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Abstract: The Lagrange’s equation remains the most used method by researchers to determine the
finite element motion equations in the case of elasto-dynamic analysis of a multibody system (MBS).
However, applying this method requires the calculation of the kinetic energy of an element and then
a series of differentiations that involve a great computational effort. The last decade has shown an
increased interest of researchers in the study of multibody systems (MBS) using alternative analytical
methods, aiming to simplify the description of the model and the solution of the systems of obtained
equations. The method of Kane’s equations is one possibility to do this and, in the paper, we applied
this method in the study of a MBS applying finite element analysis (FEA). The number of operations
involved is lower than in the case of Lagrange’s equations and Kane’s equations are little used
previously in conjunction with the finite element method (FEM). Results are obtained regardless
of the type of finite element used. The shape functions will determine the final form of the matrix
coefficients in the equations. The results are applied in the case of a planar mechanism with two
degrees of freedom.

Keywords: Kane’s equations; robots; dynamics; finite element method (FEM); multibody system
(MBS); mechanism

1. Introduction

The dynamic analysis of a multibody system (MBS) with elastic elements requires, as a first step,
time response of a single finite element, obtained via the equations of motion. These equations will
depend on the model chosen, the shape function used and the particular type of motion. Once these
equations are determined, we move on to the next necessary steps, which consist in refer these
equations to a unique coordinate system, assembling the equations of motion and finally solving them.
Analytical mechanics offers a large number of formalisms for determining the equations of motion.
In general, classical methods, well verified, are used for all these steps. Obtaining the equations of
motion is generally a laborious and not a simple step, due to the volume of calculations involved [1].
Some researches presents a comparison between various analytical methods [2–4].

Mathematics 2020, 8, 805; doi:10.3390/math8050805 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-8679-2579
https://orcid.org/0000-0003-0018-5183
https://orcid.org/0000-0003-1552-3763
http://dx.doi.org/10.3390/math8050805
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/5/805?type=check_update&version=2


Mathematics 2020, 8, 805 2 of 21

For this reason, choosing a method that gives us advantages in terms of the volume and time
of calculations is an important objective for the researchers. In general, in the case of using the
finite element method (FEM), the method used almost exclusively in all researches is the method of
Lagrange’s equations. The advantage of using this method lies in the homogeneity of the writing, the
ease of approaching large systems, with large number of degrees of freedom (DOF) and, an important
thing, a familiarity of the researchers with this method. However, analytical mechanics offers equivalent
methods of writing the equations of motion. For the same purpose, Gibbs–Appell equations, Hamilton
equations, Maggi’s equations, Jacobs equations and other equivalent forms can be used [1,5]. Either of
these methods ultimately gives the researchers the final form of these equations, which is the same in
all cases. For a researcher, however, the problem is posed to determine which of these methods is the
most appropriate to the studied problem, from the point of view of the ease of modeling, of the solving
algorithm and the computation time needed to study the studied mechanical system. It is, therefore,
natural to look for one among them that would allow us to obtain these equations easily.

Based on the studied literature, one can form the opinion that Lagrange’s equations have
the advantage of the researchers’ familiarity with this method and with a relatively simple
model [6,7]. When applied to holonomic systems using coordinate derivatives, the momentum
form of Kane’s equations is an efficient alternative to Lagrange’s equations, providing a momentum
formulation without the need to assemble and differentiate the system kinetic co-energy function [8].

The disadvantage is the need to determine Lagrange’s multipliers from the system of differential
and algebraic equations (DAE) obtained, which, in the case of large systems, can lead to a large
number of calculations and large computation times [9]. The Gibbs–Appell [10,11] method seems
to have the advantage of economical computing time dedicated to modeling and computing itself.
The disadvantage is the introduction of a notion with which the researchers are a little used, namely
the energy of accelerations. Maggi’s equations become very useful when analyzing MBS in which the
links between the elements are non-holonomic constraints. In recent years, the method has begun to be
applied more often by researchers, especially due to the need to study robots and manipulators widely
applied in the manufacturing industry. Hamiltonian formalism can be profitable from the point of view
of numerical calculation, since its application ultimately leads to a system of differential equations of
the first order, as opposed to the other methods that ultimately give differential equations of the second
order. This can be an advantage in the case of numerical calculation because the computing subroutines
solve numerically differential equations of the first order. However, the complexity of intermediate
calculations is high, which represents a disadvantage of the method. The method of Kane’s equations is
equivalent to Maggi’s formalism and has begun to be used more in the last decade, also related to the
need for robot and manipulator analysis. In this paper, we try to apply the Kane equations to solve the
problem of modeling and obtaining the motion equations in the case of the use of FEM in the dynamical
analysis of a MBS with elastic elements. Recent years have shown a high interest in this method.

