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Abstract: In this paper, we propose two modified two-step proximal methods that are formed through
the proximal-like mapping and inertial effect for solving two classes of equilibrium problems. A weak
convergence theorem for the first method and the strong convergence result of the second method
are well established based on the mild condition on a bifunction. Such methods have the advantage
of not involving any line search procedure or any knowledge of the Lipschitz-type constants of the
bifunction. One practical reason is that the stepsize involving in these methods is updated based
on some previous iterations or uses a stepsize sequence that is non-summable. We consider the
well-known Nash—-Cournot equilibrium models to support our well-established convergence results
and see the advantage of the proposed methods over other well-known methods.

Keywords: subgradient extragradient methods; weak convergence; strong convergence; Hilbert
spaces; convex quadratic optimization; variational inequality problems

1. Introduction

Let K to be a nonempty convex, closed subset of a Hilbert space E and f : E X E — R be

a bifunction with f(u,u) = 0 for each u € K. The equilibrium problem for f upon K is defined
as follows:

Find p* € K such that f(p*,v) >0, Vv € K. 1)

The equilibrium problem, pioneered by Blum and Oettli [1] as a unifying feature, is found to be
involved more and more actively in a number of applications, such as poroelasticity for petroleum
engineering [2], porous materials [3,4], financial analysis in economics [5,6], the reconstruction
of images in imaging processing [7-9], telecommunication networks or public roads [10,11], and
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noncooperative games with the corresponding equilibrium concept by Nash [12]. The problem (EP)
was also known as Ky Fan’s inequality [13] due to his contributions to this area of research. In fact,
this problem did not receive sufficient consideration before this specific format. Nikaido characterized
Nash equilibria [14] as the solutions of the problem (EP), and Gwinner designed it just as a tool to
solve optimization and variational inequalities [15]; however, they did not deal with the problem itself
in a separate setup.

The equilibrium problem involves many mathematical problems as a particular case, i.e., the
variational inequality problems (VIP), fixed point problems, complementarity problems, optimization
problems, saddle point problems, the Nash equilibrium of non-cooperative games, and the vector and
scalar minimization problems (see [1,16]). Moreover, iterative methods are efficient tools to evaluate
an approximate solution to an equilibrium problem. Several methods are well known for solving the
problem (EP), for instance the proximal point method [17,18], projection methods [19], extragradient
methods [20-22], the subgradient method [23-25], methods using the Bregman distance [26], and
others [27-30].

The extragradient method was originally established by Korpelevich [31] for solving the
variational inequality problem, which is a specific case of equilibrium problems. Korpelevich proved
the weak convergence of the generated sequence under the hypotheses of Lipschitz continuity and
pseudo-monotonicity on the operator. It involves determining two projections onto a closed convex
set in each iteration of the method. If the closed convex set is simple enough, so that projections onto it
are explicitly computed, then the extragradient method is exceptionally suitable. The modification of
this method is the subgradient extragradient method [32], where the second projection is not taken
over onto the closed convex set, but on a half space and provides a simple calculation.

In 2008, Tran et al. [33] proposed an extragradient method extension of the Korpelevich
extragradient method [31] for dealing with the pseudo-monotone equilibrium problem in
finite-dimensional spaces. It is crucial to determine two minimization problems on a closed convex
set in each iteration of the method, and there is a reasonable fixed stepsize in minimization problems.
Precisely, the iterative sequence {1, } is determined as follows:

ug € C,
v = argmin{Af (uy, y) + 3 [|un — yl*},

yeK (2)
1 = argmin{Af (vn,y) + 3 [[un = y[*},

yeK

where 0 < A < min{ 2171, 2172}, and ky, ky are Lipschitz constants. In 2016, Lyashko et al. [34] proposed
an extension of the method (2) motivated by the result in [35]. Precisely, this iterative sequence {u, } is
defined as follows:

Uug, Vg € C,
i1 = argmin{Af (vn,y) + 3 [[un — [},

yeK 3)
i1 = argmin{Af (vn,y) + 3l[un1 — yl*},

yeK

where 0 < A < m and kj, ky are Lipschitz constants.

On the other hand, inertial-type methods are also important, based on the technique of the
heavy-ball methods of the second-order time dynamic system. Polyak [36] began by taking inertial
extrapolation as an acceleration method to solve smooth convex optimization problems. These methods
are two-step iterative schemes, while the next iteration is evaluated by the use of the previous two
iterations, and it could be viewed as an accelerating step of the iterative sequence. Several inertial-like
algorithms for special cases of the problem (EP) can be found, for instance in [37-40].

This manuscript aims to introduce two modifications for the result proposed by Lyashko et al. [34]
motivated by the results in [32,41,42]. These modifications are carried out by applying the inertial and
subgradient strategy to speed up the iteration process and reduce the numerical computation. The first
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result incorporates the Lyashko two-step extragradient method with the inertial term, and a variable
stepsize is followed that is updated on every single iteration by using the previous iterations. We prove
a weak convergence theorem for our first proposed method through the standard assumptions on the
cost bifunction. Furthermore, we come up with an alternative inertial-type method, which is another
variant of the first method. The second method does not require any knowledge about the strongly
pseudomonotone and Lipschitz-type constants of a bifunction, and the strong convergence of the
method is achieved.

This paper is arranged as follows: Section 2 includes a number of definitions and basic
results. Sections 3 and 4 contain both of our methods involving the pseudomonotone and strongly
pseudomonotone bifunction, as well as the convergence theorem. Section 5 covers the applications of
our proposed results to the variational inequality problems. Section 6 illustrates numerical experiments
in comparison with other existing algorithms using the Nash—Cournot equilibrium models to display
the efficiency of our proposed algorithms.

2. Preliminaries

We make use of K as a closed, convex subset of the Hilbert space E. We denote u, — p*
and u, — p* as the sequence {u,} strongly converges to p* and {u,} weakly converges to p*,
respectively. In addition, EP(f, K) indicates the set of solutions of the equilibrium problem within K
and p* € EP(f,K).

Definition 1. Let a convex function g : K — R, and a subdifferential of g at u € K is:
0g(u) ={w e E: g(v) —g(u) > (w,v—u), forallv € K}.
Definition 2. The normal cone of K at u € K is:
Ng(u) ={w e E: (w,o—u) <0, forallv € K}.
Definition 3. The metric projection Px(u) of u onto a closed, convex subset K of E is defined as:

Px(u) = argmin{||v —u| : v € K}.

Now, we consider the concepts of the monotonicity of a bifunction (see [1,43]).

