time, the state of the low priority patient can become worse and he/she
will need urgent treatment (becomes high priority customer). It is worth noting that in the recent
paper [13] devoted to analysis of patients managing in emergency departments, the following is stated:
“disciplines with changing priorities have been studied in the literature from a queuing theory point of
view, which requires assumptions rarely found in real emergency departments, such as homogeneity
in the patient arrival pattern and only one service stage.” Assumptions about the BMMAP arrival
process and phase type service (probably consisting of an arbitrary finite number of sequentially stages)
made in our paper a better fit for modeling real emergency departments. The phase type distribution
is also much better than the exponential one, as it is suited for the description of the time until the
patient will leave the hospital without help (e.g., transfers to another hospital or dies) or become
a priority customer. The mode of the exponential distribution is equal to zero, which is hardly true for
waiting of service. The model considered in this paper can also be used for description of operation of
a contact center. As it is mentioned in the literature, phone calls have high priority, and requests sent by
e-mail or a messenger have low priority; however, the customer who used a messenger for receiving
information can make a phone call if his/her waiting for a response is too long. It is clarified in [14]
that exponential assumptions may be inadequate and more general distributions or flows should be
exploited for modeling a contact center, as it is done in our paper.

Our paper has the following structure. In Section 2, the queuing model we studied is described.
The operation of the system is described by a multi-dimensional continuous-time Markov chain in
Section 3. The infinitesimal generator of this Markov chain is presented there along with the brief
proof of the probabilistic meaning of its blocks. The main difficulties in derivation of the expressions
for these blocks and computer realization of their computations are caused by the assumption that
the times until the change of a priority are not exponential, but a more complicated phase type
distribution. To drastically reduce the state space of the multi-dimensional process describing the
simultaneous behavior of underlying processes of such a distribution for all non-priority customers,
we used and extended the known trick from [15,16]. In Section 4, the problem of computation
of the stationary distribution of the states of the constructed Markov chain is briefly touched on
and expressions for computation of the most important performance indicators of the system are
derived, including expressions for the loss probabilities of an arbitrary customer, high priority
customer, low priority customer and customer departed from the buffer without obtaining service.
Expressions for computation of distribution functions of the waiting time of an arbitrary priority
customer that is accepted into the system and of an arbitrary non-priority customer who becomes
the priority customer are presented. These expressions allow us to exactly compute the probability
that the waiting time will exceed an arbitrary given value. In turn, having the ability to compute this
probability, many managerial problems can be solved, e.g., the choice of the satisfactory service rate
(which is predefined by the used equipment and the staff of the team of surgeons, anesthetists, nurses,
etc), necessary capacity of the buffer and strategy of rescheduling the patients to other hospitals, etc.
Section 6 contains the results of the numerical examples which highlight the effects of variation of
arrival rate and buffer capacity as well as correlation in the arrival process.

2. Model Description

We considered a single-server system with a buffer of capacity N and non-homogeneous
input flow.

The structure of the system is presented in Figure 1.
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Figure 1. Structure of the system.

Customers of two types arrive to the system according to a BMMAP. The brief description of this
BMMAP is as follows. Arrivals of the batches of customers occur under the control of an irreducible
continuous-time Markov chain νt, t ≥ 0, with finite state space {0, . . . , W}. This chain is called as
an underlying process of the BMMAP. The chain νt stays in the state ν during an exponentially
distributed time with the parameter λν, ν = 0, . . . , W. After this time is over, with probability p0(ν, ν′)

the chain transits into the state ν′, ν′ 6= ν, without generating customers or with probability pk(ν, ν′)

the chain transits into the state ν′ and the batch of k customers of lth type is generated, k ≥ 1, l = 1, 2.
It is assumed that

p0(ν, ν) = 0,
2

∑
l=1

∞

∑
k=1

W

∑
ν′=0

p(l)k (ν, ν′) +
W

∑
ν′=0

p0(ν, ν′) = 1, ν = 0, . . . , W.

Parameters characterizing the BMMAP are stored in the square matrices D0, D(l)
k , k ≥ 1 , l = 1, 2,

of size W̄ = W + 1. These matrices are defined by their entries as follows:

(D0)ν,ν = −λν, (D0)ν,ν′ = λν p0(ν, ν′), ν 6= ν′,

(D(l)
k )ν,ν′ = λν p(l)k (ν, ν′), ν, ν′ = 0, . . . , W, k ≥ 1, l = 1, 2.

Denote

D(1) = D0 +
2

∑
l=1

∞

∑
k=1

D(l)
k , D(l)

1 =
∞

∑
k=1

2

∑
l̄=1, l̄ 6=l

D(l̄)
k , l = 1, 2.

Let θ be the vector of the stationary distribution of the chain νt, t ≥ 0. The vector θ is calculated
as the unique solution of the system of the linear algebraic equations θD(1) = 0, θe = 1. Here e is
a column vector consisting of 1’s and 0 is a row vector consisting of 0’s.

The arrival rate of customers of lth type is calculated by the formula

λl = θ
∞

∑
k=1

kD(l)
k e, l = 1, 2.

The total rate of customers in the BMMAP is equal to λ =
2
∑

l=1
λl . The arrival rate of batches of

customers of lth type is calculated by the formula λ
(b)
l = θ

∞
∑

k=1
D(l)

k e, l = 1, 2.

The variance of the lengths of the intervals between the moments of arrival of batches of the lth
type customers are calculated by

vl =

2θ(−D0 −
∞
∑

k=1
D(l)

k )−1e

λ
(b)
l

−
(

1

λ
(b)
l

)2

.



Mathematics 2020, 8, 824 5 of 25

The coefficient of variation of the lengths of the intervals between the arrival moments of batches
of customers of the lth type is calculated by c(l)var = λ

(b)
l
√

vl . The coefficient correlation of the lengths
of two adjacent intervals between the arrival moments of batches of customers of the lth type is
calculated by

c(l)cor =

[
θ(−D0 −D

(l)
1 )−1

λ
(b)
l

∞

∑
k=1

D(l)
k (−D0 −D

(l)
1 )−1e−

(
1

λ
(b)
l

)2]
v−1

l .

A more detailed description of a BMMAP and the batch Markov arrival process can be found,
for example, in [17,18].

In our model, the type of a customer defines his/her priority. Type 1 customers have
non-preemptive priority over type 2 customers. A batch of priority customers, which enters the
system and meets the corresponding number of free places in the buffer, is queued in the buffer after
the last priority customer staying in the buffer and ahead of all non-priority customers, if any. If the
batch size is greater than the number of free places, then the part of the batch is accepted and the
rest leaves the system forever (is lost). This means that we consider the so called partial admission
discipline. A similar acceptance discipline is valid for an arriving batch of non-priority customers,
only these customers are placed at the end of the common queue if there are free places in the buffer.

