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Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia;
zeljko.kovacevic@student.um.si (Ž.K.); marjan.mernik@um.si (M.M.); matej.crepinsek@um.si (M.Č.)
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Abstract: This paper describes a research work on Semantic Inference, which can be regarded as an
extension of Grammar Inference. The main task of Grammar Inference is to induce a grammatical
structure from a set of positive samples (programs), which can sometimes also be accompanied by
a set of negative samples. Successfully applying Grammar Inference can result only in identifying
the correct syntax of a language. With the Semantic Inference a further step is realised, namely,
towards inducing language semantics. When syntax and semantics can be inferred, a complete
compiler/interpreter can be generated solely from samples. In this work Evolutionary Computation
was employed to explore and exploit the enormous search space that appears in Semantic Inference.
For the purpose of this research work the tool LISA.SI has been developed on the top of the
compiler/interpreter generator tool LISA. The first results are encouraging, since we were able
to infer the semantics only from samples and their associated meanings for several simple languages,
including the Robot language.

Keywords: grammatical inference; semantic inference; genetic programming; attribute grammars;
domain-specific languages

1. Introduction

Grammar Inference, also called Grammar Induction or Grammatical Inference, is the process of
learning grammar from examples, either positive (i.e., the grammar generates a string) and/or negative
(i.e., the grammar does not generate a string) [1,2]. Grammar Inference has been applied successfully
to many diverse domains, such as Speech Recognition [3], Computational Biology [4,5], Robotics,
and Software Engineering [6]. In our previous research we developed a memetic algorithm [7],
called MAGIc (Memetic Algorithm, for Grammar Inference) [8–10], which is a population-based
Evolutionary Algorithm enhanced with local search and a generalisation process, and used this to
infer a wide range of Domain-Specific Language (DSL) grammars from programs in a variety of DSLs,
including DSLs embedded in general purpose programming languages (GPLs) and extensions of GPLs.
MAGIc can be improved further with enhanced local search with the information from a grammar
repository (a collection of GPL and DSL grammars). However, this will only improve the syntax
part of inferred DSL specifications. In this work, we concentrated on Semantic Inference, which is
currently underdeveloped. Applications of Grammar Inference with semantics will go much beyond
DSL grammar design (e.g., covering context sensitive grammars where context is given by static
semantics). There are several key challenges and research questions to accomplish the above goals:

1. Grammar Inference is able to infer only the syntactic structure, whilst, in many problems, there
are additional restrictions on allowed structures [11,12] which can’t be described by Context-Free
Grammars (CFGs). Hence, we also need to know the static semantics, or even the meaning of the
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structure (e.g., in the area of programming languages a program might be syntactically correct,
but contains semantic errors such as undeclared identifiers). How can we extend Grammar
Inference beyond discovering only the syntactic structure?

2. The search space is enormous, even in the case for inferring regular and context-free languages [13],
and it becomes substantially bigger for the context-sensitive languages (context-free languages
with static semantics). How can we assure sufficient exploration and exploitation of the search
space [14] for Semantic Inference? Note that the search space is too large for the exhaustive
(brute-force) approach.

With Semantic Inference we will be able to infer DSL formal specifications from given sample
programs annotated with a meaning that can be provided even by domain-experts. Hence, creating
formal specifications of DSLs will be greatly simplified. Note that, from a formal specification, many
other tools (editor, compiler, debugger, test engine) can be generated automatically [15]. With the
fundamental work on Semantic Inference further advances on Grammar Inference would be possible,
which may also have new applications in other areas of Computer Science (e.g., Spam Modelling,
Bioinformatics, Speech Recognition, Protocol Security etc.), not only for easier development of DSLs
for domain experts.

This paper is organised as follows—In Section 2, related work on Grammar Inference is reviewed
briefly, as well as a few existing research works on Semantic Inference. Section 3 starts with necessary
preliminaries about Attribute Grammars, a suitable formalism for describing language semantics,
followed by suggested extensions of our previous work on Grammar Inference to support also Semantic
Inference. In this Section, a description is also given of a newly developed tool called LISA.SI (LISA
with Semantic Inference). The extensive experimental part is given in Section 4, where Semantic
inference are investigated on three languages: anbncn, simple arithmetic expression, and the Robot
language. Finally, the paper concludes in Section 5.

2. Related Work on Grammar Inference and Semantic Inference

2.1. Grammar Inference

The Grammar Inference process [1,2] can be stated as follows—Given a set of positive samples
S+ and set of negative samples S−, which might also be empty, find at least one grammar G,
such that S+ ⊆ L(G) and S− ⊆ L(G), where L(G) and L(G) are the set of strings in and not
in, respectively, the language generated by G (L(G)). Grammar Inference has been investigated
now for more than 40 years, and has found applications in several research domains, such as
Language Acquisition [16], Pattern Recognition [17], Computational Biology [4], and Software
Engineering [6,8,10]. In language acquisition a child, being exposed only to positive samples, is able to
discover the syntactic representation of the language (grammar). The aim of research on Grammar
Inference is to provide different models on how language acquisition takes place [16]. Grammars have
also been used as an efficient representation of artifacts that are inherently structural and/or recursive
(e.g., neural networks, structured data and patterns) [18]. In pattern recognition, pattern grammars
are used for pattern description and recognition [17]. Such a pattern grammar consists of primitives
(e.g., circle, square, line), a set of predicates that describe the structural relationships among defined
primitives (e.g., left, above, inside), and a set of productions, which describe the composition of the
predicates and primitives. Given the set of patterns, the problem is to infer a pattern grammar that fits
the given set of patterns. In Computational Biology Grammar Inference has been used for analysis of
DNA, RNA, and protein sequences. For example, Grammar Inference has been applied successfully
to predict secondary structures and functions of the biological molecules [4]. An early application
of Grammar Inference in Software Engineering was programming language design [19], where an
inference algorithm was proposed for a very restricted grammar, namely operator precedence grammar.