Definition 4. Let a bifunction f : [E x E — R on K for v > 0 be said to be:

(1) strongly monotone if:
f(u,0) + f(o,u) < —7llu —v||? Yu,v € K;

(2) monotone if:
f(u,v)+ f(v,u) <0, Vu,v € K;

(3) strongly pseudomonotone if:
f(u,0) > 0= f(v,u) < —v|lu —v|? Vu,v € K;

(4) pseudomonotone if:
flu,v) > 0= f(v,u) <0, Vu,v € K;

(5) satisfying the Lipschitz-type condition on K if there exist two numbers kq,ky > 0, such that:

flu,z) < f(u,0)+ f(v,z) + kq||u —v\|2+k2||v—z\|2, Yu,v,z € K.
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Lemma 1 ([44]). Let K be a nonempty, closed, and convex subset of a Hilbert space E and g : K — R bea
convex, subdifferentiable, and lower semi-continuous function. An element u € K is a minimizer of a function g
ifand only if 0 € 0g(u) + Nk(u) where dg(u) and Nk (u) denote the subdifferential of g at u and the normal
cone of K at u, respectively.

Lemma 2 ([45]). Let a,b € E and y € R, then the following is true:

lua + (1= p)bl|> = pllall> + (1 — p)||b]|> — (1 — p)la — b||*.

Lemma 3 ([46]). Let ay, by, and c,, be a sequence in [0, +00) such that:

—+o00
Ay < ay+by(ay —a, 1) +cy, Yn>1, with Z cn < +09,

n=1

and also, there exists b > 0 such that 0 < b, < b < 1,Vn € N. Then, we have:

+o0
() Y [an —ap_1]+ < oo, with [s] 4 := max{s,0};
n=1

(i) limy—y o0 ay, = a* € [0,00).

Lemma 4 ([47]). Let {&,} belong in E and K C E satisfying:

(i) For¢ € K, limy_y ||&n — || exists;
(i) Ewvery weak cluster point of the sequence {y, } belongs to K.

Then, {&,} converges weakly to an element of K.

+00 —+00

Lemma 5 ([48]). Let {pn},{qu} C [0,00) be sequences and Y  p, = oo with Y pugn < oo, then
n=1 n=1

liminf, ;e gy = 0.

3. An Algorithm for the Pseudomonotone Equilibrium Problem and Its Convergence Analysis

The first method is developed by adding an inertial term to Algorithm 1 ([34], p. 4). It is important
to note that the algorithm in the paper [34] cannot be used practically without knowledge of the
Lipschitz-type constants of the bifunction. To overcome this situation, we suggest a new step-size rule
that does not depend on Lipschitz-type constants. Rather, it depends on certain previous iterations
and updates on each iteration. In a situation where Lipschitz constants are unknown or difficult to
calculate, this approach is very useful. The following is our first algorithm in more detail:
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Algorithm 1 Two-step proximal iterative method for pseudomonotone EP.

Initialization: Choose u_1,v_1 € K, Ap > 0and p € [0,g(«)). Set:

. 1 , 1
o = arg min{Aof (v-1,) + 5 -1 — y[I*} and v = argmin{Aof(v-1,y) + 3 o — /).
yeK yeK

Iterative steps: Now, v,,_1, vy, U1, #y € Kand A, are known for n > 0.
Step 1: Construct a half space:

I, ={z€E: {(uy, — Aywy —vy,z—1vy) <0}

where wy, € 9f(v,_1,v,), and then, compute:

. 1
U1 = Proxy, g, )tn = argmin{Anf(on, y) + 2 |[tn — vlI*},
yell,

where t,, = uy + a,(uy —u,_1) and &, C [0, %) is a nondecreasing sequence.
Step 2: Setd = f(v,_1,upt1) — f(0n—1,9n) — f(Vn, tty11) with:

_ 2 _ 2
min< A, plon z;nHZ;HunH o) if d>0;
/\n+1 =

A otherwise.

Compute:

. 1
Unt1 = PIOXy, L £(0,,, ) Uns1 = argmin{A,1f (v, y) + 7 1 = ylI*3-
yeK

Step 3: If u, 1 = v, = t,, STOP; otherwise, set n := n + 1, and return back to Step 1.

Assumption 1. Let a bifunction f : E x E — R satisfy the following conditions:

(A1) f is pseudomonotone on K with f(u,u) =0, forallu € K;
(A2) f satisfies the Lipschitz-type condition on E with kq and ky;
(A3) limyeosup f(un,y) < f(p,y) foreachy € Kand {u,} C Kwithu, — p;
(A4)  f(u,.) is subdifferentiable and convex on E for each u € E.
Lemma 6. We have the following inequality from Algorithm 1.
Anf(On,y) = Anf(On,ttnsa) = (tn = tng1, Yy — tng), Vy € 1.

Proof. By the value of 1,1 with Lemma 1, we have:

0 € a2 { M (ony) + 3lltu = I} Gers1) + Niy, (1)
Thus, for w € 9 f (v, Uy 41), there exists W € Nnn(un+l) such that:
Ap@ + tyyr — by +@ =0,
which gives:
(tn = Unt1,y = Ung1) = An(@, ¥ = tpg1) + (@, Y = Unt1), Yy € 1.
By @ € Npy, (4y+1), we have (@, y — u,+1) <0, Vy € IT,. This implies that:

(tn — Ups1, Y — tp1) < Ap({w,y — tpy1), Yy € . (4)
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From w € 9f(vy, u,+1) and by the subdifferential definition, we have:
fOn,y) = f(on, unt1) > (w,y — tyy1), Yy € E. ©)
Combining (4) and (5), we obtain:
Af (O, y) = Anf (O, ting1) 2> (tn — tyg1, Y — tpgr), Yy € Iy,
O
Lemma 7. We also have the following expression from Algorithm 1.
M1 f(On ) = A1 f(On, Ong1) > (Ung1 — Vng1, ¥ — Vny1), Yy € K

Proof. The proof is identical to the proof of Lemma 6. [

Remark 1. By taking u, 1 = vy = t, and u, 1 = vy = v,y in Algorithm 1, we can get v, € EP(f,K)
from Lemma 6 and Lemma 7, respectively.