For every non-priority customer accepted into the buffer, a timer is switched-on. The timer counts
the random time having PH distribution defined by an irreducible representation (γ, Γ). The time
until the timer expiration (switching-off) is defined by the time until absorption of the continuous-time
irreducible Markov chain rt, t ≥ 0, with the state space {1, . . . , R, R + 1}, where the state R + 1 is
an absorbing one. The transition rates of the chain within the set of transient states {1, . . ., R} are
defined by the entries of the sub-generator Γ and the rates of transition into the absorbing state R + 1
are defined by the entries of the vector Γ0 = −Γe. At the moment of switching the timer on, the state of
the process rt is randomly selected among the transient states according to the probability row vector
γ. The average time until switching-off the timer is calculated by t1 = γΓ−1e. We denote τ = −t−1

1 .
When the timer, which was switched-on for some non-priority customer, expires (switches-off),

i.e., the corresponding Markov chain rt reaches the absorbing state R + 1, this customer leaves the
system unserved with the probability p or gains the higher priority and moves at the end of the priority
customers queue with the complimentary probability 1− p. The priority customers are picked up
from the buffer according to first in–first out discipline. If at the service completion epoch the priority
customers are absent in the buffer, an arbitrary non-priority customer among those having the maximal
value of the corresponding process rt is picked up for service. Such an assumption is quite realistic
when the time counted by the timer has Erlangian distribution or generalized Erlangian distribution
having various rates of the phases. In this case, in average, the maximal value of the underlying
process rt have customers having longer stay in the buffer. This is why namely such a customer (or
one of such customers if several customers have the maximal value) will be picked up for service.

The service time of any customer has a PH distribution with an irreducible representation (β, S)
and underlying process mt, t ≥ 0. This process has the state space {1, . . . , M, M + 1}, where the state
M + 1 is an absorbing one. The transition rates of the chain mt, t ≥ 0, within the set of transient states
{1, . . . , M} are defined by the entries of the sub-generator S. The transition rates into the absorbing
state (what implies service completion) are defined by the entries of the vector S0 = −Se. The average
service rate is calculated by µ = −(βS−1e)−1, the average service time is given by b1 = µ−1.

It is worth noting that if we assume that only priority customers arrive to the system then the
system under consideration transforms to the BMAP/PH/1/N type queuing system. In this case,
the matrices D(2)

k k ≥ 1, describing the input flow are equal to zero. The system BMAP/PH/1/N
is a very special case of the system BMAP/SM/1/N with semi-Markovian service process that was
investigated in [19] for partial admission strategy and in [20] for complete admission and complete
rejection strategies.
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3. Process of the System States

Let at the moment t

• it be the number of customers in the buffer, it = 0, . . . , N;
• jt be the number of non-priority customers in the buffer, jt = 0, . . . , it;
• χt = 0, if the server is idle; χt = 1, if the server is busy;
• mt be the state of the underlying process of the PH service on the busy server, mt = 1, . . . , M;
• n(r)

t be the number of non-priority customers staying in the buffer for which the timer is in the

state r, n(r) = 1, . . . , jt, r = 1, . . . , R,
jt
∑

r=1
n(r) = jt;

• νt be the state of underlying process of the BMMAP, νt = 0, . . . , W.

The process of operation of the system is described by a regular irreducible continuous-time
Markov chain ξt, t ≥ 0, with state space

Ω = {(i, χ, ν), i = 0, χ = 0, ν = 0, . . . , W}
⋃

{(i, χ, ν, m), i = 0, χ = 1, ν = 0, . . . , W, m = 1, . . . , M}
⋃

{(i, j, ν, m, n(1), . . . , n(R)), i = 1, . . . , N, j = 0, . . . , i, ν = 0, . . . , W, m = 1, . . . , M, n(r) = 1, . . . , j,
r = 1, . . . , R}.

Note that the number of states in the space Ω with the value i = 0 of the first component is

K0 = W̄(M + 1),

and the number of states with the value i = 1, . . . , N of the first component is

Ki = W̄M
i

∑
j=0

CR−1
j+R−1, i = 1, . . . , N,

where

Cm
n =

(
n
m

)
=

n!
m!(n−m)!

, n ≥ 1, m = 0, . . . , n.

Then the cardinality of the state space Ω is equal to

|Ω| = W̄(M + 1) + W̄M
N

∑
i=1

i

∑
j=0

CR−1
j+R−1.

We suppose that the states of the chain ξt, t ≥ 0, are enumerated in the direct lexicographic
order of the components it, jt, χt, νt, mt, and in the reverse lexicographic order of the components
n(1)

t , . . . , n(R)
t .

In the sequel, we use the following notation:
I (O) is an identity (zero) matrix of an appropriate size. When it is necessary, we identify the size

of a matrix with a suffix;
diag {al , l = 1, . . . , L } is a diagonal matrix with the diagonal entries al ;
diag−{Al , l = 0, . . . , L} is a sub-diagonal matrix with the sub-diagonal blocks Al ;
⊗ and ⊕ are the symbols of the Kronecker product and sum of matrices, see, e.g., [21], and δm,n is

Kronecker’s symbol;
a = W̄M.
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Before proceeding with the construction of the generator of the Markov chain ξt, t ≥ 0, we will
consider the important problem of finding the transition rates of the process nt = (n(1)

t , n(2)
t , . . . , n(R)

t )

where n(r)
t defines the number of timers having the state r of the underlying process rt, r = 1, . . . , R.

To calculate these transition rates, we use the results for R independent Markov processes in parallel,
obtained by V. Ramaswami and D. Lucantoni, see [15,16]. To use these results for our model,

we introduce the matrix Γ̂ =

(
0 O
Γ0 Γ

)
and the matrices Pj(γ), Aj(l, Γ), Lk(l, Γ̂) which describes

the transition probabilities or rates of the process nt.

• The matrix Pj(γ) contains the transition probabilities of the process nt at the moments of
an increase in the number of non-priority customers in the buffer from j to j + 1.

• The matrix Pi,j(γ) = Pi(γ)Pi+1(γ) . . . Pj−1(γ) contains the probabilities of transition of the
process nt at the moments of an increase in the number of non-priority customers in the buffer
from i to j.

• The matrix Aj(l, Γ) contains the transition rates of the process nt in the state space of this process
without increasing or decreasing the number of non-priority customers in the buffer (here j
is the number of non-priority customers in the buffer, l is the total number of free places and
non-priority customers in the buffer).

• The matrix Lk(l, Γ̂) contains the transition rates of the process nt, which leads to the expiration of
the timer on one of the l − k non-priority customers in the buffer (here k is the number of free
places in the buffer, l is the total number of free places and non-priority customers in the buffer).