We assume that in the coming years all these methods mentioned here, but also others, equivalent,
from analytical mechanics, will be re-evaluated in the context of the numerical possibilities to solve
such problems and will be used in commercial software those methods that will prove those greater
advantages. It is assumed that the fields of applicability of the mentioned methods will be expanded.

In Section 2 of the paper was given an overview of the results obtained using various formalisms of
analytical mechanics. The classical methods with their advantages and disadvantages were presented.
In order to present the original results, which can be found in Section 4, it is necessary to present some
preliminary notions. This presentation can be found in Section 3. To emphasize the possibility of
using the method for such problems, an application to a mechanism with two degrees of freedom is
presented. The conclusion and discussion will be presented in Section 6.

2. A Brief Overview of the Applied Formalism in (FEA) of (MBS)

Lagrange’s method: The Lagrange’s equations (LE) method is, at the moment, the most used
method for writing differential equations of motion for mechanical systems with a high number of
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degrees of freedom (DOF). The construction of Lagrange’s function involves the calculation of kinetic
energy, potential energy and mechanical work of a mechanical system. These notions are often used in
applications and researchers are familiar with them. It is also the reason why this method is mainly
used in the works dedicated to the analysis of elastic multi-body systems with the finite element
method (FEM). Most of the articles in the field used the method in the analysis of one, two-and
three-dimensional mechanical systems, regardless of the type of finite element chosen for the study.

Using the LE method the motion equations of a single finite element is determined. This represents
a first stage in an analysis of a multibody system (MBS) using FEM [6–8].

The next step it is represented by the procedure of assembling the equations of motion,
which involves the elimination of Lagrange’s multipliers (depending on the liaison forces in the
common nodes to several elements). Numerous equivalent methods of analytical mechanics can be
used for the assembly procedure, such as: Lagrange’s equations method, Maggi’s equations method,
Gibbs–Appell formalism, Kane’s equations method or other formulations. As in the case of determining
the equations of motion for a single finite element, the LE method was used too, with predilection [5].

The first papers that studied these systems using FEM dealt with systems with elastic elements
that can be modeled with one-dimensional finite elements. In the 1970s there are lot of paper analyzing
such kind of problems and developing the domain [11–16]. Naturally, the method was then extended
for two and three-dimensional elements [17–19].

Different aspects of the behavior of such systems have been studied by researchers in recent
years [20]. We can mention that almost all researches used the LE method, which proved to be a
familiar and convenient method to solve the problems. However, there are equivalent formulations in
analytical mechanics and we can put the question, to what extent these methods can replace LE in the
analysis of systems with elastic elements [21].

Gibbs–Appell equations. Although known since the beginning of the century XX, equations called
Gibbs–Appell (GA) and discovered independently by Gibbs (1879) [22] and Appell (1899) [23] have
been rarely used in mechanical systems study. However, they have obvious advantages in terms of
the number of equations to be written. This is obviously smaller if compared to LE and it results in
advantages in terms of modeling effort and calculation time required. A main disadvantage is the fact
that the researchers are less familiar to use GA equations. Usually the GA method represents a more
convenient procedure to study non-holonomic systems. Basically the method consists in replacing the
well-known Lagrangian with the “energy of accelerations”.

In the last period, multiplying the studies regarding the multibody systems, with high working
speed and loaded with great forces, the advantages of applying the Gibbs–Appell equations have
been found. There are some papers using this method in the field of MBS [24–26]. The equations that
are obtained by applying this method coincide with those obtained by applying the method of LE
but the number of operations required to be performed is smaller. This method is an application of
Gauss’s principle of least constraint.

This method has proven useful for a wide range of problems. It has been successfully used in the
dynamic analysis of some rigid systems and considering also the quasi-velocities [27]. The equations of
motion can be obtained in this formalism more easily for linear and nonlinear systems with holonomic or
non-holonomic liaisons. It becomes possible to eliminate Lagrange’s multipliers and, as a consequence,
to reduce the number of unknowns and the calculations to be performed. In [28], such an example is
presented for a robot with flexible elements. For the advantages offered the method tends to become a
procedure. There are several papers that present the advantage of using this formalism, as a result of
the fact that the number of unknowns is reduced, by eliminating Lagrange’s multipliers [29–32].

Maggi’s formalism: Maggi’s equations, which have been applied little and are relatively recent
(1896), are an alternative formalism to the other formalisms in analytical mechanics, presented in
several papers [1,33].