So far, Grammar Inference has been successful mainly in inferring regular languages. Researchers
have developed various algorithms which can learn regular languages from positive and negative
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samples. A number of algorithms (e.g., RPNI [20]) first construct the finite automaton from positive
samples, and generalise the automaton by using a state merging process. By merging states,
an automaton is obtained that accepts a bigger set of strings, and generalises according to the increasing
number of positive samples presented. CFG Inference is more difficult than regular Grammar Inference.
Using structurally complete positive samples along with negative samples did not result in the same
level of success as with regular Grammar Inference. Hence, some researchers resorted to using
additional knowledge to assist in the inference process. Sakakibara [21] used a set of skeleton parse
trees (unlabelled parse trees), where the input to the inference process is a sentence with parentheses
inserted to indicate the shape of the parse tree. An enhancement to this algorithm was proposed
in Reference [22], where CFG inference was possible from partially structured sentences. However,
in many application domains it is impractical to assume that completely or partially structured
samples exist.

Our previous research focused on various aspects (e.g., domain analysis, design, implementation)
of DSLs [23,24]. In contrast with GPLs, where one can address large classes of problems (e.g., scientific
computing, business processing, symbolic processing, etc.), a DSL facilitates the solution of problems
in a particular domain (e.g., Aerospace, Automotive, Graphics, etc.). One of the open problems in
DSL research stated in the survey paper on DSLs [23] is: “How can DSL design and implementation be
made easier for domain experts not versed in GPL development?” Namely, domain experts are not versed
in compilers and designing languages, but know how to express problems and their solutions in
their domain of expertise. In other words, they know domain notations and abstractions, and can
provide DSL programs. Here, Grammar Inference can find the underlying structure of the provided
DSL programs. Hence, a DSL grammar can be constructed and a DSL parser generated [25]. On the
other hand, the inferred grammar can be examined further by a Software Language Engineer to
enhance the design of the language further. DSLs, also called little languages, are usually small and
declarative. Therefore, it is more likely that the Grammar Inference process would be successful.
In our previous work in inferring DSLs from examples, we developed a memetic algorithm, MAGIc,
which improves the Grammar Inference process [10] and facilitates grammar learning. MAGIc may
assist domain experts and Software Language Engineers in developing DSLs by producing a grammar
which describes a set of sample DSL programs automatically [9]. We also researched the problem
of embedding DSLs into GPLs, an approach that is often used to express domain-specific problems
using the domain’s natural syntax inside GPL programs. In Reference [8], MAGIc is extended by
embedding the inferred DSL into existing GPL grammar. Additionally, negative examples were also
incorporated into the inference process. From the results it can be concluded that MAGIc is successful
in DSL embedding, and that the inference process is improved with the use of negative examples.
To give a glimpse of what kind of grammars is inferred successfully by MAGIc, we provide a small
example (more realistic examples are presented in References [9,10]). From the positive samples of
DESK language [26] shown on Listing 1, MAGIc inferred CFG grammar for DESK language correctly
(shown on Listing 2).

Listing 1: Positive samples S+ of DESK language.

1. print a
2. print 23
3. print a + 23
4. print a + b + c
5. print a where a = 23
6. print 23 where b = 11
7. print 23 + c where c = 28
8. print 23 + 11 where c = 28
9. print a where a = 23; a = 28
10. print 28 where a = 23; b = 11
11. print 1 + 2 where b = 23; a = 5
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12. print a + b + c where a = 1; b = 2; c = 3

Listing 2: Inferred DESK grammar.

N1 → print N3 N5
N2 → + N3 | ε

N3 → num N2 | id N2
N4 → ; id = num N4 | ε

N5 → where id = num N4 | ε

Although all positive samples are syntactically correct, not all the aforementioned samples are
semantically correct (e.g., undefined identifiers in samples 1, 3 and 4; double declaration of identifier
in sample 9). Since, in our previous research work, we dealt only with the syntax, those context
sensitive violations (e.g., undefined identifier, double declaration) were undetected. To support DSL
development to the full extent the static semantics should be inferred as well. This is an objective
of the current research work. It is important to notice that, although we did not address semantics
in our previous research work, the results were still successful and encouraging. We were able to
infer grammars which were much larger in size, and for DSLs in actual use. However, the syntax
structure of GPLs is still too complex for current Grammar Inference algorithms to be successful.
As mentioned before, MAGIc applies the Memetic Algorithm (MA) [7] to explore and exploit the search
space efficiently. Furthermore, References [8–10] were also extended to Domain-Specific Modelling
Languages (DSMLs) [27], which can be regarded as a special class of DSLs, and to graph grammar
induction [28]. Distinguishing features of DSMLs are—Concrete syntax is often graphical, structures
of phrases are often defined with metamodels instead of CFGs, and often used in an earlier software
development phase (design phase instead of implementation phase). The MetAmodel Recovery System
(MARS) [29] was extended to become scalable for larger metamodels, such as the ESML (Embedded
Systems Modeling Language). This approach is called Metamodel Inference from Models (MIM) [30].

2.2. Semantic Inference

In the past, some other versions of Evolutionary Algorithms (EAs) [31] have been used to
solve different optimisation problems where grammars have been employed as efficient encoding.
For example, Grammatical Evolution (GE) [32] can be seen as a language independent Genetic
Programming (GP) [33] approach that uses a predefined grammar to minimise the generation of
syntactically invalid solutions. GE has been extended to Attribute Grammar Evolution (AGE)
in Reference [34] and Christiansen Grammar Evolution (CGE) in Reference [35]. Note that, in all
the aforementioned cases (GE, AGE, CGE), CFG, Attribute Grammar and Christiansen Grammar had
been provided in advance, and were not the subject of learning, as is the case in this work.