In the following, we assume that A0(·, ·) = L∗(∗, ·) = P−1(·) = O.
A more detailed description of the matrices Pj(γ), Aj(l, Γ), Lk(l, Γ̂) and algorithms for their

calculation, can be found in [15,22].
Besides the matrices Pj(γ), Aj(l, Γ), Lk(l, Γ̂) we need to use the matrix Ej,j−1, which defines

the transition probabilities of the process nt when the current service is completed and there are
no priority customers in the buffer (in the following we denote this service completion epoch
as t∗) and one of j non-priority customers from the buffer moves to the server. The server is
occupied by one of the non-priority customers whose timer is in the maximal (among all timers)
phase rmax and the number of non-priority customers in the buffer becomes equal to j− 1. Let the
rows of the matrix Ej,j−1 correspond to the possible states of the process nt at the moment t∗ − 0
and the columns correspond to the states of the process nt at the moment t∗ + 0. We assume
that in both cases the states are ordered in the reverse lexicographic order. Consider the row of
the matrix Ej,j−1 corresponding the state (n(1), n(2), . . . , n(rmax), 0, . . . , 0) of the process nt. If at the
moment t∗ − 0 the process nt is in such a state, then at the moment t∗ − 0 it will transit to the state
(n(1), n(2), . . . , n(rmax) − 1, 0, . . . , 0). This transition occurs with probability 1. To fix this transition,
we set the entry (Ej,j−1)(n(1),n(2),...,n(rmax),0,...,0), (n(1),n(2),...,n(rmax)−1,0,...,0) of the matrix Ej,j−1 be equal to 1.
The remaining entries of the row are set equal to zero. Using such an algorithm for forming the rows,
we get the matrix Ej,j−1 of size CR−1

j+R−1 × CR−1
j+R−2.

Let Qi,l be the matrix of transition rates of the chain ξt, t ≥ 0, from the set of states corresponding
to the value it = i to the states corresponding to the value it = l. Then the infinitesimal generator Q of
the chain is formed as Q = (Qi,l)i,l=0,...,N . The following statement is true.

Lemma 1. The infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has the following block structure:

Q =



Q0,0 Q0,1 Q0,2 Q0,3 . . . Q0,N−2 Q0,N−1 Q0,N
Q1,0 Q1,1 Q1,2 Q1,3 . . . Q1,N−2 Q1,N−1 Q1,N
O Q2,1 Q2,2 Q2,3 . . . Q2,N−2 Q2,N−1 Q2,N
...

...
...

...
. . .

...
...

...
O O O O . . . QN−1,N−2 QN−1,N−1 QN−1,N
O O O O . . . O QN,N−1 QN,N


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where

Q0,0 =

(
D0 (D(1)

1 + D(2)
1 )⊗ β

IW̄ ⊗ S0 D0 ⊕ S

)
,

Q0,k =


D(1)

k+1 ⊗ β O
W̄×a

k−1
∑

j=1
CR−1

j+R−1

D(2)
k+1 ⊗ β⊗ P0,k(γ)

D(1)
k ⊗ IM O

a×a
k−1
∑

j=1
CR−1

j+R−1

D(2)
k ⊗ IM ⊗ P0,k(γ)

 , k = 1, . . . , N − 1,

Q0,N =


∞
∑

k=N+1
D(1)

k ⊗ β O
W̄×a

N−1
∑

j=1
CR−1

j+R−1

∞
∑

k=N+1
D(2)

k ⊗ β⊗ P0,N(γ)

∞
∑

k=N
D(1)

k ⊗ IM O
a×a

N−1
∑

j=1
CR−1

j+R−1

∞
∑

k=N
D(2)

k ⊗ IM ⊗ P0,N(γ)

 ,

Q1,0 =

(
Oa×W̄ IW̄ ⊗ S0β

OaR×W̄ IW̄ ⊗ S0β⊗ eR + pIa ⊗ Γ0

)
,

Qi,i−1 =diag{IW̄ ⊗ S0β⊗ ICR−1
j+R−1

, j = 0, . . . , i− 1} +diag−{pIa ⊗ LN−i(N − i + j, Γ̂), j = 1, . . . , i− 1}
O

aCR−1
i+R−1×a

i−2
∑

j=0
CR−1

j+R−1

IW̄ ⊗ S0β⊗ Ei,i−1 + pIa ⊗ LN−i(N, Γ̂)

 ,

i = 2, . . . , N,

Qi,i = ∆i + diag{(D0 ⊕ S)⊕ Aj(N − i + j, Γ), j = 0, . . . , i}+

(1− p)diag−{Ia ⊗ LN−i(N − i + j, Γ̂), j = 1, . . . , i}, i = 1, . . . , N − 1,

QN,N = ∆N + diag{(D(1)⊕ S)⊕ Aj(j, Γ), j = 0, . . . , N}+ (1− p)diag−{Ia ⊗ L0(j, Γ̂), j = 1, . . . , N},

Qi,i+k =

(
diag{D(1)

k ⊗ IMCR−1
j+R−1

, j = 0, . . . , i} | O
a

i
∑

j=0
CR−1

j+R−1×a
i+k
∑

j=i+1
CR−1

j+R−1

)
+

+

(
O

a
i

∑
j=0

CR−1
j+R−1×a

k−1
∑

j=0
CR−1

j+R−1

| diag{D(2)
k ⊗ IM ⊗ Pj,j+k(γ), j = 0, . . . , i}

)
,

i = 1, . . . , N − 1, k = 1, . . . , N − i− 1,

Qi,N =

(
diag{

∞
∑

k=N−i
D(1)

k ⊗ IMCR−1
j+R−1

, j = 0, . . . , i} | O
a

i
∑

j=0
CR−1

j+R−1×a
N
∑

j=i+1
CR−1

j+R−1

)
+

+

(
O

a
i

∑
j=0

CR−1
j+R−1×a

N−i−1
∑

j=0
CR−1

j+R−1

| diag{
∞
∑

k=N−i
D(2)

k ⊗ IM ⊗ Pj,j+N−i(γ), j = 0, . . . , i}
)

,

i = 1, . . . , N − 1.

Here, ∆i, i = 1, . . . , N, are the diagonal matrices ensuring the equality Qe = 0T .

Proof. (1). The entries of the block Qi,i+k, i = 0, . . . . . . , N − 1, k = 1, . . . , N − i, define the transition
rates of the Markov chain ξt, t ≥ 0, that lead to the increase the number of customers in the buffer by k.

If i = 0, the transitions can occur as a result of the following events:

• the batch of (k + 1) type 1 customers arrives to the idle system and one of the customers occupies
the server. The rates of this event are defined by the matrix D(1)

k+1 ⊗ β, if k = 1, . . . , N − 1, and by

the matrix
∞
∑

k=N+1
D(1)

k ⊗ β, if k = N.
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• the batch of (k + 1) type 2 customers arrives to the idle system, one of the customers occupies
the server and a timer is set for each of min{k, N} customers placed in the buffer. The rates of
this event are defined by the matrix D(2)

k+1 ⊗ β⊗ P0,k(γ), if k = 1, . . . , N − 1 and by the matrix
∞
∑

k=N+1
D(2)

k ⊗ β⊗ P0,N(γ), if k = N.

• the batch of k type 1 customers arrives to the system when the buffer is empty while the server
is busy. In this case, min{k, N} customers are placed in the buffer. The rates of this event are

defined by the matrix D(1)
k ⊗ IM, if k = 1, . . . , N − 1, and by the matrix

∞
∑

k=N
D(1)

k ⊗ IM, if k = N.

• the batch of k type 2 customers arrive to the system when the buffer is empty and the server
is busy. In this case min{k, N} customers are placed in the buffer and timers are set for these
customers. The transition rates of this event are defined by the matrix D(2)

k ⊗ IM ⊗ P0,k(γ),

if k = 1, . . . , N − 1, and by the matrix
∞
∑

k=N
D(2)

k ⊗ IM ⊗ P0,N(γ), if k = N.