Lemma 8. We have the following relationship from Algorithm 1.
M{f(On—1,un11) = f(On—1,00) } = (Uy — O, U1 — On).
Proof. Since u, 1 € I1,, this gives that (1, — Apwy — Oy, Uy1 — ) < 0. Thus, we get:
An{Wn, 41— On) = (Un — On, Un+1 — On). (6)
By wy, € 9f(v,—1,v,) and the definition of subdifferential, we get:
fOn-1,y) = f(On-1,0n) = (wn,y = vn), Yy € E.
Substituting y = u,,11 in the above inequality, we get:
fOn-1,uni1) = f(On-1,0n) > (@Wn, tty1 —vn), Yy € E. @)
Combining (6) and (7), we have:
A f(On—1,tng1) = f(On—1,0n) } = (Un — On, Ups1 — Vn).
O

Lemma9. Let f : E x E — R satisfy Assumption 1. Then, for each p* € EP(f,K) # @, we have:

2uA A
_ 2 < w2 (1 “HAn o2 (1 B 2
i = p*I1° < It — p7|l (1 AHH)””” On| (1 Am)llum ol
2uly

A lotn = w2 = etr = tall? + llotn = |12
n

+

Proof. It follows from Lemma 6 with y = p* that we have:

Auf(On, p*) = Anf(On, 1) > (bn — g1, p° — Ung1)- (8)
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Thus, f(p*,vx) > 0, and due to Condition (A1), we have f(v,, p*) < 0. This implies that:
(tn = Ups1, g1 — P°) = Auf (On, Uny1)- )
By the definition, A, 41 implies that:

_ 2 _ 2
f(vn—l/un-H) —f(Un—LUn) _f(vn/un-H) < ,u(an—l vn|| i ||un+1 vn|| )
2An+1

both sides have been multiplied with A, > 0, such that:

At (|00 1 = onl® + |11 = on]?)
2An41

/\nf(vn/ un+1) > /\nf(vnflz un+1) - /\Vlf(vnfl/ Un) - (10)

By combing (9) and (10), we have:

" A A
<tn —Upt1,Up41 — P > > /\n{f(vnflzunJrl) _f(vnflfvn)} _ Whn an,1 - vnHz _ Hhn Hun+1 - Z7}'1”2- (11)
2041 2Ap41
Since u, 41 € I1,, then from Lemma 8, we have:
An {f(vn—lz Mn+1) - f(Un—lz Un)} > <Mn — Un,Up41 — Un>' (12)
From (11) and (12), we obtain:
A A
(tn = thn 1, 1 — ) > (1t — Oyt 1 = 0n) — SB[ 1 — 02 = SEZ g1 — a2 (13)
2An41 2A 41

We have the following facts:

I

2(tn = i1, st = p*) = Ntn = P17 = Nttwsr = tull? = i = p*1%,

2(vn — Un, Op — Upy1) = |[tn — UWHZ + ([t g1 — UnHz — |lun — ”n-i-l”z/

and:
2
100—1 = vall* < ([lon—1 — || + llttw = 0ull)” < 2[0n_1 — unll* +2)|1tn — va ||

From above facts with Expression (13) complete the proof. [

Theorem 1. The sequences {t,}, {vn}, and {u,} are generated by Algorithm 1 and weakly converge to
p*, where:

O<pu<

1
and 0§txn§a<6.
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Proof. Adding to both sides the value i+ | ps1 — vn | in Lemma 9, we have:
Ant2 +

2uA
a1 = P72 4+ a1 — o
n+2
2uA UA
< % 2_ _ n _ 2_ _ n _ 2
e e e (R g L e
2ul 2uM 41
5 e = ot [P = g =l tr = ] =5 a1 — 00
n+1 42
. 2uA Ap  2uA
<t =12 = (1= 5222 )l = ol = (1= 2 = 55 ) s — o
Ant1 Any1 Ang2
2ui
+ 2 = 0|2 = 1 = a2+ tsq — 2
n+1
A 2uA
< =12 = (1= 5 = 520 [atnen = o+ [l — 0]
n+1 n+2
2ul
+ S g — 0|2 = g1 = a2+ 141 — 2
n+1
1 UAy 2uMy 2
<ty (1 =500 sl ol
<ltw=p =5 (1= = 5 e = oull + = o
2ul
+ /\V “ _Unlez — [Jtn41 — tn”Z"’ 4011 _”nH2
n+1
1 AL 2uAy 2
<t —ptI2 - 5 (1 - £ - S5 =
<l =P = 5 (1= 4 = 3 ) s —
2uA
+ Sty — 00112 = e 1 = bl 4 1t 1 = .

Ant1

By the definition of ¢, in Algorithm 1, we get:

Itn = p*I1* = llun + an(n — 1y—1) — p*||?
= [|(1+ an) (un — p*) — an (g1 — p*)|1?
= (1+an)|lun — P*Hz —anlluy—1 — P*Hz + oy (14 ay)|lun — u”,1||2.

The value of u, 1 with Lemma 2 gives:

41— tall> = llttn1 = tn — (1t — 11 ||
= a1 = tnl| + it — 11 = 2000 Q1 = tt, U = ty1)
2> (a1 — | + o [t — vt ||* = 2000 [[t041 — el |1t — 01 |
> a1 = unl® + o ot — 1| = a1 — 1 |* = a1t — 1t ||

> (1= ) [[pr — |+ (o, — ) [ — 01 1>

8 of 28

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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Thus, Expression (18) with (19) and (21) turns into:

ZﬂAnJrl
An+2

< (L an) [Jun — P> = anllun—1 — p* 1> + an (1 + o) [|1n — 11|

ltnen = P + 4541 — onl®

1( AL 2uAy 2 2uAy 2
—=({1- — ) Uyl — Unl||” + Uy — Uy—
2 (1= = 3 s =l + 52y =]
1 = 2 = (L= ) st = 1012 = (0 = ) 1t = 1 @2)
2uA
< (1wl = I = @l = 72+ 55 = 0 P
n
1 A A
— (3 ) s = wall+ 2 — P 23)
n n
2uA
< ()l = p I = @allin = 72+ 52 = 0 P
n
— st = a2+ Glltn — 1001, 24)
where x,, := (% - % — % - ocn) and ¢, := 2a;,. By Substituting:

2uiy

N e = a1+ Gallitn —
n+1

T = [lun = p*[1* = anllun—1 = p*|* +

Next, we compute:

% 2uA
Thp1 —Tw = |ltpp1 —p ||2 — 0yt |1y — P*Hz + %Hurﬁl - UnHz + Cnrllttngr — unHZ
n
2uA
= "I+ w1 = p7 112 = T = 002 = Eallwn —
n+1
2uA
< fitnr = P77 = (1 )t = P71 + @l = P2 S a0 — 02
n+2
2uA
o Ensltnsn = thall? = Gallitn = st a1 = SE22 it = 0, ]2 25)
n+1
From Expression (24) with (25), we obtain:
Tpir —Tn < —xnluns1 — unHz + Cnttlltni1 — ”HHZ = —(kn — Gnt1) [ unt1 — unHzr (26)

and we continue to evaluate:

1 An An
- =_-_-n P - > (= — - )
o §n+1 2 2An+1 /\n+2 i 20‘7[—1—1 - (2 31)() ‘u(z/\nJrl * )‘n-&-Z) @7)
Due to A, — A, the above implies that:
1 An An 1 3
<§—3o¢)—y(2}\n+l+/\n+2)%§—3zx—§y>0 as n — oo.
Due to our supposition and from the above, there exists an § > 0 and 19 € N such that:
Kn — En1 > 6 >0, Vn > np. (28)

Thus, Expression (26) with (28) implies that:

1 =Ty < =6l|upgr — unl* <0. (29)
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The sequence {I',} is non-increasing for n > ng. By the value of ', 1, we have:

L1 = lltner = P71 = apn fJun — p* |2 + %Hum = o+ Gt lttsr — 1
>~y f|un — p*II.
From the value I';;, we have:
2udy

I?