Recent years have shown a great interest of researchers in applying Maggi’s equations to different
engineering problems. In the case of modern technical systems, used in industry, such as robots and
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manipulators, there are situations in which the control system must be developed and designed [34,35].
If we work with nonlinear systems, the technique of linearizing the feedback will naturally lead to the
application of these equations. Maggi’s formalism was found to be a simple and stable way to determine
the equations that provide the dynamic response of an MBS with constraints. An important step in
applying this method is the choice of independent coordinates. The method is considered by some
researchers [36–38] as the most efficient way to solve Lagrange’s index-1 equations. The existence of the
non-holonomic liaisons leads, in a naturally way, to the use of Maggi’s equations. For systems with a
large number of DOF, this approach can prove useful from the point of view of computing time. Despite
these advantages, the method is a little familiar to the researchers and was, as a consequence, little used.
The major advantage is due to the possibility of approaching large systems, with those appearing in current
engineering applications. In these situations, if a classical calculation method, such as Newton–Euler or
Lagrange, is used, a step would be to determine the liaison forces. For large systems, this can lead to
laborious calculations and, as a consequence, a high modeling and computing effort. Maggi’s method also
offers a justification of the classical assembly methods, applied empirically in finite element analysis (FEA).

Hamilton’s method: The use of one of the classical methods of determining the equations of motion
of an elastic system naturally leads to a system of differential equations of the second order in which
the unknowns are represented by the generalized coordinates, qi. To be applied, a commercial program
for solving this second order system with n unknowns implies its writing, by introducing additional
unknowns (represented by the generalized velocities), in the form of a system of 2n differential
equations of the first order. Hamiltonian mechanics achieves this precisely, offering as a result of
modeling a system of differential equations from first order with 2n unknown. The first n unknowns in
this case are the generalized coordinates, the others being the generalized impulse momentum.

Introducing this notion, the conjugated canonical moment represents a difference from Lagrange’s
method (or an equivalent method from the point of view of analytical mechanics). It follows, therefore,
that Hamilton’s formalism offers a system of first order equations. Hamilton method could have the
advantage of giving us a system of first order equations, a system which can be used directly for
numerical solving, without the need for prior processing of equations [5].

Kane’s equations: In the last decades, Kane’s method and equations have been successfully
applied to the modeling and numerical analysis of MBS. The motion equations proposed by Kane have
been successfully applied to numerical analysis and simulation of multibody systems [39,40]. However,
their use becomes problematic if the MBS is composed of a large number of bodies between which there
are many links. For such a situation, the complexity of the equations of motion increases substantially
and the determination of the response over time becomes much more difficult. Some examples are
presented in [41–45]. The Kane method eliminates the disadvantages of methods of classical mechanics
(Newton–Euler and Langrange) and can be used for both holonomic and non-holonomic constraint
systems [45–47]. This method is also called the Lagrange form of d Alembert’s principle.

Generally, the equations Maggi and Kane are associated, representing essentially the same method.
Kane’s equations have been shown to be equivalent to Maggi’s equations. These methods are very
good when the constraints are non- holonomic, but may not work in the case of systems with holonomic
constraints [33].

One of the first applications of Kane’s equations was made to flexible complex structures [48].
Their application has been found to allow efficient computation of such systems, especially in robots
and manipulators [49,50]. The equations that are finally obtained will be equal with the DOF of the
system. They do not contain the forces of liaisons. Once integrated the equations of motion, the liaison
forces (if their knowledge is necessary) can be obtained, by relatively simple calculations [50].

To our knowledge, Kane’s method was not yet applied to obtain the dynamic response of a finite
element in the case of the study of a MBS with elastic elements. This is what we are trying to accomplish
in the present work.

Some interesting application of Kane equation can be found in [51,52].
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3. Preliminary Kinematics and Kinetics of Finite Elements

In order to be able to apply Kane’s equations to a single finite element, it is necessary to know some
kinematic elements. The speeds and accelerations of the different points of the finite element must be
determined according to the nodal coordinates, considered as independent coordinates. This has been
studied in the specialized literature [6,17,40], which is why we present the relationships that we will
use in the paper. The displacement field is described by a set of shape functions.

The velocity of a point M of an elastic solid (Figure 1) is offered by [17,18]:

{vM′ }G =
{ .
rM′

}
G
= {vO}G +

[ .
R
]
{r}L +

[ .
R
]
[N]{δ}L + [R][N]

{ .
δ
}
L

(1)

where {vO}G =
{ .
rO

}
G

it represents the velocity vector of the origin of the mobile reference system
with component expressed in the global system, {r}L the position vector of the current point with the
coordinates expressed in the mobile system, {δ}L the vector of nodal coordinates, [N] the shape function
matrix ({u} = [N]{δ}L) and [R] represents the rotation matrix that makes the transition from the mobile
reference system to the fixed reference system. [

.
R] is the derivative of [R] with respect to the time.
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In the paper, the quantities that are expressed in the global coordinate system will be indexed with
G, and if they are expressed in the local coordinate system they will be noticed by L. The transformation
of a vector is performed by the matrix: [R]:

{t}G = [R]{t}L (2)