The presence of zero blocks in the matrices Q0,k is explained by the fact that simultaneous arrival
of both priority and non-priority customers in the BMMAP over an infinitesimal time interval is
possible only with zero probability.

Thus, we have explained the structure of the generator blocks Qi,i+k for i = 0. We have considered
two cases: the server is idle and the server is busy. If i = 1, . . . , N − 1, the server is busy a priori.
Because of this, the explanation of the structure of the blocks Qi,i+k for i 6= 0 is similar to the explanation
given for the case when i = 0 and the server is busy.

(2). The entries of the block Qi,i−1, i = 1, . . . , N, define the transition rates of the Markov chain
ξt, t ≥ 0, at the moments of the decrease the total number of customers in the buffer by one.

If i = 1, the transition occurs as a result of the following events:

• the service of the current customer finishes and the only priority customer staying in the buffer
occupies the server. The rates of this event are defined by the matrix IW̄ ⊗ S0β.

• the service of the current customer finishes and the only non-priority customer staying in the
buffer occupies the server. At this moment, the timer set for this customer is switched-off.
The rates of this event are defined by the matrix IW̄ ⊗ S0β⊗ eR.
• the timer set for the only non-priority customer staying in the buffer expires while the server is

still busy. In this case the non-priority customer with the probability p leaves the system forever.
The rates of this event are defined by the matrix pIa ⊗ Γ0.

If i = 2, . . . , N, the transitions of the Markov chain ξt, t ≥ 0, related to the decrease the total
number of customers in the buffer by one occur as a result of following events:

• the service of the current customer finishes and there is at least one priority customer in the buffer.
Then, the first priority customer goes to the server and the number of customers in the buffer
decreases by one. The rates of this event are defined by the matrix diag{IW̄ ⊗ S0β⊗ ICR−1

j+R−1
, j =

0, . . . , i− 1}.
• the timer expires for one of non-priority customers and this customer leaves the buffer forever.

The rates of this event are defined by the matrices pIa ⊗ LN−i(N − i + j, Γ̂), j = 1, . . . , i.
• the service of the current customer finishes and there are no priority customers in the buffer.

Then one of the non-priority customers whose timer is in the maximal (among all timers) phase
r, r = 1, . . . , R, goes to the server and the number of non-priority customers in the buffer whose
timer is in the phase r decreases by one. The rates of this event are defined by the matrix
IW̄ ⊗ S0β⊗ Ei,i−1.

(3). The non-diagonal entries of the block Qi,i define the transition rates of the chain ξt, that do
not lead to the change of the number i of customers in the buffer. The case of i = 0 is not commented
on here due its simplicity. In the case i = 1, . . . , N, the mentioned transitions occur as a result of the
following events:
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• the underlying process of BMMAP makes a transition without the generation of customers
or the PH service time underlying process makes a transition which does not lead to the
service completion. The rates of these events are defined by the non-diagonal entries of matrix
diag{(D0 ⊕ S)⊗ ICR−1

j+R−1
, j = 0, . . . , i}, if i = 1, . . . , N − 1 and by the non-diagonal entries of the

matrix diag{(D(1)⊕ S)⊗ ICR−1
j+R−1

, j = 0, . . . , N}, if i = N.

• the underlying process of the PH timer set for one of j non-priority customers in the buffer makes
a transition, which does not lead to the timer expiration. The rates of this event are defined by
the non-diagonal entries of the matrix diag{Ia ⊗ Aj(N − i + j, Γ), j = 0, . . . , i}.

• the timer expires for one of j non-priority customers in the buffer but the server is
busy. Then, the mentioned customer with the probability 1− p gains the higher priority and
joins the tail of the priority customers queue. The rates of this event are defined by the entries of
the matrix (1− p)diag−{Ia ⊗ LN−i(N − i + j, Γ̂), j = 1, . . . , i}.

The diagonal entries of the block Qi,i, i = 0, . . . , N are negative and the modulus of each entry
defines the rate of leaving the corresponding state of the Markov chain ξt, t ≥ 0.

Lemma is proven.

4. Stationary Distribution: Stationary Performance Measures

Since the Markov chain ξt is irreducible with a finite state space, it has the unique
stationary distribution.

Let pi be the row vector of the steady-state probabilities of the states having the value i of the first
component, i = 0, . . . , N. The entries of the vector p0 of size K0 give the steady-state probabilities that
the buffer is empty, the server is idle or busy, the underlying process of the BMMAP is in any of the
(W + 1) states and, if the server is busy, the service process is in any of the M phases. The entries of
the vector pi of size Ki, i = 1, . . . , N, give the steady-state probabilities that there are i customers in the
buffer, the underlying process of the BMMAP is in any of the (W + 1) states, the service process is in

any of the M phases and the timers process nt is in any of the
i

∑
j=0

CR−1
j+R−1 states.

Denote as p = (p0, pi, . . . , pN) the stationary probability vector of the chain ξt. It is well known
that this vector is the unique solution of the following system of linear algebraic equations:

pQ = 0, pe = 1. (1)

In case of small dimension, the system of Equation (1) can be solved on a computer by standard
methods. However, with more or less large values of N, R, the order of this system becomes so large
that it is not possible to solve this system directly, for example, using the method of the inverse matrix.
In such a case, we use the algorithm that was elaborated in [23]. This algorithm is stable, takes into
account the upper-Hessenberg structure of the generator Q and operates with the generator blocks Qi,l .

The sizes of these blocks are defined by the values K0 = W̄(1 + M), and Ki = W̄M
i

∑
j=0

CR−1
j+R−1, i =

1, . . . , N, whereas the size of whole system of Equation (1) is equal to
N
∑

i=0
Ki.

Having calculated the stationary distribution pi, i = 0, . . . , N, we are able to calculate a number
of system performance measures of interest. Below we give the expressions for these performance
measures along with brief explanations of nontrivial formulas.

• Probability that the system is idle

p0 = p0

(
eW̄
0T

a

)
.
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• Probability that the buffer is empty and the server is busy

p1 = p0

(
0T

W̄
ea

)
.

• Probability that there are i customers in the buffer, of which j customers are non-priority

pi,j = pi


0T

a
j−1
∑

l=0
CR−1

l+R−1

eaCR−1
j+R−1

0T

a
i

∑
l=j+1

CR−1
l+R−1

 , j = 0, . . . , i, i = 1, . . . , N.

• Probability that there are i > 0 customers in the buffer

pi =
i

∑
j=0

pi,j, i = 1, . . . , N.

• Mean number of customers in the buffer

Lbu f =
N

∑
i=1

ipi.

• Mean number of non-priority customers in the buffer

L(non−prior) =
N

∑
i=1

i

∑
j=1

jpi,j.

• Mean number of priority customers in the buffer

L(prior) = Lbu f − L(non−prior).