We are aware of only a few research works [36–40] which manifest some application of Semantic
Inference. They are explained briefly in the continuation. In Reference [36], communication systems’
workload models have been described with Attribute Grammars. Protocol data units and their
interdependencies have been captured by inferred regular grammar, whilst characteristic workload
parameters, such as packet length and timeouts, have been described with attributes and predefined
semantic rules to compute attributes. The Lyrebird algorithm developed by Reference [37] uses
Grammar Inference in combination with a templating technique for programming spoken dialogues.
To enhance Speech Recognition Attribute Grammars have been used to attach meaning to phrases.
The system starts from a simple description, and then learns from examples to improve the spoken
dialogue interface. The Lyrebird algorithm is capable of inferring simple Attribute Grammars with
only synthesised attributes with only copy rules. This work was extended in Reference [38] for
inferring reversible Attribute Grammars from tagged natural language sentences. Hence, it is not
only possible to attach meanings (attributes) to phrases, but also to generate phrases given meanings.
Grammar Inference with semantics and its application to compilers of programming languages have
been discussed in Reference [39], using the Synapse system for incremental learning of Definite Clause
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Grammars (DCG) and syntax directed translation schema (Attribute Grammars with synthesised
attributes only). As an example, simple arithmetic expressions were translated into an intermediate
language based on inverse Polish notation. A syntax-directed translation scheme was inferred from
positive and negative samples to which the meanings were attached. The closest work to ours
was recently published in Reference [40], where, instead of Attribute Grammars (AGs) [26,41] the
Answer Set Grammars (ASGs) were used to express context-sensitive constraints, written as Answer
Set Programming (ASP) annotations. The other difference is that, for learning ASGs, the authors
of Reference [40] are using Inductive Logic Programming [42], whilst, in our work for learning AGs,
we applied Evolutionary Computations [31]. With the proposed framework [40], the ASP part of ASG
can be learned, which corresponds to learning semantic constraints. As in our case, the CFG is fixed,
assuming that the syntax of the target language is known or can be inferred by Grammar Inference,
but the semantic is unknown. The approach has been evaluated on simple languages, such as anbncn.
The authors concluded that “we are not aware of any work on learning Attribute Grammars, or learning
semantic conditions on top of existing CFG.” In this respect, the presented work in this paper is novel.

Semantic Inference is also a hot topic in other fields, such as Natural Language Processing,
Semantic Web, Image Processing, Mobile and Pervasive Computing, and Recommendation Systems
for inferring semantically meaningful profiles [43], to name a few. In Natural Language Processing the
aim of Semantics Inference is to interpret better abstract terms [44], for word sense disambiguation [45],
to annotate semantic roles on bilingual or multilingual text, facilitating machine translation and
cross-lingual information retrieval [46,47]. Resource Description Framework (RDF) is a standard
model for knowledge representation in the Semantic Web, where Semantic inference is used to infer
non-existing triples (subject, predicate, object) from existing triples [48,49]. Semantic Inference in Image
Processing and Image Understanding is used for relationship detection among visual objects [50].
In Mobile and Pervasive Computing an indoor semantic inference is used to improve indoor location
based services, such as indoor positioning and indoor tracking [51].

3. Semantic Inference with LISA

As stated earlier, MAGIc [8–10] has proven to be useful for inferring grammars from real DSL
samples. However, MAGIc still has some problems inferring grammars, due to its inability to deal
with context sensitive information (static semantics). This problem can’t be solved without dealing
with the semantics. The first step is to extend the representation of individuals in MAGIc, which
are currently only CFGs. Namely, the current population in MAGIc consists of CFGs which are
evolved during evolution to such a CFG which parses all positive samples and rejects all negative
samples. To include also the semantics, the individuals need to change from CFGs to Attribute
Grammars (AGs) [26,41,52–54]. AGs are a generalisation of CFGs in which each symbol has an
associated set of attributes that carry semantic information. Attribute values are defined by attribute
evaluation rules associated with each production of the CFG. These rules specify how to compute
the values of certain attribute occurrences as a function of other attribute occurrences. Semantic rules
are localised to each CFG production. Formally, an AG consists of three components, a Context-Free
Grammar CFG, a set of attributes A, and set of semantic rules R: AG = (CFG, A, R). A grammar
CFG = (T, N, S, P), where T and N are sets of terminal and non-terminal symbols; S ∈ N is the
start symbol, which appears only on the left-hand side of the first production rule; and P is a set
of productions (P = {p0, p1, ..., pz}, z > 0) in which elements (also called grammar symbols) of set
V ∈ N ∪ T appear in the form of pairs X → α (the left-hand side of a production is X and the
right-hand side is α), where X ∈ N and α ∈ V∗. An empty right-hand side of a production is denoted
by the symbol ε. A set of attributes A(X) is associated with each symbol X ∈ N. A(X) is divided
into two mutually disjointed subsets I(X) of inherited attributes and S(X) of synthesised attributes.
Now A = ∪A(X). A set of semantic rules R is defined within the scope of a single production.
A production p ∈ P, p : X0 → X1...Xn(n ≥ 0) has an attribute occurrence Xi.a if a ∈ A(Xi), 0 ≤ i ≤ n.
A finite set of semantic rules Rp contains rules for computing values of attributes that occur in the
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production p, that is, it contains exactly one rule for each synthesised attribute X0.a, and exactly
one rule for each inherited attribute Xi.a, 1 ≤ i ≤ n. Thus, Rp is a collection of rules of the form
Xi.a = f (y1, ..., yk), k ≥ 0, where yj, 1 ≤ j ≤ k, is an attribute occurrence in p, and f is a semantic
function. In the rule Xi.a = f (y1, ..., yk), the occurrence Xi.a depends on each attribute occurrence yj,
1 ≤ j ≤ k. Now set R = ∪Rp. For each production p ∈ P, p : X0 → X1...Xn(n ≥ 0) the set of defining
attribute occurrences is De f Attr(p) = {Xi.a|Xi.a = f (...) ∈ Rp}. An attribute X.a is called synthesised
(X.a ∈ S(X)) if there exists a production p : X → X1...Xn and X.a ∈ De f Attr(p). It is called inherited
(X.a ∈ I(X)) if there exists a production q : Y → X1...X...Xn and X.a ∈ De f Attr(q). The meaning of
a program (values of the synthesised attributes of a starting non-terminal symbol) is defined during
the attribute evaluation process, where the values of attribute occurrences are calculated for each
node of an attributed tree of a particular program. For those who are less proficient in AGs let us
present a small example. Listing 3 shows LISA specifications (Language Implementation System
based on Attribute grammars) [55–57] for a simple language of anbncn. Since CFGs are not capable
of counting more than two things, the underlying CFG grammar is actually aibjck and the original
language is obtained if i = j = k. In Listing 3, we can observe how language is defined with the
LISA specifications. The lexical part is defined within a lexicon block, whilst syntax and semantics are
merged within a rule block. For each CFG production semantics are provided by semantic equations
specifying how attributes are computed. For the language anbncn semantic rules are quite simple,
and we are actually counting occurrences of a’s, b’s and c’s. If there are the same numbers of a’s, b’s
and c’s, the value of attribute S.ok in the production S ::= A B C is set to true (see Figures 1 and 2).
Note that, in LISA, there is no need to specify the kind of attributes, inherited or synthesised, since the
kind of attributes is inferred from the provided equations. On the other hand, the types of attributes
(e.g., int, boolean) must be provided. Since MAGIc already used LISA [55–57] it was also natural
to use LISA in our current work. Previously, MAGIc was using only LISA’s parsing feature, whilst,
in the current work, we are using the fully-fledged LISA semantic evaluator, which is able to evaluate
absolutely non-circular AGs [26,41,52–54].