The matrix [R] is orthonormal, thus, it results:

[R][R]T = [R]T[R] = [E] =


1 0 0
0 1 0
0 0 1

 (3)

By differentiating (3) it obtains:[ .
R
]
[R]T + [R]

[ .
R
]T

=
[ .
R
]
[R]T +

([ .
R
]
[R]T

)T
= 0 (4)
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and: [ .
R
]T
[R] + [R]T

[ .
R
]
=

[ .
R
]T
[R] +

([ .
R
]T
[R]

)T
= [0] (5)

The notations:

[ω]G =
[ .
R
]
[R]T = −[R]

[ .
R
]T

=


0 −ωZ ωY
ωZ 0 −ωX

−ωY ωX 0

 (6)

and:

[ω]L = [R]T[ω]G[R] = [R]T
[ .
R
]
= −

[ .
R
]T
[R] =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (7)

indicate the skew symmetric operator angular velocity, expresses in global reference frame [ω]G, and in
the local reference frame [ω]L. The angular velocity vector of the solid is ω. There are the relations:

[ω]G = −[ω]TG and[ω]L = −[ω]TL (8)

The operator angular acceleration is:

[ε]G =
[ .
ω
]
G
=

[ ..
R
]
[R]T +

[ .
R
][ .

R
]T

= −
[ .
R
][ .

R
]T
− [R]

[ ..
R
]T

=


0 −εZ εY
εZ 0 −εX

−εY εX 0

 (9)

in the global reference frame and:

[ε]L =
[ .
ω
]
L
=

[ .
R
]T[ .

R
]
+ [R]T

[ ..
R
]
= −

[ .
R
]T[ .

R
]
−

[ ..
R
]T
[R] =


0 −εz εy

εz 0 −εx

−εy εx 0

 (10)

in a local reference frame. After some elementary calculus it results:[ ..
R
]
[R]T = [ε]G −

[ .
R
][ .

R
]T

= [ε]G + [ω]G[ω]G

=


−

(
ω2

Y +ω2
Z

)
−εZ +ωXωY −εY +ωXωZ

εZ +ωXωY −

(
ω2

Z +ω2
X

)
−εX +ωYωZ

εY +ωXωZ εX +ωYωZ −

(
ω2

X +ω2
Y

)
 (11)

[R]T
[ ..
R
]
= [ε]L −

[ .
R
]T[ .

R
]
= [ε]L + [ω]L[ω]L

=


−

(
ω2

y +ω2
z

)
−εz +ωxωy −εy +ωxωz

εz +ωxωy −

(
ω2

z +ω2
x

)
−εx +ωyωz

εy +ωxωz εx +ωyωz −

(
ω2

x +ω2
y

)
 (12)

4. Kane’s Formalism Applied to MBS

The Kane’s equations are presented in the Appendix A. Starting from the basic equations:

N∑
i=1

(
Fi −miai

)
δ ri = 0 , (13)
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we obtain, for an elastic finite element considered as a solid, the system of equations:

N∑
i=1

Fi
∂vi

∂
.
qk

=

∫
V

a
∂v
∂

.
qk

dm k = 1, n (14)

The acceleration of an arbitrary point is obtained by differentiating the expression of velocity (1):

{aM′ }G =
{..
rM′

}
G
= {aO}G +

[ ..
R
]
{r}L +

[ ..
R
]
[N]{δ}L + 2

[ .
R
]
[N]

{ .
δ
}
L
+ [R][N]

{ ..
δ
}
L

(15)

Differentiating (1), we have:

∂{v′M}G
∂
{ .
δ
}
L

= [R][N] and

∂{v′M}G∂
{ .
δ
}
L


T

= [N]T[R]T (16)

The expression ∂{T}
∂{δ} , if {T} = [A]{δ} it is [A], result used previously. Now we can written:

(
∂{vM′ }G

∂
{ .
δ
}
G

)T

{aM′ }G = [N]T[R]T
(
{aO}G +

[ ..
R
]
{r}L +

[ ..
R
]
[N]{δ}L + 2

[ .
R
]
[N]

{ .
δ
}
L
+ [R][N]

{ ..
δ
}
L

)
=

=

∫
V
[N]Tρ dV

 {aO}L +

∫
V
[N]T[R]T

[ ..
R
]
{r}TLρdV

+ ∫
V
[N]T[R]T

[ ..
R
]
[N]ρdV

 {δ}L+
+ 2

∫
V
[N]T[R]T

[ .
R
]
[N] ρ dV

 { .
δ
}
L
+

∫
V
[N]T[N] ρdV

{ ..
δ
}
L
=

=

∫
V
ρ[N]TdV

{aO}L +
∫
V
[N]T([ε]L + [ω]L[ω]L){r}LρdV+

+

∫
V
[N]T([ε]L + [ω]L[ω]L)[N]ρdV

{δ}L + 2

∫
V
ρ[N]T[ω]L[N]dV

{ .
δ
}
L
+

∫
V
[N]T[N]ρdV

{ ..
δ
}
L

= −
[
mi

O

]
{aO}L −

{
Qi(ω)