• Probability that an arbitrary customer will be lost due to lack of buffer space

Ploss = 1− 1
λ

[
p0

(
OW̄×M

eW̄ ⊗ IM

)
+

N

∑
i=1

piI
(1)
i

]
S0, (2)

where I (1)i =


eW̄ ⊗ IM ⊗ eCR−1

R−1

eW̄ ⊗ IM ⊗ eCR−1
R

...
eW̄ ⊗ IM ⊗ eCR−1

i+R−1

 .

A brief explanation of Equation (2) is as follows. The expression in the braces is the rate of
the output flow and λ is the input rate. Then, the ratio of these rates gives the probability
that an arbitrary customer will be served, and the complimentary probability gives the desired
probability Ploss.

Note that the probability Ploss can be calculated by an alternative equation obtained by
considering the situation at the arrival time. This equation has the form

Ploss = 1− 1
λ

{
p0

(
IW̄

OW̄ ⊗ eM

)
N+1

∑
k=0

(k− N − 1)Dke+



Mathematics 2020, 8, 824 12 of 25

p0

(
OW̄

IW̄ ⊗ eM

)
N

∑
k=0

(k− N)Dke +
N−1

∑
i=1

piI
(2)
i

N−i

∑
k=0

(k− N + i)Dke
}

, (3)

where Dk = D(1)
k + D(2)

k ,

I (2)i =


IW̄ ⊗ eM ⊗ eCR−1

R−1

IW̄ ⊗ eM ⊗ eCR−1
R

...
IW̄ ⊗ eM ⊗ eCR−1

i+R−1

 .

A brief explanation of Equation (3) is as follows. The expression in the braces gives the rate of
customers from the input flow that are accepted into the system. Dividing this rate by the input
rate λ, we obtain the probability that an arbitrary customer will not be lost due to the lack of
buffer space. The complimentary probability gives the probability Ploss.

Similarly calculated the probability of loss of customers of each type.
• Probabilities that an arbitrary priority customer (l = 1) and an arbitrary non-priority customer

(l = 2) will be lost due to lack of buffer space

P(l)
loss = 1− 1

λl

{
p0

(
IW̄

OW̄ ⊗ eM

)[N+1

∑
k=1

kD(l)
k e+

(N + 1)
∞

∑
k=N+2

D(l)
k e
]
+ p0

(
OW̄

IW̄ ⊗ eM

)[ N

∑
k=1

kD(l)
k e + N

∞

∑
k=N+1

D(l)
k e
]
+

N−1

∑
i=1

piI
(2)
i

[N−i

∑
k=1

kD(l)
k e + (N − i)

∞

∑
k=N−i+1

D(l)
k e
]}

, l = 1, 2.

• Probability that an arbitrary non-priority customer will be lost due to impatience

P(imp)
loss =

p
λ2

N

∑
i=1

piI
(L)
i (4)

where I (L)i =


ea ⊗ LN−i(N − i, Γ̂)e

ea ⊗ LN−i(N − i + 1, Γ̂)e
...

ea ⊗ LN−i(N, Γ̂)e

 .

A brief explanation of Equation (4) is as follows. The expression
N
∑

i=1
piI

(L)
i gives the mean

number of expirations of the timers per unit time. Each non-priority customer from the buffer,
for which the timer expires, with the probability p leaves the system (is lost). The ratio of the
rate of flow of thus lost non-priority customers to the input rate of non-priority customers, λ2, is
P(imp)

loss .
• Probability that an arbitrary non-priority customer accepted to the buffer will be lost due

to impatience

P̄(imp)
loss =

P(imp)
loss

1− P(2)
loss

.
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5. Stationary Distribution of a Priority Customer Waiting Time

Let w(1)
τ , τ ≥ 0, be the process of waiting time of an arbitrary priority customer accepted into

the system at the moment τ and w(2)
τ , τ ≥ 0, be the process of waiting time of a customer which

changed the low priority to the high priority during the stay in the buffer starting from the moment of
changing the priority. We assume that an arbitrary priority customer, which arrives in a batch of size k,
is numerated as the ith in the batch with the probability 1

k , i = 1, . . . , k. Let W(l)
τ (t) = P{w(l)

τ < t} be

the distribution function of the process w(l)
τ , l = 1, 2. Denote by Wl(t) the corresponding stationary

distribution functions of the waiting time, i.e., Wl(t) = lim
τ→∞

W(l)
τ (t), l = 1, 2.

It is seen from the definitions, that Wl(t), l = 1, 2, are the conditional distribution functions. To find
these functions, we focus on the calculation of the joint probabilities, which are defined as follows:

W̃1(t) is the joint probability that an arbitrary priority customer will be accepted into the system
and his/her waiting time will be less than t;

W̃2(t) is the joint probability that an arbitrary non-priority customer will become the priority
customer and after that his/her waiting time will not exceed value t.

The following theorem holds.

Theorem 1. The functions W̃1(t) and W̃2(t) have the forms

W̃1(t) =

λ−1
{

p0

(
IW̄

Oa×W̄

)
∞

∑
k=1

D(1)
k e

[
1 +

min{N+1,k}

∑
l=2

(β, 0(l−2)M)(I − eA(l−2)t)e(l−1)M

]
+

p0

(
OW̄×a

Ia

)
∞

∑
k=1

(D(1)
k e⊗ IM)

min{N,k}

∑
l=1

(IM|OM×(l−1)M)(I − eA(l−1)t)elM+

N−1

∑
i=1

i

∑
j=0

pi(j)
∞

∑
k=1

(D(1)
k e⊗ IM ⊗ eCR−1

j+R−1
)×

min{N−i,k}

∑
l=1

(IM|OM×(i−j+l−1)M)(I − eA(i−j+l−1)t)e(i−j+l)M

}
, (5)

W̃2(t) =

1− p
γ̂

N

∑
i=1

i

∑
j=1

pi(j)
[

eW̄ ⊗ IM ⊗ LN−i(N − i + j, Γ̂)e
]
(IM|OM×(i−j)M)(I − eA(i−j)t)e(i−j+1)M, (6)

where

γ̂ =
N

∑
i=1

i

∑
j=1

pi(j)
[

ea ⊗ LN−i(N − i + j, Γ̂)e
]

.

Here the square matrix A(n) of size M(n + 1) is defined as

A(n) =



S S0β O . . . O O O
O S S0β . . . O O O
O O S . . . O O O
...

...
...

. . .
...

...
...

O O O . . . O S S0β

O O O . . . O O S


, n = 0, ..., N − 1,
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and the sub-vector pi(j) is the part of the vector pi corresponding to presence of j non-priority customers in the
buffer and is defined as

pi(j) = pi


O

a
j−1
∑

l=0
CR−1

l+R−1×aCR−1
j+R−1

IaCR−1
j+R−1

O
a

i
∑

l=j+1
CR−1

l+R−1×aCR−1
j+R−1

 .