T = |lun — p*|1* = anllun—1 — p*||* + [ty — Op—1 |I* + Enllttn — i1

/\n+1
> [l — p*I? = anljun—1 — p*|%
The expression (31) for n > ng implies that:
[n = p*[I* < T + an [ty -1 — p*|I?

< Ty + al[ty 1 — P*Hz
Ty 1) O gy

IN

Iy,

11—«

IN

+ a0l — p* 2.

It follows from Expressions (30) and (32) that:
*(|2 *1|2 r”o n—np+1 *1|2
w1 < appa|lun — p*|I° < affun — p*|| Sag— ta [[tng — "1

It follows from Expressions (29) and (33) that:

k
0 2 |1 — MHHZ < Tug =T

n=nop
r
< Tg ot a0 g, —p7|”
r
<oyt —pIP
and letting k — co in Expression (34), we obtain:

(o)
Y g1 — un||? < 400, implies that ||t — 1| — 0 as n — co.
n=1

From Expressions (20) and (35), we have:
T flt1 — bl =50,
and also to continue:

0 < lltw — tull < ttn — ttpsa || + ttys1 — tall — 0 as n — oo,

2uly
Ant

Let Ay = ||uy — p*||> — anljun_1 — p*||> + l|un — v,,_1]/%. Expression (33) converts into:

Ty,

1—n

—Dpp1 <a + a0 g — p* |2+ Cpalfn — a2

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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By Expressions (16) and (19) with (38) for n > ng, we have:

(1_ PAn  2uAy
/\n+1 /\n+2

<Ay — A+ an(T+ay)||uy — Mn—l“2 + ||upp1 — ”nHZ
< Ap— D1+ a(l+ &) Jug — w1 || + [[tr1 — unl*. (39)

) [l = 0l + 41 = 00

Due to the assumption on y for some € > 0,

B UAn B 2uAy
A1 Ang2

(1 ) >e>0, as >no.

Let us fix k > ny and Expressions (38) and (39) for n = ng,ng + 1, - - - , k. Summing them, we have:

k k
e Y llun—oul>+e 3 lltnrr —onl?

n=ny n=ny
k ) k )
< Apy — Dgy1 +a(l+a) Z |un — ty1]|” + Z |thp1 — tn|
n=ny n=ny (40)
A _
< Bg g & gy — 7|2 4 G g — i |
. 2 £ 2
ta+a) ) [un—unal®+ Y [ttnsr — |
n=ny n=ngy

and letting k — oo in the above expression leads to:
Y lln —val® < 00, Y} i1 —va* < 0. (41)
n n
The above expression also implies that:
i [ — 0] = Jim 101 = 0] = 0. @)
By using the triangle inequality with Expression (42), we have:
0 < |lon — vyl < |lun —oull + [Jun — 041l — 0, as n — oo (43)
Next, from Expression (14) with (19):
i1 = P I1P < (1 an) [ = p* |7 = a1t — p* |2+ a(L+ ) [ — 111>

2uly
)\n+1

(44)
+

l|lun — Un71||2 + |tpg1 — unHz

and the above expression with (35), (41), and Lemma 3 implies that the limit of || u, — p*||, ||tn — p*||
and ||v, — p*|| exists for each p* € EP(f,K), meaning that the sequences {u,}, {t,}, and {v,} are
bounded. Next, we have to prove that each weak sequential limit point of the sequence {1, } belongs
to EP(f,K). Let z be any sequential weak cluster point of the sequence {u, }, i.e., a weak convergent
subsequence {uy, } of {u,} converging to z, which also implies that {v;, } also converge weakly to z.
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Now, our aim to show that z € EP(f, K). Using Lemma 6, the definition of A, 1 (10), and Lemma 8,
we obtain:

)‘”kf(vnk/ y) > Ankf(vnkr“nk-&-l) + <tnk —Up+1,Y — ”nk+1>

A
2 Ankf(vnk—lrunk+1) - )\nkf(vnk—ll v'rlk) - 21//{ nil
03

o, — 1>

PAn 2
T B 10 T et Al =ty = ) (45)

HAn

_ P _ 2
2 |

2 <u1’lk - vnk/unk+1 - v}’lk>

- A 1 ||Ui’lk - unk+1||2 + <tnk - unk+1/y - unk+1>/
n

whereas y is an any element in I1,,. As a result, with (36), (37), (42), and (43) and due to the boundness
of {u,}, the above inequality goes to zero. By given A > 0, the assumption (A3), and Uy, — 2z, We get:

0 < limsup f(vy,,y) < f(z,y), Yy € I1,.

k—o0

Since z € K C I, then f(z,y) > 0,Vy € K. It gives that z belongs to EP(f, K). By Lemma 4, we
show that {t,}, {u,}, and {v,} converge weakly to p* asn — co. [

4. An Algorithm for the Strongly Pseudomonotone Equilibrium Problem and Its
Convergence Analysis

The second algorithm is also another variant of Algorithm 1 [34] that can solve the strongly
pseudomonotone equilibrium problem. However, the advantage of this algorithm is that it provides
strong convergence by using a diminishing stepsize sequence. Let {A,} C (0,+o) be a sequence
satisfying the following:

(S1): lim A, =0 and (Sy) : 1;1/\,1 = +oo. (46)

Assumption 2. Let a bifunction f : [E x E — R satisfy the following conditions:

(B1)  f is strongly pseudomonotone on K with f(u,u) =0, forall u € K;
(B2) f satisfies the Lipschitz-type condition on E with ki and ko,
(B3)  f(u,.) is sub-differentiable and convex on E for each fixed u € E.

The Algorithm 2 is described below.
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Algorithm 2 Two-step proximal iterative method for strongly pseudomonotone EP.