}
−

{
Qi(ε)

}
+ [k(ω)]{δ}L + [k(ε)]{δ}L + [c(ω)]

{ .
δ
}
L
+ [m]

{ ..
δ
}
L

(17)

The following notations were made:{
Qi(ε)

}
=

∫
V
[N]T[ε]L{r}LρdV;

{
Qi(ω)

}
=

∫
V
[N]T[ω]L[ω]L{r}Lρ;

dV[k(ε)] =
∫
V
[N]T[ε]L[N]ρdV; [k(ω)] =

∫
V
[N]T[ω]L[ω]L[N]ρdV;

[c] = 2
∫
V
ρ[N]T[ω]L[N]dV; [m] =

∫
V
[N]T[N]ρdV;

[
mi

O

]
=

∫
V ρ[N]d V

(18)

The generalized forces Fk act in nodal points of the finite element. The velocities of these points
are among the components of the velocities vector

{ .
δ
}
G

. It obtains:

∂{vM′ }G

∂
{ .
δ
}
G


T

{Fk}ρdV = [k]{δ}L −
{
Qext

}
L
−

{
Qliaison

}
L

(19)

{
Qext

}
L

represents the generalized nodal forces vector acting in the node, [k]{δ}L represents the

elastic force between given by the stiffness matrix [k],
{
Qliaison

}
L

represents liaison forces in the nodal
points (these forces there are in the common nodes of two neighboring finite elements).

It results the motion equations:

[m]
{ ..
δ
}
L
+ [c]

{ .
δ
}
L
+ ([k] + [k(ε)] + [k(ω)]){δ}L =

[
mi

O

]
{aO}L +

{
Qi(ε)

}
L
+

{
Qi(ω)

}
L
+

{
Qext

}
L
+

{
Qnodal

}
L

(20)
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5. An Application to a Two Degrees of Freedom Mechanism Used in a Wind Water Pump

We consider the mechanical system of Figure 2, having two degrees of freedom [53]. The B C’
beam is an elastic bar, the other elements of the mechanism being sufficiently massive to be considered
rigid (experimental prototype is presented in Figure 3).
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In a first approximation, to obtain the liaison forces, appearing in B and C ‘, the mechanism is
considered consisting of rigid elements considered and, in this hypothesis, the forces are calculated.

We write the equation of vector contour for the mechanism:

→

AB +
→

BC′ +
→

C′C +
→

CD +
→

DE +
→

EP +
→

PA = 0 (21)

With the notations used in the Figure 2 the relations are obtained:

l1 cosα
→

i + l1 sinα
→

j + l2 cos β
→

i − l2 sin β
→

j + l3 cosθi + l sinθ j−−l4 sinθ
→

i + l4 cos θ
→

j + e
→

j −XD
→

i −D
→

j = 0 (22)

If the terms are grouped according to the directions of the two verses, the boundary conditions
are obtained: {

l1 cosα + l2 cos β + l3 cosθ− l4 sinθ −XD = 0
l1 sinα − l2 sin β + l3 sinθ+ l4 cos θ + e−D = 0

(23)
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If we differentiate the obtained system (23) (see Appendix B) it results:

{a} =



..
xA1..
yA1

ε1
..
xB1..
yB1

ε2
..
xC
..
yC
ε3
..
xD



= [C1]

{
ε1
..
xD

}
+ [C2]


ω2

1
ω1

.
xD

.
x2

D

 (24)

where {a} is the vector of the accelerations of the mass centers of the elements of the mechanism and the
angular accelerations, the two independent generalized coordinates are the rotation angle of the crank AB,
α and the displacement of the slide xD and it is noted:

.
α = ω1,

.
ω1 = ε1. It is, therefore, hypothesized that

the elasticity of the elements of the mechanism does not influence its rigid movement. The mechanism
will be decomposed into four bodies (Figure 4) in order to determine the equations of motion:
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Because there are many parameters that can vary, integrating the equations of motion of the
mechanism, considering all the rigid elements is difficult and will lead to results far from reality. This is
due to the fact that a number of factors such as joints that appear in the joints, the engine couple, and the
frictions that occur in the joints which cannot be accurately determined. For this reason, we will use a
method of recording the rigid movement of the mechanism through an optical system, determining from
these records the law of motion of the two independent coordinates [53–56]. Knowing these quantities,
the forces of liaison in joints can be determined. These forces are necessary for us to be able to write the
equations of motion for the BC’ elastic beam, determined previously, formally, using Kane’s equations.
After these a computation of the free vibrations of the obtained equation system will be made.