Listing 3: LISA specifications for language anbncn.

language AnBnCn {
lexicon {

TokenA a
TokenB b
TokenC c
ignore [\ \0x0D\0x0A\0x09]+

}
attributes int *.val; boolean *.ok;
rule S {

S ::= A B C compute { // production P1
S.ok = (A.val == B.val) && (B.val == C.val);

};
}
rule A {

A ::= a A compute { // production P2
A[0].val = 1 + A[1].val;

};
A ::= a compute { // production P3

A.val = 1;
};

}
rule B {

B ::= b B compute { // production P4
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B[0].val = 1 + B[1].val;
};
B ::= b compute { // production P5

B.val = 1;
};

}
rule C {

C ::= c C compute { // production P6
C[0].val = 1 + C[1].val;

};
C ::= c compute { // production P7

C.val = 1;
};

}
}

Figure 1. Computation of attributes for sentence “aaabbbccc”.

Figure 2. Computation of attributes for sentence “aaabbccc”..

In our previous work [13] we have shown that the search space of regular and context-free
Grammar Inference is too large for the exhaustive (brute-force) approach. The same is true for
Semantic Inference, where the following equations describe how enormous the search space is
in the case of Semantic Inference. The search space can be calculated as the product of the total
number of permutations (SumP()) for each semantic equation. The number of semantic equations K
depends on the number of synthesised and inherited attributes, which need to be defined in each CFG
production [26,41,52–54]. Hence, the size of search space depends heavily on the number of semantic
equations. The more semantic equations need to be found the bigger the search space is.

SearchSpace =
K

∏
semanticEquation=1

SumP(maxDepth).
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The total number of permutations (SumP()) for a single semantic equation, where an expression
represented as a binary tree of max depth (maxDepth) is then calculated as:

SumP(maxDepth) =
maxDepth

∑
treeDepth=0

P(treeDepth)

where P(treeDepth) denotes the number of all possible permutations of binary trees of depth treeDepth
with different operands and operators (assuming only binary operators), where internal nodes are
operators and leaves are operands. Hence, the size of the search space also depends heavily on
the number of different operands and operators. If a binary tree has depth maxDepth, then the
minimum number of nodes is between maxDepth + 1 (in the case of a left skewed and right skewed
binary tree), and 2maxDepth+1 − 1 (in the case of a full binary tree). In the former case, the number
of leaves is 1, in the latter case the number of leaves is the number of internal nodes plus 1. First,
we calculate the maximum number of permutations at levels [0..maxDepth] of the expression tree,
where operands represent possible attribute occurrences in a particular production and constants,
and operators represent the various operations on attributes. In our experiments we generated simple
semantic equations with a maxDepth of no more than 2. In that case, P(0), P(1) and P(2) can be
calculated easily by the following equations:

P(0) = operands

P(1) = operands2 ∗ operators

P(2) = operands4 ∗ operators3 + 2 ∗ operands3 ∗ operators2.

Search space calculation for the anbncn language is demonstrated in Table 1. Even in this simple
case there are more than 55 billion possible semantic equations. For example, in the first production
P1 (Listing 3) three attributes (A.val, B.val, C.val) and constant 1, can act as operands, while three
operators +, && and == can be applied on operands. Therefore, there are 8116 (4+48+8064) different
semantic equations for production P1. Similarly, in the second production P2 (Listing 3), only one
attribute A[1].val and constant 1 can be used as operands, on which only operator + can be applied.
Since operators && and == return boolean value, the assignment statement for the attribute A[0].val
in the production P2 would cause a type error. Hence, operators && and == cannot be used in the
semantic equation for production P2, and there are only 38 different semantic equations.

Table 1. Search space calculation for anbncn language when maxDepth = 2.