Initialization: Choose u_1,v_1 € E, ay, € [0, %) with A, satisfying (46). Set:

. 1
o = Proxy p(o_y, jtt—1 = argmin{Aof (v-1,) + 5llu—1 - ylI*},
yeK
and:

. 1
v = Proxyp(o ,, o = argmin{Aof(v-1,y) + 5 [luo — y[*}.
yeK

Iterative steps: Given u,,_1, v,_1, Uy, and v, for n > 0, construct a half space:
I, ={z€E: {(uy, — Aywy_1 —vy,z—10vy) <0},

where w,, 1 € 9f(v,_1,0n) and t, = ty + 0y Uy — ty_1).
Step 1: Compute:

. 1
Unt1 = Prox,, r(o,, tn = argmin{A, f (v, y) + Eth - ylI*}.
yell,

Step 2: Compute:

. 1
On1 = Proxy, o, ) tn1 = argmin{An 1 (0, y) + 5 [ltn1 = y[*}.
yeK

Step 3: If u,, 11 = v, = t,, STOP; otherwise, set n := n + 1, and go back to Step 1.

Lemma 10. Assume f : E x E — R satisfying Assumption 2. For each p* € EP(f,K) # @, we have:

s = P¥I < lbw — 17 — (1 — 4k At — 0l — (1 = 2k2A0) 01 — 0n®

I?

+ k1 Anlltn — opal|? = 29Anllon = P17 = Nttsr = tull? + [t — ua®

Proof. Follow the same step as in the proof of Lemma 9, and term 2yA,||v,, — p*||? will appear due to
the strongly pseudomonotonicity of a bifunction. [

Theorem 2. Assume that a bifunction f : E x E — R with Assumption 2. Let {uy} be sequences in E
generated by Algorithm 2, where the sequence ay, is non-decreasing and 0 < a; < a < %. Then, the sequence
{un}, {vn}, and {t,} strongly converges to p* in EP(f, K).

Proof. By Lemma 10 and adding 4kjA,||uy, 11 — v, ||* on both sides:

U1 — p*Hz + dkiAnlltn 1 — UHHZ
< ltn — p*|1> = (1 — dkyA) [[n — 0| = (1 = 2koAn) [t g1 — 0ul|* + k1 An |1 — 051 [P

—29Aullon — P11 = Nlungr — tall* + [ltns1 — wnll® + 4ky An |11 — 0412 (47)
= |ltn — P*HZ — (1 —4k1An) |lun — Un||2 — (1= 2koAy — 4kyAn) |t y1 — UHHZ
+ 4ky Ap|un — vy H2 = 29An|on — P*Hz — g1 — thz + [[ttps1 — ”nHZ (48)

1
= lltw = P11 = 5 (1 = 2KkoAn — 41 An) [2lns1 = 0n[? + 2| ttn — 0]

+ k1 Anlltn — op a2 = 297Anllon = P17 = Nttsr = tall? + [t — un® (49)
1
< tw =PI = 51— 2kaAn — 4hr An) [t 1 — |
+ ki Anllun — op1l|? = 29Anllon = P17 = Nttwsr — bl + [t — un® (50)
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From the value of ,, in Algorithm 2, we have:
Itn = p*I1P = (14 an)[[un — p*|I* = anllun—1 — p* 1> + an (1 + an) 10 — 1n—1 ]| (51)

By the definition of ¢, we have:

|1 — tn”2 = |lup1 — “n”z + ”‘%H”n - “n—1||2 = 200 (U1 — U, U — Up 1) (52)
> (1= an)|[tps1 — all® + (a5 — ) un — w1l (53)

Thus, Expression (50) with (51) and (53) leads to:

1 = P71 + k1A |t s1 — o
< (Ut an) = p* 1P = anllun—1 = p[* + an (1 + an) | — 112

1
= 5 (1= 2ka Ay — 1) [utnsr = ten? + &1 Al un — 01|12 = 29Au o — p*12
— (1= ) [[tpgr — unll® = (a5 — @) [t — 1 [|* + g1 — ual? (54)
< (T4 ) lun — p* 11> = anllun—1 — p*|I> + 4ksAnllttn — 011> = 27 Anllon — p*|1?
1
- (E —koAy = 2ki Ay — o) ||ty — ”nHZ + 20 |[un — ”nfluz (55)

< (T + an)|lun — p*I1P — anllun—1 — p*|1* + 4ki Aullun — vp—1]1* — 2y Aul|on — p*|I
*QnH”rwl*”n||2+RnH”n*”n71”2/ (56)

where Q, = (% — koA — 2k1A, — ocn) with R, = 2a,,. Substitute:
Dy = [y — PP = anllun—1 — p*I* + k1 An ||ty — 01>
From the above substitution, Expression (56) turns into:
D1 < Py —29Anl[on — p*I1> = Qullttns1 — unll® + Rufltn — 1|12 (57)

Next, we substitute:
Y, =D, + RnHun - un71||2-

By the above expression and (57):

Y1 = ¥n = —(Qn — Ryg1) [0 — ttul|* = 29An[Jon — p*|% (58)
It follows that: .
Qn =Ry = 5~ koAn — 2kiAn — an — 2041
> % —koAy — 2k Ay — 3u (59)
- % — Anlky +2k1) — 3a

Since A, — 0, then there exist an Ny € N, such that:

0<i, <273 s
TS ko £ 2k SO

Due to the above condition, we have:

Qn — Ry41 >0, forall n > Np. (60)
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Thus, Expressions (58) and (60) imply that:
Y1 — Y0 = —6|lups1 — u,1||2 <0, n > Ny, forsome 6 > 0. (61)
The above implies that the sequence {¥,, } is nonincreasing for n > Nj. From the value of ¥, we have:

lun = p*[I*> < ¥ + anllg—1 — p*|1?

< ¥, + allug—q — p*|?
e W (@M 1) 2Ny — 12 (62)
Y

No n—Ny %12
SN o g, — 2

IN

IN

Similarly, for the value of ¥, 1 with the above expression, we have:

¥, < lxn—i—l””n - P*Hz

< atf|un — p*|1?