Relationships (13–16) show that in order to determine the equations of motion of a finite element
it is necessary to know the velocities and accelerations of a point according to the nodal coordinates.
Based on these, Kane’s equations can be written, using simple matrix operations. In the case of
applying Lagrange’s equations, it is necessary to write first the kinetic energy, which already involves
multiplication operations between numerous terms, followed by several differentiations, which again
involves more numerous operations. This is why Kane’s equations can be an alternative to simplify
calculations for obtaining equations of motion.

Considering the lever from Figure 5 it is possible to write the Equation (20) for this and to analyze
obtained equations. It is possible to integrate the differential equations obtained using a commercial
soft. In our problem we did a qualitative analysis of the mechanical system, computing the eigenpairs
of the beam integrated into mechanism. The first two eigenvalues and their variation versus time are
presented in Figure 6.Mathematics 2020, 8, 805 11 of 23 
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Figure 6 represents the first two eigenvalues for the beam BC’, divided in 10 finite elements, for
an average angular speed of the engine of 140 rpm.

It is difficult to make a comparison between the different methods of determining the equations
of motion of an elastic element of a MBS system. However, we will try to compare the number of
differentiations needed to obtain these equations. Thus, Table 1 presents a comparison between the
number of differentiations required when using the Lagrange method, the number of differentiations
in the case of the Gibbs–Appell formalism [38] and if the Kane equations are applied. Starting from the
velocity formula, it is found that in the case of this method we need a differentiation of the acceleration
as a function of time and a partial derivative, so two differentiation operations. It is observed that
the number of these operations is substantially reduced compared to Lagrange’s method. In the case
of illustrative application presented in the paper, it does not seem to be a major advantage. But if
we refer to a complex application, with a large number of finite elements used, the reduction can be
significant and the calculation time and effort can be significantly reduced. We note that after the matrix
coefficients will be obtained, regardless of the method by which they were obtained, the following
procedures are identical in all cases, so they will not influence the necessary calculation times.

Table 1. Comparison between the Lagrange, Gibbs–Appell [38] and Kane methods. Number of differentiations.

Number of Finite Elements Lagrange Gibbs–Appell Kane

5 288 120 10
10 528 220 20
15 768 320 30
20 1008 420 40
25 1248 520 50
30 1488 620 60
40 1968 820 80

6. Conclusions and Discussions

The study of a MBS with elastic elements using FEM leads to the necessity of determining the
equations of motion for a single finite element, taking into account its type and the interpolation functions
used. It is the main step in the first stage of this study. This can be done using several methods of analytical
mechanics, equivalent between them and with which the same results are obtained. We can use Lagrange’s
equations, Newton–Euler equations, Kane’s method or equivalent formulations of these formalisms.
The use of any of these methods presents, from the user’s point of view, advantages and disadvantages,
which have been highlighted by different authors and which have been discussed in the Introduction.

The formalism Newton–Euler method allows, for example, to obtain formal equations independent
of geometric, inertial properties or liaisons. But it also has a disadvantage, which for some systems
with large numbers of DOF becomes significant, namely that the liaison forces and moments must
be computed. For relatively simple systems, however, the method is useful and intuitive. However,
if we study a complex system with a high number of DOF, Lagrange’s method becomes convenient,
which also presents the advantage of a familiarity of researchers with it. The method is suitable for
generalizations and large systems. The disadvantage is to determine the generalized liaison forces.
Due to these advantages the method us preferred by some software developers (ADAMS, DADS,
DYMAC). But there are also developers who use equivalent formulations of this formalism (SD-EXACT,
NBOD2, SD/FAST) materialized in Kane’s equations, which essentially represent a formalism equivalent
to Maggi’s equations. The application of these equations in the modeling of FEM has not yet been
used, to our knowledge. As a result, we set out to see to what extent these equations can be applied to
the modeling of an elastic linear finite element, resulting in a computational economy.

In conclusion, the paper aims to present how Kane’s equations can be applied to obtain the
equations of motion for a beam, as an elastic element of a mechanism, which is in planar motion, if the
FEM is used. Kane’s method has also been applied to MBS but using classical methods of analysis.
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The paper aims to use Kane’s equations in the procedures involved using FEA. An application comes
to exemplify the method for the case of a real mechanism.