Attribute Operands Operators P(0) P(1) P(2) SumP

P1:S.ok 4 3 4 48 8064 8116
P2:A.val 2 1 2 4 32 38
P3:A.val 1 1 1 1 3 5
P4:B.val 2 1 2 4 32 38
P5:B.val 1 1 1 1 3 5
P6:C.val 2 1 2 4 32 38
P7:C.val 1 1 1 1 3 5
SearchSpace 55.667.644.000
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It is quite obvious that a need arose for a different and more efficient approach to explore the
search space. Evolutionary Computation [31] is particularly suitable for these kinds of problems.
Yet another evolutionary approach, Genetic Programming (GP), is proposed to solve the problem
of Semantic Inference. Genetic programming [33] is a successful technique for getting computers to
solve problems automatically. It has been used successfully in a wide variety of application domains,
such as Data Mining, Image Classification and Robotic Control. GP has also been used previously
for Grammar Inference [58–60]. Semantic rules attached to particular CFG productions in AGs for
DSLs are small enough so that we can expect that a successful solution can be found using GP. In GP
a program is constructed from the terminal set T and the user-defined function set F [33]. The set
T contains variables and constants, and the set F contains functions that are a priori believed to be
useful for the problem domain. In our case, set T consists of attributes and constants attached to
nonterminal symbols, whilst set F consists of various functions/operators. Both sets, T and F, need to
be provided by domain experts. Appropriate semantic rules can be evolved from these two sets. Note
that, in addition to attributes which will be attached to nonterminal symbols, also the kind (synthesised
or inherited) and type (e.g., int, boolean) of those attributes need to be provided by a domain expert.
For example, the sets T and F for the language anbncn are defined as:

T = {S.ok, A[0].val, B[0].val, C[0].val, A[1].val, B[1].val, C[1].val, 1}

F = {+(int), &&(int),== (int)}.

From such an input, the number of semantic rules which are attached to CFG production rules can
be computed (one semantic rule for each synthesised attribute attached to a nonterminal symbol on the
left-hand side, and one semantic rule for each inherited attribute attached to nonterminal symbols on
the right-hand side of CFG production [26,41,52–54]). Hence, it is necessary to infer only expressions
in assignment statements, and, for this task, GP seems to be a feasible approach. A complete Attribute
Grammar for a language can be generated in such a manner.

For the purpose of this research, a tool, LISA.SI (LISA with Semantic Inference), was developed,
that implements GP and attempts to find appropriate semantic equations for the productions of the
given grammar. It was developed using the C++ programming language, C++ Builder 10.3 IDE
and VCL (Visual Component Library) framework. As shown in Figure 3, the first step is to load the
input data (grammar productions, attributes, operators and functions). Due to its size and complexity,
the input data are loaded from a manually prepared XML document. Subsequently, our tool determines
the defining attributes (De f Attr(p)) of each production p (attributes for which semantic equations
must be generated), and a set of values that can be used to generate a semantic equation for each of the
defining attributes. Semantic equations are generated as expressions formed from an expression tree
with limited (predefined) depth maxDepth.

We used the LISA compiler-compiler tool [55–57] to calculate the fitness value of individuals in the
population. First, we defined an Attribute Grammar-based language specification template. Based on
this template, our tool generated LISA specifications containing grammar productions with candidate
semantic equations automatically. To calculate the fitness value of an individual, we provided N input
DSL programs with N output results. The fitness value is then represented as a ratio between the
correct and maximum number of output results (e.g., 4/6). It should be noted that a higher fitness
value indicates a better individual. The LISA compiler-compiler tool was used as an external Java
application that loaded inputs (LISA specification, input DSL programs and expected results) using
command line arguments, and output the results (fitness value) into a text file.

The time required to calculate the fitness value depends largely on the LISA specification, that
is, the number of attributes that must be computed. On a Windows 10 desktop machine with a
3.4 GHz AMD Ryzen™ Threadripper 1950X processor (16-core/32-thread), 64 GB RAM and solid-state
drive, it takes approximately 5.1 s to calculate the fitness value for one LISA anbncn language
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specification. Due to the large search space, it was crucial to improve the performance by implementing
a multi-threaded fitness calculation and a hash table (Figure 4). On the same desktop machine, but now
utilising all 32 threads, we could calculate the fitness values of 112 individuals in 60 s (1.87 LISA
specifications per second), which was a 957% performance improvement over a single-threaded
approach. In addition, performance was improved by using a hash table. After the fitness value of an
individual is calculated, its hash and fitness value are stored, and reused when dealing with the same
individual again [61].

The initial population consists of random individuals. If the solution is not found in the initial
population, we define the elitism (percentage of the best individuals that will automatically move on
to the next generation), selection pressure (percentage of the best individuals whose genes can be used
in crossover) and mutation probability parameters, to generate the next generation [31]. Two random
parents are selected when creating a new individual. Based on their fitness values and mutation
probability, the crossover operator can decide that a new individual will inherit a gene from one parent
or the other, or if a mutation will occur. To calculate the probability of these events the following
equations are used.

parentFitnessRatio = (parentFitness + 1) / maxFitness * 100;

If the fitness ratio of both parents is 0 (corner case) the probability to inherit a gene from one of
the parents is

parentProbability = 50 - mutationProbability / 2;

otherwise, the probability is calculated as

parent1Probability = (parent1FitnessRatio * (100 - mutationProbability)) /
(parent1FitnessRatio + parent2FitnessRatio);↪→

parent2Probability = (parent2FitnessRatio * (100 - mutationProbability)) /
(parent1FitnessRatio + parent2FitnessRatio);↪→

For example, when having parents P1 (fitness: 1/5) and P2 (fitness: 2/5) with mutation probability
of 10%, there is a 36% chance that the child will inherit a gene from parent P1 and 54% chance to inherit
a gene from parent P2.

After setting all the necessary parameters, our tool LISA.SI is capable of seeking for a solution
constantly, and stops only at the user’s intervention or when a solution is found. The tool LISA.SI
shows the progress of the evolutionary process by displaying maximum fitness per generation
(Figure 5), fitness distribution per generation, and by displaying the content of the hash table.
These features help a researcher to understand the processes of Evolutionary Computation better,
to identify common problems (e.g., local maxima), and to understand the effects of different control
parameter setting (e.g., population size, number of generations, elitism, selection pressure, mutation
probability) [62,63].
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Figure 3. Application flow diagram.