T,
< 0 n—Np+1 %2
g N0 g

TN
<+ un, — "% (63)

From Expressions (61) and (63), such that

k
8 Y g1 — unl® < ¥y — Ve
n:NO
T
<y g, — p P
TN, ”
< T2 g - IR, (64)
letting k — oo in the above expression, we have:
Y |[ttps1 — un||* < +oo, implies that lim lttyr1 — unl|| = 0. (65)
n
From Expressions (52) and (65), we obtain:
luys1 —tal| =0 as n — oo. (66)
Next, Expression (63) implies that:
RV
= Pup S ag— - [l - PEI7 A+ Ruga i1 — . (67)

Further, for Equations (49) and (51) for n > Ny, we have:

(1 — Zkz)tn - 4k1)\n) {H”n-i-l - U”HZ + Hu” o UHHZ} (68)

< Py — Py + (@) [ty — g ? + (g1 — |,
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Now, we fix a natural number k > N and consider the above inequality for all numbers Ny, Ny +
1,- -+, k. Summing them using (67), we obtain:

k

(1= 2kah = #k1dn) 3 [lttsr = 0ul2 + f1n = 0]
H=N0
k 2 k 2
SON, — Py Fa(l+a) Y fun —upal?+ ) (s — ]
l’l:N(] Yl:N(] (69)
TN,

S P+l — P11 + Ry lltin — g

k 2 . 2

+a(l+a) 2 lun — 11|+ 2 | tns1 — |

n=Ny n=Np

and letting k — oo in the above expression, we have:

Y g1 —oul* < +oo and Y [|un — vnl|* < +oo. (70)
n n

The above expression implies that:
1m0 — ol = lim [y — 4] = 0. 71)
We can easily derive the following by using Expressions (65), (66), and (71) such that:
nlg{}o Jun — on|| = nh_I;f.}o Jun — tul| = nh_I}.}o [on—1—oul| =0. (72)
Furthermore, Expression (54) with (65), (70), and Lemma 3 implies that:
lim lun — p*|| =1, for some I > 0. (73)
By Expression (72), we obtain:
lim [[t, — p*|| = lim [jo, —p*|| = L. (74)

Now, we show that the sequence {1, } strongly converges to p*. From the condition on A, for all
n > Ny, the following still holds:

1

. > Np.
et akg = No

0< Ay <

It follows from the above condition and Lemma 10 that:
29Anllon — 117 < lltw = p*I1P = lluns1 — p* 11 + 4ka Anllun — o1 [* + [[tng1 — unll?, V1 > No. (75)
From Expressions (51) and (75), we obtain:

29Aullon = p* |7 < lluns1 = PP 4+ (1 an) [t — p*I|? — a1 — p*||?
+ an (1 + an) [|un — ”n—l”2 + 4ky A ||un — Un—l“2 + |ltng1 — unHZ
< (lun =PI = lungr = p*I1P) + 20l tn — s |? + [0 — w)?
+ (nllun — p* 1> = an1llun—1 — p*11?) + 4ka A [ln — 04 1| (76)
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From the above expression with (65) and (70), this implies that:
k

Z 29An[on — P*”Z
ﬂ:No

k k
< (lung = P 1% = llteer = P12 + 200 Y Mlotw = et 2+ 3 ttsr — un?

I’l:NO n:NO
+ (lline = "1 = a1 = 21D + o Sy — 0 P
kllUk — P No—111UNy—1 — P 2k, + 4kq - n n—1
< iy = P+l = 9 2420 3 itn =t P o Sy — 0y P
~ Ny — k — n— Up-1 T n— Un-1
0 n=Np 2ky + 4kq H=Np
k 2
Y it — el
n:NO
<M, (77)

for some M > 0. Now, letting k — oo, in the above expression, we obtain:

29Au||on — p*||2 < +o0. (78)

n=1

From Lemma 5 and Expression (78), this implies that:
liminf ||v, — p*|| = 0. (79)
Expressions (73) and (79) imply that lim, .« ||ux — p*|| = 0. This completes the proof. [I

5. Application to Variational Inequality Problems

Now, we study the applications of our proposed methods to solve the pseudomonotone and
strongly monotone variational inequality problems. An operator G : E — E is considered to be:

(1) strongly pseudomonotone on K if (G(u),y —u) > 0= (G(y),u —y) < —7|lu —y|? Vu,y € K;
(2) pseudomonotone on K if (G(u),y —u) > 0= (G(y),u —y) <0, Vu,y € K;
(3) satisfying being L-Lipschitz continuous on K if ||G(u) — G(y)|| < L|ju —y||, Yu,y € K.

The variational inequality problem is defined as:
Find p* € K such that (G(p*),y —p*) >0, Vy € K.

Note: Let bifunction f(u,v) := (G(u),v — u) for all u,v € K. Then, the equilibrium problem
converts into the above variational inequality problem with L = 2k; = 2k;. It follows from u,, 1 in
Algorithm 1 and the above definition of bifunction f that:

. 1
t 41 = argmin{ Au f(0n, ) + 5 1tn =y |
yell,

~ 1 2 M 2 M 2
= argmin{ A (G(on), ¥ = va) + 5 [1tw = 2+ SHIG(ou) 2 = S Gon) 12}
yell,

~ 1 2, A 2 M 2
= argmin{Au(G(@n),y — fu) + An(G(@), tn = 20) + 5 ltn =yl + GG (@) P = NG o) I}
yell,

(1
= argmm{Eth — AG(vn) —y”z}
yell,

= Pr1, (tn — AuG(vy)). (80)
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The value of 1,1 reduces to the following projection:
Ont1 = Px(tni1 — Ap1G(0n)).

Assumption 3. Let G : K — [E satisfy the following conditions:

(G1) G is strongly pseudomonotone on K, and VI(G, K) is a nonempty solution set;

(G2) G is pseudomonotone on K, and VI(G, K) is a nonempty solution set;

(G3) G is L-Lipschitz continuous upon K for positive constant L > 0.

(G4) limsup(G(un),y — un) < (G(p),y — p) for every y € Kand {u,} C K satisfying u, — p.

n—oo

Corollary 1. Let G : K — E satisfy (G, G3, G4) as in Assumption 3. Assume {t,}, {un}, and {v,} is the
sequence generated in the following way:

(i) Chooseu_1,v_1 € K, Ag > 0, and p € [0,g(x)). Set:
up = Px(u_1 —AoG(v_1)) and vy = Px(up — AoG(v_1)).
(ii) Assume v,_1, vy, Uy_1, Uy € K, and Ay, are known for n > 0. Construct a half space:

n={z€E: (uy — A1,G(vy_1) —vn,z —vy) <0}

Compute:
Up+1 = P, (tn — AnG(vy)), where ty, = uy + oy (1 —u_q),
On+1 = PK(un+1 - An+1G(UTl))-

The stepsize sequence Ay is updated as follows:

; ] a e ] WA _ _ .
Api1 = mm{)‘"f 2(G(0n 1)~ G(on) ttn 11—00) } if <G(”"jl) G(0n) i1 = 0a) > 0;
" otherwise.

Thus, the sequence {t, }, {un }, and {v, } converges weakly to p* of VI(G, K).

Corollary 2. Let G : K — E satisfy (G1, G3) as in Assumption 3. Assume {t,}, {u,} and {v,} are the
sequences generated as follows:

(i) Chooseu_1,v_1 € K, Ag > 0, and a, € [0, %) Set:
up = Px(u_1 —XoG(v_1)) and vg= Px(up— AoG(v_1)).
(ii) Assume that v,_1, Un, Up—1, Uy € Kand Ay, are known for n > 0. Construct a half space:

I, ={z€E: (uy — AuG(v,_1) —vn,z — vy) < 0}.