Proof. We first consider the derivation of Equation (5) for the function W̃1(t). Using the equation of
total probability, this function can be written in the following form:

W̃1(t) = p0

(
IW̄

Oa×W̄

)
∞

∑
k=1

kD(1)
k e
λ

min{N + 1, k}
k

[
1

min{N + 1, k} × 1+

min{N+1,k}

∑
l=2

1
min{N + 1, k} (β, 0(l−2)M)

t∫
0

eA(l−2)xA(l−2)
0 dx

]
+

+p0

(
OW̄×a

Ia

)
∞

∑
k=1

(
kD(1)

k e
λ

⊗ IM)
min{N, k}

k
×

min{N,k}

∑
l=1

1
min{N, k} (IM|OM×(l−1)M)

t∫
0

eA(l−1)xA(l−1)
0 dx+

+
N−1

∑
i=1

i

∑
j=0

pi(j)
∞

∑
k=1

(
kD(1)

k e
λ

⊗ IM ⊗ eCR−1
j+R−1

)
min{N − i, k}

k
×

min{N−i,k}

∑
l=1

1
min{N − i, k} (IM|OM×(i−j+l−1)M)

t∫
0

eA(i−j+l−1)xA(i−j+l−1)
0 dx, (7)

where
A(n)

0 = −A(n)e.

To clarify Equation (7), we first explain the meaning of the matrices A(n) and
t∫

0
eA(n)xA(n)

0 dx.

Let us tag an arbitrary priority customer accepted to the system. Suppose that at the arrival moment of
this customer, the server is busy and max{0, n− 1} priority customers are in the buffer. The waiting
time T(n) of the tagged customer is the sum of the remaining service time of customer in the service and
the service time of max{0, n− 1} priority customers from the buffer. Given the known distribution of
the service phases at the arrival time of the tagged customer (let this distribution be given by the vector
α of size M) the waiting time T(n) of this customer has a PH distribution with (n + 1)M phases defined

by the irreducible representation (α̃, A(n)), where α̃ = (α, 0nM). Then P{T(n) < t} = α̃
t∫

0
eA(n)xA(n)

0 dx.

Now let us explain the meaning of the terms in Equation (7) for the function W̃1(t). The scalar

p0

(
IW̄

Oa×W̄

)
kD(1)

k e
λ

min{N + 1, k}
k

1
min{N + 1, k} × 1

is the probability that the system is empty at the arrival moment of the batch of k priority customers,
the tagged priority customer arrives in this batch and receives the first position in the batch what
implies that his/her waiting time is less than t for any t > 0.
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As stated above, the waiting time for an arbitrary priority customer has a PH distribution.
Taking into account this fact, we can see that the vector

p0

(
IW̄

Oa×W̄

)
kD(1)

k e
λ

min{N + 1, k}
k

1
min{N + 1, k} (β, 0(l−2)M)

defines the initial phase distribution of the waiting time of the tagged priority customer conditional
he/she enters the empty system in a batch of size k, is accepted into the system, and occupies the
(l − 1)th place in the buffer, l = 2, . . . , min{N + 1, k}. Multiplying the indicated row vector by the

column vector
t∫

0
eA(l−2)xA(l−2)

0 dx, we obtain the probability that such a tagged customer has his/her

waiting time less than t.
The vector

p0

(
OW̄×a

Ia

)(
kD(1)

k e
λ

⊗ IM

)
min{N, k}

k
1

min{N, k} (IM|OM×(l−1)M)

defines the initial state of underlying process of phase distribution of the waiting time of the tagged
priority customer, which is dependent on whether or not he/she enters the system in the batch of
size k when the buffer is empty and the server is busy, is accepted into the system and occupies the
lth place in the buffer, l = 1, . . . , min{N, k}. Multiplying the indicated vector by the column vector
t∫

0
eA(l−1)xA(l−1)

0 dx, we obtain the probability that such a tagged customer has his/her waiting time less

than t.
The vector

pi(j)
(

kD(1)
k e
λ

⊗ IM ⊗ eCR−1
j+R−1

)
min{N − i, k}

k
1

min{N − i, k} (IM|OM×(i−j+l−1)M)

in double sum on the right-hand side of Equation (7) defines the initial phase distribution of the
waiting time for the tagged priority customer, which enters the system in the batch of size k when i
customers are in the buffer, i− j of which are priority ones, and occupies the lth place in buffer, l = i−

j + 1, . . . , min{N − i, k}. Multiplying the indicated vector by column vector
t∫

0
eA(i−j+l−1)xA(i−j+l−1)

0 dx,

we obtain the probability that such a tagged priority customer has waiting time less than t.
Now we use the equation for total probability by summing up the described terms on the

right-hand side of Equation (7) over k and l. Then, on the right-hand side of Equation (7) we obtain
the probability that the arbitrary tagged priority customer was accepted into the system and his/her
waiting time is less than t. This is by definition the function W̃1(t). Performing the calculation of
integrals and some simple transformations in Equation (7), we obtain the desired Equation (5).

Now we prove Equation (6) for W̃2(t). In the equation, the mth entry of the vector

pi(j)
[

eW̄ ⊗ IM ⊗ LN−i(N, Γ̂)eCR−1
j+R−2

]
defines the mean number of expirations of the timers per unit of time conditional that i customers are
staying in the buffer, j of which are non-priority ones and the service process is in the phase m.

Note that the value γ̂ is the total rate of the flow of expiration of timers on non-priority customers.
Then, the mth component of the vector

φ(i,j) = pi(j)
[

eW̄ ⊗ IM ⊗
LN−i(N, Γ̂)eCR−1

j+R−2

γ̂

]
(8)
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is the probability that at the moment of timer expiration on one of the non-priority customers,
the service of the current customer is in the phase m and there are i customers in the buffer of j
which are non-priority ones.

If a non-priority customer, whose timer has expired, becomes priority, then his/her waiting time
T(i,j) consists of the residual service time of the customer in the service and the service time of (i− j− 1)
of priority customers standing in the buffer in front of him/her. This time has a PH distribution with
the representation (φ̃(i,j), A(i−j)), where φ̃

(i,j) = (φ(i,j), 0(i−j)M). Then the distribution of the random
time T(i,j) is calculated as follows:

P{T(i,j) < t} = φ̃
(i,j)

t∫
0

eA(i−j)xA(i−j)
0 dx. (9)

Multiplying the right-hand side of Equation (8) by the right-hand side of Equation (9), calculating
the integrals, summing over the possible values of i, j and multiplying the resulting expression by
1− p, we obtain Equation (6) for the function W̃2(t).

Corollary 1. (i) The distribution function of the waiting time of an arbitrary priority customer accepted into
the buffer is calculated by the equation

W1(t) =
W̃1(t)

W̃1(∞)
.

(ii) The distribution function of the waiting time of a priority customer that initially was the non-priority
customer is calculated by the equation

W2(t) =
W̃2(t)

W̃2(∞)
.

Proof. Since the function Wl(t) is a conditional distribution function, it is calculated by the division of
the joint probability W̃l(t) by the probability of the condition W̃l(∞), l = 1, 2.