Figure 4. Multi-threaded fitness calculation.
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Figure 5. Maximum fitness per generation.

4. Experiments

In the experimental part we tested our approach on three examples—Language anbncn, simple
arithmetic expression with operator +, and the Robot language [64]. As noted in Reference [40],
learning of AGs is non-existent and no common benchmarks exist. For this reason, it is our future
intent to provide a suitable benchmark that can be used by other researchers for Semantic Inference.

4.1. Example 1

In References [39,40], the language anbncn was used in the experiments. The input language was
a CFG representing aibjck and the task was to learn that i = j = k. Therefore, we tested our approach
on this example as well. Note that, in this example, only synthesised attributes can be used, and AG is
going to be S-attributed AG [26,41], where semantic evaluation can be computed during top-down or
bottom-up parsing [65].

Control parameter setting:

T = {S.ok, A[0].val, B[0].val, C[0].val, A[1].val, B[1].val, C[1].val, 1}
F = {+(int), ==(int), &&(int)}
Max tree depth: 2
Population size: 2500
Elitism: 20%
Selection pressure: 50%
Mutation probability: 10%

From the number of CFG productions, sets T and F, and maxDepth, the search space can be
computed (see Section 3). There are 55,667,644,000 possible AGs. From the following input statements
and their meanings (a meaning is stored in the synthesised attributes of the starting nonterminal;
in this case, it is attribute ok), our tool found in the 9th generation the AG (Listing 4), which assigned
meanings correctly to the following input statements:

(abc, ok=true)
(aabbcc, ok=true)
(aaabbbccc, ok=true)
(aaaabbbbcccc, ok=true)
(abbcc, ok=false)
(aabcc, ok=false)
(aabbc, ok=false)
(aabbbccc, ok=false)
(aaabbccc, ok=false)
(aaabbbcc, ok=false)
(abbccc, ok=false)
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Listing 4: Inferred AG for language anbncn.

language AnBnCn {
lexicon {

TokenA a
TokenB b
TokenC c
ignore [\ \0x0D\0x0A\0x09]+

}
attributes int *.val; boolean *.ok;
rule S {

S ::= A B C compute {
S.ok = A.val==(B.val+C.val);

};
}
rule A {

A ::= a A compute {
A[0].val = 1+(1+A[1].val);

};
A ::= a compute {

A.val = 1+1;
};

}
rule B {

B ::= b B compute {
B[0].val = B[1].val+1;

};
B ::= b compute {

B.val = 1;
};

}
rule C {

C ::= c C compute {
C[0].val = 1+C[1].val;

};
C ::= c compute {

C.val = 1;
};

}
}

If we compare LISA specifications for the language anbncn from Section 3 and inferred LISA
specifications in the 9th generation, we can notice several differences. First, attribute S.ok is evaluated
to true when A.val is equal to B.val + C.val. Hence, the counting of a’s must be steeper than for b’ and
c’s. Indeed, when only one a is recognised, the counter A.val is set to 2. But, in the same basic step,
the counters for B.val and C.val are set to 1. In this basic step, indeed A.val is equal to B.val + C.val.
In the recursive step A ::= aA, the counter A[0].val is incremented by 2, whilst, in the recursive steps,
the counters B[0].val and C[0].val are incremented by 1. Again, in the recursive steps A.val is equal
to B.val + C.val. This equation is true only if there is the same number of a’s, b’s and c’s. Note that,
in the specified input, we just specify when the input statement belongs to the language anbncn. When
additional semantics (to compute n and store it into attribute val) are provided as input:
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(abc, ok=true, val=1)
(aabbcc, ok=true, val=2)
(aaabbbccc, ok=true, val=3)
(aaaabbbbcccc, ok=true, val=4)
(abbcc, ok=false, val=1)
(aabcc, ok=false, val=2)
(aabbc, ok=false, val=2)
(aabbbccc, ok=false, val=2)
(aaabbccc, ok=false, val=3)
(aaabbbcc, ok=false, val=3)
(abbccc, ok=false, val=1)

the following AG was found in the 15th generation (Listing 5). While this inferred AG is closer
to the AG from Section 3, there are still some important differences. Besides the semantic equation
S.val = A.val, which is added to the first production and computes the number n in anbncn, there are
the following differences: Attribute S.ok is computed as (S.val + B.val) == (1 + C.val), which is the
same as (A.val + B.val) == (1 + C.val), since S.val = A.val. This equation indicates that the sum of
attributes A.val and B.val is equal to C.val + 1. By incrementing A.val and B.val by 1 on each occurrence
of a’s and b’s, it is the same as incrementing by two for C.val. This is true for recursive case C ::= c C.
In the base case A.val, B.val, and C.val are set to 1. Hence, at the end, we need to add 1 to C.val and
equation (A.val + B.val) == (1 + C.val) holds whenever there is the same amount of a’s, b’s, and c’s.

Listing 5: 2nd inferred AG for language anbncn.

language AnBnCn {
lexicon {

TokenA a
TokenB b
TokenC c
ignore [\ \0x0D\0x0A\0x09]+

}
attributes int *.val; boolean *.ok;
rule S {

S ::= A B C compute {
S.ok = (S.val+B.val)==(1+C.val);
S.val = A.val;

};
}
rule A {

A ::= a A compute {
A[0].val = A[1].val+1;

};
A ::= a compute {

A.val = 1;
};

}
rule B {

B ::= b B compute {
B[0].val = B[1].val+1;

};
B ::= b compute {

B.val = 1;
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};
}
rule C {

C ::= c C compute {
C[0].val = 1+(C[1].val+1);

};
C ::= c compute {

C.val = 1;
};

}
}

For the language anbncn the used input CFG was also anbncm, and the task was to learn that
n = m [40]. This is a somehow easier problem, and our approach found the solution presented in
Listing 6 in the 3rd generation (note that, again, computing n was not part of semantics, only the
same number of a’s, b’s and c’s). In this inferred AG attribute S.ok is computed as S.ok = (AB.val +
AB.val) == (C.val + AB.val). After simplification this is the same as S.ok = (AB.val == C.val). GP
often generates a code which is redundant, but semantically identical [33]. This was also true for
our experiments.