The paper studied the application of this formalism in the case of a MBS system with elastic
elements, to solve the main stage in such an approach, namely the determination of the equations
of motion for a finite element. These equations are dependent on the type of finite element chosen
and the type of motion (one, two or three-dimensional). This opens the possibility of applying this
method to the development of software at the finite element level. Kane’s equations are an economical
and simple alternative to the problem of determining the dynamic response of a single finite element.
The method is suitable to apply to MBS systems with non-holonomic constraints.
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published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Kane’s Equations

It starts from the relationship [5,19]:

N∑
i=1

(
Fi −miai

) ∂ri
∂qk

= 0; k = 1, n (A1)

In analytical mechanics it is shown that we have the relation:

∂ri
∂qk

=
∂vi

∂
.
qk

; k = 1, n i = 1, N ; (A2)

Substituting in (A1) we obtain:

N∑
i=1

(
Fi −miai

) ∂vi

∂
.
qk

= 0; k = 1, n (A3)

If noted:
∂vi

∂
.
qk

=
∂vi
∂uk

= v(k)i ; k = 1, n i = 1, N ; (A4)

It results:
N∑

i=1

Fi
∂vi
∂uk

=
N∑

i=1

miai
∂vi
∂uk

; k = 1, n i = 1, N ; (A5)

where with Fi the external forces acting in nodes were noted.

Appendix B

The mechanism is presented in Figure A1. It is denoted ϕ1 = α.
It is noted:

c1 = cosθ1; s1 = sinθ; c2 = cosθ2; s2 = sinθ2;
s3−ψ = sin(θ3 −ψ); c3−ψ = cos(θ3 −ψ){

l1c1 + l2c2 + hc3−ψ − xD = 0
l1s1 + l2s2 + hs3−ψ − e = 0

(A6)
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where: h =
√

f 2 + g2. The angles ϕ2 and ϕ3 will be determined. In the triangle ABD we know.
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From Figure 6 it results:2π−ϕ1 + β′ + α+ β = π, therefore:

β = ϕ1 −π− α− β
′ (A7)

The sine theorem written in the triangle ABD gives us:

l1
sin β

=
AD

sinα
(A8)

AD sin β = l1 sinα (A9)

If we take into account:

sin β = − sin(ϕ1 − α− β
′) = [− sin(ϕ1 − β

′) cosα+ cos(ϕ1 − β
′) sinα] (A10)

and by substituting sin β from (A10) into (A9) we obtain:

l1 sinα = AD[− sin(ϕ1 − β
′) cosα+ cos(ϕ1 − β

′) sinα]

or:
sinα[l1 −AD cos(ϕ1 − β

′)] = −AD sin(ϕ1 − β
′) cosα

from where:

tgα =
−AD sin(ϕ1 − β′)

l1 −AD cos(ϕ1 − β′)
(A11)

It results:

α = a tan
[
−AD sin(ϕ1 − β′)

l1 −AD cos(ϕ1 − β′)

]
(A12)

You can calculate the angle β from the relation:

sin β =
l1 sinα

AD

from where:
β = a sin(

l1 sinα
AD

).
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Further we can calculate BD:

BD2 = l21 + AD2
− 2l1AD cos(2π−ϕ1 + β′) (A13)

The cosine theorem can be applied in the triangle ABD:

cosγ =
l22 + BD2

− h2

2l2·BD
γ = a cos

l22 + BD2
− h2

2l2·BD
(A14)

cos δ =
h2 + BD2

− l22
2h·BD

δ = a cos
h2 + BD2

− l22
2h·BD

(A15)

We can now calculate: ϕ2, ϕ3:

ϕ2 = 2π− γ+ β+ β′ ϕ3 = β+ β′ + δ+ψ (A16)

Differentiating (A6) we obtain the condition equations for speeds:{
−l1ω1s1 − l2ω2s2 − hω3s3−ψ −

.
xD = 0

l1ω1c1 + l2ω2c2 + hω3c3−ψ = 0
(A17)

The system can also be written as:[
s2 s3−ψ

c2 c3−ψ

]{
l2ω2

hω3

}
=

[
−s1 −1
−c1 0

]{
l1ω1

.
xD

}
(A18)

with the solution: {
l2ω2

hω3

}
= 1

s2c3−ψ−s3−ψc2

[
c3−ψ −s3−ψ

−c2 s2

][
−s1 −1
−c1 0

]{
l1ω1

.
xD

}
=

= 1
s2c3−ψ−s3−ψc2

[
−c3−ψs1 + s3−ψc1 −c3−ψ

c2s1 − c1s2 c2

]{
l1ω1

.
xD

} (A19)

It is noted: [
a11 a12

a21 a22

]
=

1
s2c3−ψ − s3−ψc2

[
−c3−ψs1 + s3−ψc1 −c3−ψ

c2s1 − c1s2 c2

]
We can write: {

l2ω2

hω3

}
=

[
a11 a12

a21 a22

]{
l1ω1

.
xD

}
(A20)