Corollary 2. The average waiting time w̄1 of an arbitrary priority customer accepted into the buffer and the
average waiting time w̄2 of a non-priority customer after he/she became the priority customer, are calculated by
the equations

w̄1 =
1

λW̃1(∞)

{
p0

(
IW̄

Oa×W̄

)
∞

∑
k=1

D(1)
k e

min{N+1,k}

∑
l=2

(l − 1)b1+

p0

(
OW̄×a

Ia

)
∞

∑
k=1

(D(1)
k e⊗ IM)

min{N,k}

∑
l=1

[(−S)−1 + IM(l − 1)b1]eM+

N−1

∑
i=1

i

∑
j=0

pi(j)
∞

∑
k=1

(D(1)
k eW̄ ⊗ IM ⊗ eCR−1

j+R−1
)

min{N−i,k}

∑
l=1

[(−S)−1 + IM(i− j + l − 1)b1]eM

}
, (10)

w̄2 =
1− p

γ̂W̃2(∞)

N

∑
i=1

i

∑
j=1

pi(j)(eW̄ ⊗ IM ⊗ (LN−i(N − i + j, Γ̂)e))[(−S)−1 + IM(i− j)b1]eM. (11)

Proof. The proof follows from the equations w̄l =
∞∫
0

tdWl(t), l = 1, 2 and Equations (5) and (6) for the

functions W1(t), W2(t). The derivation of Equations (10) and (11) is based on the following relations
that are obtained by using the specific structure of the matrix A(n) :

(β, 0nM)

∞∫
0

td(I − eA(n)t)e(n+1)M = (β, 0nM)(−A(n))−1e(n+1)M =
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= (n + 1)β(−S)−1eM = (n + 1)b1,

(IM|OM×nM)

∞∫
0

td(I − eA(n)t)e(n+1)M = (IM|OM×nM)(−A(n))−1e(n+1)M =

= (−S)−1e + nβ(−S)−1eM = (−S)−1eM + eMnb1,

where b1 is the mean service time, b1 = β(−S)−1e.

6. Numerical Examples

The goal of this section is to bring out the qualitative nature of the model under study through
three illustrative numerical examples.

Example 1. In this example, we plotted graphs of the distribution functions W1(t) and W2(t) under different
values of the service rate µ. We considered the following input data.

• N = 10, p = 0.4
• To define the BMMAP, we first define the matrices D0 and D as follows

D0 =

(
−8.28142513 0

0 −0.26874977

)
, D =

(
8.22628993 0.0551352
0.14964989 0.11909988

)
.

The matrix D is split into two matrices D(1) and D(2) as

D(1) = 0.1D, D(1) = 0.9D.

It means that the arrival rate of batches of type 2 customers are nine times less than the arrival rate of
batches of type 1 customers.

Next, we need to obtain the matrices D(1)
k and D(2)

k .

We assume that the maximum batch size of type 1 (priority) customers is 5 and the distribution among
batches of different sizes is carried out in accordance with the equation

D(1)
k = D(1)qk−1(1− q)/(1− q5), k = 1, . . . , 5, where q = 0.8

Further, we assume that the maximum batch size of type 2 (non-priority) customers is 2 and the distribution
among batches of different sizes is carried out in accordance with the equation

D(2)
k = D(2)qk−1(1− q)/(1− q2), k = 1, 2, where q = 0.2.

For this BMMAP λ = 8, λ1 = 1.569656, λ2 = 6.430344, λ
(b)
1 = 0.612413, λ

(b)
2 = 5.511723,

c(1)var = 1.693988, c(2)var = 3.417944, c(1)cor = 0.02342, c(2)cor = 0.187811.
• The duration of the random variable that defines the timer has a PH distribution with the representation
(γ, Γ) where

γ = (1, 0), Γ =

(
−10 10

0 −10

)
.

It means that the time counted by the timer has the Erlangian distribution of order 2. The timer rate τ = 5
and the coefficient of variation cvar = 0.7.

• In this example, we considered three service processes, which differ in the service rate. In all these processes,
the service time has the Erlangian distribution of order 2. The rates of the phases of this distribution are
calculated as 8c, where c = 1, 2, 4. Therefore, the service rates are equal to 4, 8, 16, respectively.
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When calculating the functions W1(t) and W2(t), we consider t ∈ [0.01, 4] and take 40 points
uniformly distributed over the interval. In Table 2 we give the values of the functions W1(t) and W2(t)
at 21 points.

Table 2. Distribution functions W1(t) and W2(t).

µ = 4 µ = 8 µ = 16

t W1(t) W2(t) W1(t) W2(t) W1(t) W2(t)

0.01000 0.01036 0.00090 0.04832 0.01564 0.18563 0.09019

0.21462 0.03346 0.02151 0.28419 0.30267 0.80610 0.84344

0.41923 0.06301 0.04435 0.51361 0.52027 0.97322 0.97382

0.62385 0.09762 0.07161 0.70094 0.70086 0.99734 0.99734

0.82846 0.13948 0.10762 0.83818 0.83978 0.99983 0.99984

1.03308 0.19247 0.15798 0.92549 0.92856 0.99999 0.99999

1.23769 0.26089 0.22812 0.97134 0.97371 1.00000 1.00000

1.44231 0.34705 0.32021 0.99080 0.99195 1.00000 1.00000

1.64692 0.44871 0.43047 0.99751 0.99792 1.00000 1.00000

1.85154 0.55856 0.54924 0.99942 0.99954 1.00000 1.00000

2.05615 0.66635 0.66426 0.99988 0.99991 1.00000 1.00000

2.36308 0.80399 0.80770 0.99999 0.99999 1.00000 1.00000

2.77231 0.92138 0.92561 1.00000 1.00000 1.00000 1.00000

3.18154 0.97456 0.97677 1.00000 1.00000 1.00000 1.00000

3.59077 0.99319 0.99399 1.00000 1.00000 1.00000 1.00000

4.00000 0.99845 0.99867 1.00000 1.00000 1.00000 1.00000

As it is seen from Table 2, the functions W1(t) and W2(t) differ only slightly. This can be
explained by the fact that the waiting time of an arbitrary arrived priority customer and the customer,
which initially arrived as the non-priority one, may be different if the distributions of the number of
customers at the moments of arrival of a priority customer and transfer of a non-priority customer
to the class of priority customers would be different. However, as calculations in this example show,
these distributions are close, and the waiting time distributions of two types of priority customers are
not much different. Therefore, below in this example we considered only the function W1(t).

Figure 2 depicts the distribution function W1(t) under different values of the service rate µ.

Figure 2. The distribution function W1(t) under different service rate µ.
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As expected, under the fixed value of µ the function W1(t) increases with increasing t and tends
to 1 when t→ ∞. It is also clear that the value of the function increases with increasing the service rate
µ. Note also that the growth rate is greater for larger values of µ.

Example 2. In this example, we investigate the dependence of the loss probabilities Ploss, P(1)
loss, P(2)

loss, P(imp)
loss on

the buffer capacity N for the system with BMMAPs having the different coefficients of correlation.
To this end, we considered three BMMAPs. In addition to the BMMAP defined in Example 1 and having

the following characteristics: λ = 8, λ1 = 1.569656, λ2 = 6.430344, λ
(b)
1 = 0.612413, λ

(b)
2 = 5.511723,

c(1)var = 1.693988, c(2)var = 3.417944, c(1)cor = 0.02342, c(2)cor = 0.187811, we considered two more BMMAPs
having the same mean arrival rates λ, λ1, λ2, but different coefficients of correlation.