Compute:
Up+1 = P, (tn — AnG(vy)), where ty, = uy + oy (10 —u_q),
Up4+1 = PK(”n+1 - )\nJrlG(Un))-

The stepsize sequence Ay, satisfies the following hypothesis:

(S1): lim Ay =0 and (S): Y Ay = oo (81)

n=1

Thus, the sequence {t,}, {un}, and {v,} converges strongly to p* of VI(G, K).
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6. Numerical Experiments

Now, we discuss two economy models to examine the efficiency of our proposed methods. For
the numerical experiments, we wrote our algorithms using MATLAB programs (MATLAB R2018b)
evaluated on a PC Intel(R) Core(TM)i5-6200 CPU @ 2.30 GHz 2.40 GHz, RAM 8.00 GB.

6.1. Nash—Cournot Equilibrium Model of Electricity Markets

We considered the equilibrium model of electricity markets [20]. We assumed that there were
three companies that were generating electricity i(i = 1,2,3). Companies 1, 2, and 3 had generating
units named as I; = {1}, , = {2,3}, and I3 = {4,5,6}, respectively. Suppose that u; denotes the
generating power of the unit for j = {1,2,3,4,5,6}. We also assume that the price p of the electricity is
defined as p = 3784 — 2 Z?Zl u;. The charge of the producing j unit is written as:

C](u]) = max{coj(uj), C](uj)}’

. -1 (.B]+1)
: o . 0?‘ 2 5 ° d . g Bi e . 5. o 9 o e ©®
with ¢;(uj) := Fuj + Bjuj + vj and ¢;(u)) == aju; + ﬁjrl ;% (u;) P . The values of &), Bj, 7j, aj, B,
]

and ';j are set in Table 1. Consider that the profit of the firm i is:
6
filu):==p Z uj— Z cj(uj) = (378.4 -2 2 ul) Z uj— Z ci(u;),
jEIl‘ jEIi =1 jEIi jeli

where u = (u,--- ,ug)! and feasible set K := {u € R°: u}nin <u; < u}nax} with u}mn and u}nax given
in Table 2. First, we describe the f equilibrium function as:

e

fu,0) =Y (¢i(u,u) — ¢;(u,0)),

1

I
—

where:

¢i(u,v) := [378.4—2( Y ui+ ZU]')] Y ovi— ) ci(v)).

J#1i JEL JEL JEL

The above discussed model is viewed as the following equilibrium problem:

Find p* € K such that f(p*,y) >0, Vy € K.

Table 1. The different values of the constants.

o .

Unit ] 0?, ,B] ’)?] oé.l ﬂ] ";]

1 0.0400 2.00 0.00 2.0000 1.0000 25.0000
2 0.0350 1.75 0.00 1.7500 1.0000 28.5714
3 0.1250 1.00 0.00 1.0000 1.0000  8.0000
4 0.0116 325 0.00 3.2500 1.0000 86.2069
5 0.0500 3.00 0.00 3.0000 1.0000 20.0000
6 0.0500 3.00 0.00 3.0000 1.0000 20.0000
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Table 2. The constraint set values.

i 1 2 3 4 5 6

wmn. 90 0 0 0 0

]
u}““" 80 80 50 55 30 40

For Algorithm 1 (Algol), we use u_; = (10,10,20,17,8, 14)T and v_; = (48,48,30,28,18,24)7.
Figures 1-4 and Tables 3 and 4 describe the numerical results for error term (Dy, = ||, 11 — vn|*> +
|ty — vn||?) regarding different values of &, and Ao.

104 : : : : w : w
—— Algol (a,, = 0.12)
— — —Algol (o, = 0.11)
102} —Algol (o, = 0.06)
— ——Algol (o, =0.01)
————— Algol (a,, = 0.001)

fil

10-6 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

# iterartion

Figure 1. Section 6.1: Algorithm 1’s (Algol) behavior with respect to different values of «;,.

10 : w : w : w w w w
——Algol (o, = 0.12)
— — —Algol (a;,, = 0.11)
102 —— Algol («, = 0.06)
— — —Algol (a,, = 0.01)
————— Algol (a,, = 0.001)

L

10-6 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Elapsed time [sec]

Figure 2. Section 6.1: Algorithm 1’s behavior with respect to different values of ;.
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10*

102 5

1

1 1 1 1 1 1

10
0

100

200 300 400 500 600
# iterartion

700

800

Figure 3. Section 6.1: Algorithm 1’s behavior with respect to different values of Ag.

10*

102 !

10°®
0

Elapsed time [sec]

25

Figure 4. Section 6.1: Algorithm 1’s behavior with respect to different values of Ag.

Table 3. Numerical results for Figures 1 and 2.

Algoname  wy u Ao u n Time Tolerance
Algol 016 0012 50 (46.0474,28.9092,18.4850,20.4036,12.5084,14.1096)T 614 15.511285 e=10"°
Algol 011 0012 50 (46.0568,28.4153,18.9677,20.2051,12.6083,14.2082)T 659  17.624634 e=10"5
Algol 0.06 0012 50 (46.0659,27.9750,19.3977,20.0281,12.6974,14.2959)T 704  17.143282 e=10"°
Algol 0.01 0012 50 (46.0717,27.5800,19.7846,19.8688,12.7777,14.3753)T 748 18.846679 e =107°
Algol 0.001 0.012 50 (46.0730,27.5132,19.8449,19.8418,12.7913,14.3886)T 756 19.411861 e=10"°
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Table 4. Numerical results for Figures 3 and 4.

Algo.name  wy u Ao u n Time Tolerance
Algol 0.16 0012 0.1 (46.4147,20.5037,26.6003,21.2012,8.8592,16.9030)T 756 23.649384 e =10"°
Algol 016 0012 1 (46.3512,21.0528,26.0886,21.1505,9.0529,16.7769)T 698 19.827807 =105
Algol 0.16 0.012 5 (46.2222,23.2606,23.9720,21.0243,9.8077,16.1749)T 647  18.198626 e=10"°
Algol 0.16 0.012 10 (46.1499,24.9832,22.3073,20.9005,10.4870,15.6306) 630 17.335370 e=107°
Algol 0.16 0.012 50 (46.0474,28.9092,18.4850,20.4036,12.5084,14.1096)T 614 16.943758 e =10"°

Algorithm 1 Comparison with Other Existing Methods

(i) For the extragradient method (EgM) [33], up = (48,48,30,28,18,24)T and D;, = ||uy — vn||*

(ii) For Algorithm 1 (EgIA) [41], ug = (48,48,30,28,18,24)" and D,, = |lu, — v,

(iii) For the two-step proximal algorithm (TSPA) [34], D, = |luy1 — vl + ||un — v ||? and ug =
(10,10,20,17,8,14)T, vy = (48,48,30,28,18,24)T.