Listing 6: 3rd inferred AG for language anbncn.

language AnBnCn {
lexicon {

TokenA a
TokenB b
TokenC c
ignore [\ \0x0D\0x0A\0x09]+

}
attributes int *.val; boolean *.ok;
rule S {

S ::= AB C compute {
S.ok = (AB.val+AB.val)==(C.val+AB.val);

};
}
rule AB {

AB ::= a AB b compute {
AB[0].val = AB[1].val+1;

};
AB ::= a b compute {

AB.val = 1;
};

}
rule C {

C ::= c C compute {
C[0].val = C[1].val+1;

};
C ::= c compute {

C.val = 1;
};

}
}
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4.2. Example 2

Our second example is the language of simple arithmetic expression with the operator +, where
the underlying grammar is LL(1) [65] and, as such, suitable for top-down parsing. On the other
hand, such a grammar requires inherited attributes. In our previous example, only synthesised
attributes were used for the language anbncn. With this example we demonstrated that our approach
is able to learn AGs with inherited attributes. The inferred grammar is L-attributed AG [26,41],
where synthesised and inherited attributes can still be evaluated during parsing using left-to-right
traversal [65].

Control parameter setting:

T = {E.val, T.val, EE[0].val, EE[0].inVal, EE[1].val, EE[1].inVal, #Int.value()}
F = {+(int), int Integer.valueOf(String).intValue()}
Max tree depth: 1
Population size: 1000
Elitism: 20%
Selection pressure: 50%
Mutation probability: 10%

From the number of CFG productions, sets T and F, and maxDepth, the search space can be
computed (see Section 3). There are 230,400 possible AGs. Input statements with associated semantics
were:

(5, val=5)
(2+5, val=7)
(10+5+8, val=23)

The following correct solution was found in the 3rd generation (Listing 7):

Listing 7: Inferred AG for simple arithmetic expression.

language SimpleArithmeticExpression {
lexicon {

Operator \+
Int [0-9]+
ignore [\ \0x0D\0x0A\0x09]+

}
attributes int *.val, *.inVal;
rule Expr {

E ::= T EE compute {
E.val = EE.val;
EE.inVal = T.val;

};
EE ::= + T EE compute {

EE[0].val = EE[0].inVal+EE[1].val;
EE[1].inVal = T.val;

};
EE ::= epsilon compute {

EE.val = EE.inVal;
};

}
rule Term {

T ::= #Int compute {
T.val = Integer.valueOf(#Int.value()).intValue();
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};
}

}

Although this example is simple, the inferred AG contains synthesised, as well as inherited,
attributes. The latter attributes were not included in the existing Semantic Inference algorithms [37–39].
We are strongly convinced that both kinds of attributes are needed in inferring semantics of DSLs,
as well as for checking context sensitiveness in grammar.

4.3. Example 3

Our last example is the Robot language for simple movement of a robot in four directions [64]
(Listing 8). The meaning of the Robot program is the final position of robot movements, whilst the
starting position of the robot is (0, 0). Although this is an L-attributed AG [26], it has the largest search
space (5.22214E + 36 possible AGs).

An example for the Robot language, begin right up up end, is shown in Figure 6. The current
position of the robot is adjusted with four commands: left (decrease the x coordinate by 1), right
(increase the x coordinate by 1), down (decrease the y coordinate by 1) and up (increase the y coordinate
by 1). After executing the first command right, the robot moved to the position (1,0) (inx=0, iny=0,
outx=1, outy=0 on Figure 6). Similarly, after executing the next command up, the robot moved to the
position (1,1) (inx=1, iny=0, outx=1, outy=1 in Figure 6). Finally, the robot stopped at position (1, 2)
(see Figure 6).

Figure 6. Example of Robot language.

Listing 8: AG for the Robot language.

language Robot {
lexicon {

keywords begin | end
operation left | right | up | down

ignore [\0x0D\0x0A\ ]
}
attributes int *.inx; int *.iny;

int *.outx; int *.outy;
rule start {

START ::= begin COMMANDS end compute {
START.outx = COMMANDS.outx;
START.outy = COMMANDS.outy;
COMMANDS.inx = 0;
COMMANDS.iny = 0;

};
}
rule commands {

COMMANDS ::= COMMAND COMMANDS compute {
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COMMANDS.outx = COMMANDS[1].outx;
COMMANDS.outy = COMMANDS[1].outy;
COMMAND.inx = COMMANDS.inx;
COMMAND.iny = COMMANDS.iny;
COMMANDS[1].inx = COMMAND.outx;
COMMANDS[1].iny = COMMAND.outy;

}
| epsilon compute {

COMMANDS.outx = COMMANDS.inx;
COMMANDS.outy = COMMANDS.iny;

};
}
rule command {

COMMAND ::= left compute {
COMMAND.outx = COMMAND.inx - 1;
COMMAND.outy = COMMAND.iny;

};
COMMAND ::= right compute {

COMMAND.outx = COMMAND.inx + 1;
COMMAND.outy = COMMAND.iny;

};
COMMAND ::= up compute {

COMMAND.outx = COMMAND.inx;
COMMAND.outy = COMMAND.iny + 1;

};
COMMAND ::= down compute {

COMMAND.outx = COMMAND.inx;
COMMAND.outy = COMMAND.iny - 1;

};
}

}

Control parameter setting:

T = {START.outx, START.outy, COMMANDS.outx, COMMANDS.outy, COMMANDS.inx,
COMMANDS.iny, COMMAND.outx, COMMAND.outy, COMMAND.inx,
COMMAND.iny,COMMANDS[1].outx, COMMANDS[1].outy, COMMANDS[1].inx,
COMMANDS[1].iny, 0, 1}

↪→

↪→

↪→

F = {+(int), -(int)}
Max tree depth: 1
Population size: 2000
Elitism: 20%
Selection pressure: 50%
Mutation probability: 10%

Input statements with associated semantics were:

(begin end, outx=0, outy=0)
(begin down end, outx=0, outy=-1)
(begin up end, outx=0, outy=1)
(begin left end, outx=-1, outy=0)
(begin right end, outx=1, outy=0)
(begin left left left end, outx=-3, outy=0)
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(begin up left up end, outx=-1, outy=2)
(begin left down up right up up end, outx=0, outy=2)
(begin up left up end, outx=-1, outy=2)
(begin right down right up down end, outx=2, outy=-1)
(begin right down down up end, outx=1, outy=-1)
(begin left down left up end, outx=-2, outy=0)

The following interesting and unusual, but correct, solution was found in the 59th generation
(Listing 9):

Listing 9: Inferred AG for the Robot language.

language Robot {
lexicon {

Command left | right | up | down
ReservedWord begin | end
ignore [\0x0D\0x0A\ ]

}

attributes int *.inx; int *.iny;
int *.outx; int *.outy;

rule start {
START ::= begin COMMANDS end compute {

// exchanging x and y coordinates
START.outx = COMMANDS.outy;
// simplified to COMMANDS.outx and exchanging x and y coordinates
START.outy = COMMANDS.iny+COMMANDS.outx;
COMMANDS.inx=0; // predefined starting position
COMMANDS.iny=0; // predefined starting position

};
}

rule commands {
COMMANDS ::= COMMAND COMMANDS compute {

// summing x-coordinates
COMMANDS.outx = COMMANDS[1].outx+COMMAND.outx;
// subtracting y-coordinates
COMMANDS.outy = COMMANDS[1].outy-COMMAND.outy;
// position is not propagated and always set to 0
COMMAND.inx = 0;
// position is not propagated and always set to 0
COMMAND.iny = 0;
// simplified to 0
COMMANDS[1].inx = 0+COMMANDS[1].outy;
// simplified to 0
COMMANDS[1].iny = COMMAND.iny;

}
| epsilon compute {

// simplified to 0
COMMANDS.outx = COMMANDS.iny-COMMANDS.outy;
COMMANDS.outy = 0;
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};
}

rule command {
// note that COMMAND.iny and COMMAND.inx are 0
COMMAND ::= left compute {

// simplified to 0
COMMAND.outx = COMMAND.iny-0;
// increasing y, which will be moved to x in starting production
COMMAND.outy = 1+0;

};
COMMAND ::= right compute {

// simplified to 0
COMMAND.outx = COMMAND.inx-COMMAND.iny;
// decreasing y, which will be moved to x in starting production
COMMAND.outy = 0-1;

};
COMMAND ::= up compute {

// increasing x, which will be moved to y in starting production
COMMAND.outx = 1;
COMMAND.outy = 0+0;

};
COMMAND ::= down compute {

// decreasing x, which will be moved to y in starting production
COMMAND.outx = 0-1;
// simplified to 0
COMMAND.outy = COMMAND.iny;

};
}

}

Some examples are illustrated with semantic trees (see Figures 7 and 8):

Figure 7. Robot language example 1.
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Figure 8. Robot language example 2.

5. Conclusions

In this paper, we described Semantic Inference as an extension of Grammar Inference. To achieve
this goal, the representation of a solution needs to be extended from Context-Free Grammars to
Attribute Grammars. To solve the problem of Semantic Inference successfully a Genetic Programming
approach was employed, which is a population based evolutionary search. The first results were
encouraging, and we were able to infer S-attributed and L-attributed Attribute Grammars [26,41,52–54].
The main contributions of this work are:

• Few previous approaches were able to learn Attribute Grammars with synthesised attributes
only. This limitation has been overcome in this paper, and we were able to learn Attribute
Grammars with synthesised and inherited attributes. Consequently, few previous approaches
inferred only S-attributed Attribute Grammars, whilst our approach inferred also L-attributed
Attribute Grammars.

• The search space of all possible semantic equations is enormous and quantified in Section 3.
• We have shown that Genetic Programming can be used effectively to explore and exploit the

search space solving the problem of Semantic Inference successfully.
• The tool LISA.SI has been developed on the top of the compiler/interpreter generator tool

LISA [55–57], which performed Semantic Inference seamlessly.

The proposed approach can be used for designing and implementing DSLs by giving the syntax
and semantics in the form of samples and associated meanings. Furthermore, applications of Grammar
Inference with semantics will be greatly extended, and might become useful in numerous other
applications (e.g., spam filtering [66], intrusion detection [67,68], to facilitate communicative contexts
for beginning communicators [69]). Many applications of Semantics Inference can hardly be anticipated
at this moment.

Although we have inferred semantics successfully in the form of Attribute Grammars for several
simple languages (e.g., Robot Language), our work will be continued and heading towards different
directions. Firstly, we would like to solve more difficult examples, where dependency relations among
synthesised and inherited attributes are more complex and required to infer absolutely non-circular
Attribute Grammars. To achieve this goal, we anticipated developing sophisticated local searches.
Secondly, we would like to build a benchmark of problems suitable for others working in the field of
Semantic Inference. Namely, standard benchmarks for Semantic Inference are not currently available.
Thirdly, we will investigate the influence of different control parameter settings (e.g., population
size, probability of mutation, selection pressure), as well as inputs (e.g., number of input statements)
towards the successfulness of evolutionary search. Fourthly, we would like to apply Semantic Inference
not only to DSL development, but also for spam filtering and intrusion detection [67,68].
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