These additional BMMAPs are also defined by certain matrices D0 and D from which the matrices
D(1)

k , k = 1, . . . , 5, D(2)
k , k = 1, 2, are defined in the same way as in Example 1.

The first BMMAP is a heterogeneous group Poisson process. For this BMMAP, D0 =

−6.124137, D = 6.124137, the coefficients of correlation c(1)cor = c(2)cor = 0.
The second BMMAP is defined by the matrices

D0 =

(
−29.668038 0.003450

0.006900 −0.952137

)
, D =

(
29.323061 0.341527
0.068995 0.876242

)
.

For this BMMAP, c(1)cor = 0.205982, c(2)cor = 0.402641, c(1)var = 2.394561, c(2)var = 3.087863.
The service time has the Erlangian distribution of order 2 with parameter 20. The timer has the

Erlangian distribution of order 2 with parameter 10. The probability that a non-priority customer
leaves the system unserved when the timer expires is p = 0.4.

Figures 3–6 show the dependence of the loss probabilities P(1)
loss, P(2)

loss, Ploss, P(imp)
loss on the buffer

capacity N for the systems with BMMAPs having different coefficients of correlation.

Figure 3. The loss probability P(1)
loss as a function of the buffer capacity N for BMMAPs with different

coefficients of correlation.
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Figure 4. The loss probability P(2)
loss as a function of the buffer capacity N for BMMAPs with different

coefficients of correlation.

Figure 5. The loss probability Ploss as a function of the buffer capacity N for BMMAPs with different
coefficients of correlation.
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Figure 6. The loss probability P(imp)
loss as a function of the buffer capacity N for BMMAPs with different

coefficients of correlation.

As expected, the loss probabilities of priority and non-priority customers, P(1)
loss, P(2)

loss, as well as
the general loss probability, Ploss, decrease with N increasing. It is also seen that the loss probabilities
depend on the correlation in the input flow. Under the same value of N each of these probabilities
increases when the correlation increases. The difference in the value of any of these probabilities
for BMMAP with different coefficients of correlation may be very significant. This is especially
evident if we compare the curves for BMMAPs with coefficients of correlation c(1)cor = c(2)cor = 0
and c(1)cor = 0.02342, c(2)cor = 0.187811 with the curves for BMMAP with much higher coefficients of
correlation, c(1)cor = 0.205982, c(2)cor = 0.402641.

Analyzing the graphs for the probability P(imp)
loss in Figure 6, one can see that the behavior of the

curves is the opposite of the behavior of the curves in Figures 3–5. From Figure 3, the probability P(2)
loss

decreases with increasing the buffer space N; therefore, larger fraction of non-priority customers is
admitted in the system and forms the longer queue. Thus, the rate of the flow of customers leaving the
system due to impatience increases. The graphs also confirm that the correlation in the input flow can
significantly affect the value P(imp)

loss , especially for large values of N. The higher correlation implies the
higher probability of loss due to impatience.

In general, it can be concluded from Figures 3–6 that ignorance of the correlation in the input
flow can negatively affect the accuracy of evaluating the performance of real systems and lead to too
optimistic estimates of the performance measures.

Example 3. In this example, we computed the following performance measures: mean number of priority
customers in the buffer, L(prior), mean number of all customers in the buffer, L, the loss probabilities
P(1)

loss, P2)
loss, Ploss, P(imp)

loss . We investigated the dependence of these performance measures on the input rate λ for
the systems with BMMAPs having different coefficients of correlation.

We considered three BMMAPs from Example 2. For convenience, we denote them as BMMAP1,
BMMAP2 and BMMAP3, where the numbering is done in order of increasing of coefficients of correlation in
the BMMAP. Distributions of the service time and timer are the same as in Example 2. The buffer capacity
N = 10 and the probability that a non-priority customer leaves the system unserved when the timer expires is
p = 0.4.
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Figures 7 and 8 depict the mean number, L(prior), of prior customers and the mean number,
L, of all customers in the buffer as functions of the input rate λ for the BMMAPs with different
coefficients of correlation.

Figure 7. The mean number of customers in the buffer, L, as a function of the input rate λ for the
BMMAPs with different coefficients of correlation.

As expected, the values of L(prior) and L increase when the input rate λ increases. More interesting
is to analyze relative location of the curves for different coefficients of correlation. In the region λ < 10,
a curve for the higher correlation is located above a curve for the lower correlation. It is worth recalling
that in the considered example the service rate is µ = 10, therefore, the region λ < 10 is associated
with the region ρ = λ

µ < 1. The relative location of the curves is changed when λ > 10 (ρ > 1).

In this region, under the same value of λ the mean L(prior) and L are significantly less for the BMMAP3

than for the BMMAP1 and BMMAP2. Also note a relatively low rate of increase in the case of the
BMMAP3. Thus, with a large correlation, we observe poor average buffer occupancy (due to the high
loss probability).

Figure 8. The mean number of priority customers in the buffer, L(prior), as a function of the input rate
λ for the BMMAPs with different coefficients of correlation.
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In order to investigate the behavior of L(prior) and L for BMMAP3 in more detail, we examine the
deviations of the number of priority customers and the total number of customers in the buffer from
their average values. Figures 9 and 10 show the behavior of standard deviations σ and σ(prior).

Figure 9. The standard deviations σ of the number of customers in the buffer for the BMMAPs with
different coefficients of correlation.

Figure 10. The standard deviations σ(prior) of the number of priority customers in the buffer for the
BMMAPs with different coefficients of correlation.

As seen in the figures, the values of σ and σ(prior) for the BMMAP3 retain large values in a wide
region λ > 10. Taking this into account, we can explain the behavior of the means L(prior) and L by the
fact that, under a high correlation in the BMMAP, periods of time when customers arrive rarely (and
the server starves) alternate with the periods when customers arrive frequently (and many customers
are lost due to the full occupancy of the buffer). This implies the non-uniform filling of the buffer.
On average, the buffer may be filled weakly, but there is the large deviation of the number of customers
in the buffer from the average value.
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7. Conclusions

We considered a priority single-server queue with a finite buffer and two types of customers.
Customers of low priority may become high priority customers after a random time having PH
distribution. This queuing system may be helpful for modeling the work of emergency department
in a hospital, contact center, inventory with perishable foods, etc. An analysis of the system was
implemented under more realistic situations than found in the majority of the existing literature,
and making assumptions about the arrival process and distributions of the service time and time
until the change of the priority. Exact algorithmic results are obtained for stationary distributions
of the number of customers of two types in the system and waiting time of priority customers.
Numerical illustrations are presented, which show the dependencies of important performance
indicators of the system in arrival rate and capacity of the buffer. Significant effect of correlation
in arrival process is shown what evidently motivates the choice of the BMMMAP as the model of
arrival process, whereas the overwhelming majority of the existing research is devoted to the system
with the stationary Poisson arrival process having zero correlation. The presented results are planned
to be extended to the systems in which the increase of the priority can be dependent on the availability
of some additional items (equipment, expendable materials, etc.), see, e.g., [24].
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