(iv) For Algorithm 2 (ETSPA) [41], up = (10,10,20,17,8, 14)T, vy = (48,48,30,28,18,24)T, v_; =
(10,20,30,10,0,1)T and D, = ||uys1 — vnl|? + |Jun — a2

(v) For Algorithm 1 (Algol), u_1 = (10,10,20,17,8, 14)T, v_1 = (48,48,30,28,18, 24)T and the error
term Dy, = ||upy1 — 0| + [[tn — va|)*.

Figures 5 and 6 and Table 5 illustrate the numerical findings for the stopping criterion.

Table 5. Numerical results for Figures 5 and 6. EgM, extragradient method; TSPA, two-step
proximal algorithm.

Algoname  wy, u Ao u n Time Tolerance
EgM - - 0.1 (46.6523,32.1467,15.0011,25.1431,10.8357,10.8357)T 3033 151.699125 € =10"°
EgIA - 0012 0.1 (46.6523,32.1467,15.0011,25.1430,10.8358,10.8358)T 3025 151.118686 € =10
TSPA - - 0.1 (46.6523,32.1467,15.0011,25.1433,10.8356,10.8356)7 3065 171432413 e=107°
ETSPA - 0012 0.1 (46.3995,20.4626,26.6506,19.9235,10.7905,16.2497)T 899  27.432681 e=10"5
Algol 0.12 0012 0.1 (46.4110,20.4926,26.6137,20.8384,9.4075,16.7174)T 792 19.730552 e=105
104 T T T T T T
— EgM
EgIA
102k ——TSPA ||
— —-ETSPA
————— Algol
10° 4
Q
1072 ]
107 4
10.6 1 1 1 1 1 1
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Figure 5. Section 6.1: Algorithm 1 comparison with existing methods.
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Figure 6. Section 6.1: Algorithm 1 comparison with existing methods.

6.2. Nash—Cournot Oligopolistic Equilibrium Model

We consider that there are 7 companies that are generating the same commodity. Suppose that #; in
vector u represents the amount of commodity production corresponding to each company i. The price
function depends on the value of S = Y_" ; u; such that P;(S) = ¢; — ¢;S where ¢; > 0 and ¢; > 0. This
price function is affine and decreasing. The profit function F; (1) = P;(S)u; — t;(u;) with #;(u;) is the tax
and production charges for u;. Suppose that K := Kj x Ky x - -+ x K, with K; = [, 4M3] is the set
of possible actions or strategies corresponding to each company i. In particular, each company seeks to
achieve its maximum profit by considering the subsequent level of production on the premise that the
production of the other companies is an input parameter. The technique also deals with this form of
model based on the well-known Nash equilibrium principle. A point p* € K = Ky X Ky X --- x K, is

the equilibrium point such that:
Fi(p*) > Pi(p*[ui]) Yu;, €K; foralli=1,2,--- ,n.
where vector p*[u;] means that u} is replaced with u;. Next, assume that f(u,v) := ¢(u,v) — ¢(u, u)
with ¢(u,v) := — ' | Fi(u[v;]), and the problem of finding a Nash equilibrium point of the model
can be considered as follows:
Find p* € K such that f(p*,v) >0, Vv € K.

It follows from [33] that the bifunction f becomes as follows:

f(u,v) = (Mu+ Nv+r,0—u),

where:
16 1 0O 0 O 31 2 0 0 0
1 1.6 0 0 O 3 36 0 0 0
N=]10 0 15 0 0Ol and M=| 0 0 35 2 0
0 O 1 15 0 0O 0 2 33 0
0 oO0 o 0 2 0O 0 0 0 3
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withr = (1,2,-1,2,-1)Tand K = {u € R5: -2 < u; < 5}.

Algorithm 2 Comparison with Other Existing Methods:

i. For the extragradient method (EgMSP) [49], up = (1,3,1,1,2)T and D;, = |luy 1 — n]-
ii. For another method (EgIASP) [42], up = (1,3,1,1,2)T, v = (1,0,1,0,2)T and Dy, = ||ty 11 — |-
iii. For Algorithm 2 (Algo2), u_1 = (1,3,1,1,2)T,v_1 = (1,0,1,0,2)" and Dy, = ||ty 1 — ttn]|-

Figures 7-10 and Table 6 illustrate the numerical results for the stopping criterion.

Table 6. Numerical results for Figures 7-10.

Algoname  wy An u n Time Tolerance
EgMSP - log(711+3)5 (—0.7721,0.8680,0.6003, —0.7293,0.2312)T 207 4.835206 € =10"*
EgIASP - log(r}+3)5 (—0.8155,0.8829,0.6237, —0.7667,0.2182)T 172  4.652686 e =10"*
Algo2 0.12 ﬁ (—0.7590,0.8216,0.6333, —0.7873,0.1945)T 122 3.384679 e=10"*%
g(n-+3)
EgMSP - %]Ll (—0.7256,0.8033,0.7197, —0.8664,0.2000)T 102 2.427858 e =10"*
EgIASP - nTLl (—0.7256,0.8033,0.7198, —0.8664,0.2000)T 88 2239737 e=10"*
Algo2 0.12 Tt (—0.7255,0.8032,0.7198, —0.8665,0.2000)T 54  1.841815 e=10"*
10t . . . .
—-+-—EgMSP
—.o--EgIASP| |
100% —-*-—Algo2 |
i
|
10 :
o
_Q o

=
e
N
—
T
T
=
O A
1

A7

7
4

\ .
10%F 05 .
* >k
.\@\\
9 \\i .
> O &-
10 . *\.*36 S T
0 50 100 150 200 250

# iterartion

Figure 7. Section 6.2: Algorithm 2 comparison with existing methods.
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Figure 8. Section 6.2: Algorithm 2 comparison with existing methods.
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Figure 9. Section 6.2: Algorithm 2 comparison with existing methods.
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Figure 10. Section 6.2: Algorithm 2 comparison with existing methods.

7. Conclusions

In this study, two proximal-like algorithms were proposed to solve equilibrium problems
involving a pseudomonotone and strongly pseudomonotone bifunction with the Lipschitz-type
condition on a bifunction. We used a new step size rule that did not depend on the Lipschitz-type
constant information. It was identified that the methods with an inertial term worked better than
without an inertial term.
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