Differentiating (A17), it results:{
−l1ε1s1 − l2ε2s2 − hε3s3−ψ − l1ω2

1c1 − l2ω2
2c2 − hω2

3c3−ψ −
..
xD = 0

l1ε1c1 + l2ε2c2 + hε3c3−ψ − l1ω2
1s1 − l2ω2

2s2 − hω2
3s3−ψ = 0

(A21)
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From here you can determine the two unknown angular accelerations:

{
l2ε2

hε3

}
=

[
a11 a12

a21 a22

]{
l1ε1
..
xD

}
+ 1

s2c3−ψ−s3−ψc2

[
c3−ψ −s3−ψ

−c2 s2

] −
(l1ω1)

2c1
l1

−
(l2ω2)

2c2
l2

−
(hω3)

2c3−ψ
h

(l1ω1)
2s1

l1
+

(l2ω2)
2s2

l2
+

(hω3)
2s3−ψ

h

 =

=

[
a11 a12

a21 a22

]{
l1ε1
..
xD

}
+ 1

s2c3−ψ−s3−ψc2

[
c3−ψ −s3−ψ

−c2 s2

]
[

 − c1
l1s1

l1

(l1ω1)
2 +

 − c2
l2s2

l2

(l2ω2)
2 +

 −
c3−ψ

hs3−ψ
h

(hω3)
2] =

=

[
a11 a12

a21 a22

]{
l1ε1
..
xD

}
+ 1

s2c3−ψ−s3−ψc2

[
c3−ψ −s3−ψ

−c2 s2

]
x

x[ 1
l1

{
−c1

s1

}
(l1ω1)

2 + 1
l2

{
−c2

s2

}(
a11l1ω1 + a12

.
xD

)2
+ 1

h

{
−c3−ψ

s3−ψ

}(
a21l1ω1 + a22

.
xD

)2
] =

=

[
a11 a12

a21 a22

]{
l1ε1
..
xD

}
+ 1

s2c3−ψ−s3−ψc2
x[ 1

l1

{
−c3−ψc1 − s3−ψs1

c2c1 + s2s1

}
(l1ω1)

2+

+ 1
l2

{
−c3−ψc2 − s3−ψs2

1

}(
a11l1ω1 + a12

.
xD

)2
+ 1

h

{
−1

c3−ψc2 + s3−ψs2

}(
a21l1ω1 + a22

.
xD

)2
] =

=

[
a11 a12

a21 a22

]{
l1ε1
..
xD

}
+ 1

s2c3−ψ−s3−ψc2
x [


−c3−ψc1−s3−ψs1

l1
+ a2

11
−c3−ψc2−s3−ψs2

l2
−

a2
21
h

c2c1+s2s1
l1

+
a2

11
l2

+ a2
21

c3−ψc2+s3−ψs2
h

(l1ω1)
2+

+

 2a11a12
−c3−ψc2−s3−ψs2

l2
−

2a21a22
h

2a11a12
l2

+ 2a21a22
c3−ψc2+s3−ψs2

h

(l1ω1)
.
xD +

 a2
12
−c3−ψc2−s3−ψs2

l2
−

a2
22
h

a2
12
l2

+ a2
22

c3−ψc2+s3−ψs2
h

( .
xD

)2
].

(A22)

It is denoted:

b11 = 1
s2c3−ψ−s3−ψc2

(
−c3−ψc1−s3−ψs1

l1
+ a2

11
−c3−ψc2−s3−ψs2

l2
−

a2
21
h

)
;

b12 = 1
s2c3−ψ−s3−ψc2

(
2a11a12

−c3−ψc2−s3−ψs2
l2

−
2a21a22

h

)
;

b13 = 1
s2c3−ψ−s3−ψc2

(
a2

12
−c3−ψc2−s3−ψs2

l2
−

a2
22
h

)
;

b21 = 1
s2c3−ψ−s3−ψc2

(
c2c1+s2s1

l1
+

a2
11
l2

+ a2
21

c3−ψc2+s3−ψs2
h

)
;

b22 = 1
s2c3−ψ−s3−ψc2

(
2a11a12

l2
+ 2a21a22

c3−ψc2+s3−ψs2
h

)
;

b23 = 1
s2c3−ψ−s3−ψc2

(
a2

12
l2

+ a2
22

c3−ψc2+s3−ψs2
h

)
;

(A23)

and finally the angular accelerations are obtained:

{
l2ε2

hε3

}
=

[
a11 a12

a21 a22

]{
l1ε1
..
xD

}
+

[
b11 b12 b13

b21 b22 b23

]
(l1ω1)

2

l1ω1
.
xD( .

xD
)2

 (A24)

The positions of the mass centers, their speeds and accelerations are given by the relations:{
x1 = a1l1c1;
y1 = a1l1s1 .

{ .
x1 = −a1l1ω1s1;
.
y1 = a1l1ω1c1 .

{ ..
x1 = −a1l1ε1s1 − a1l1ω2

1c1;
..
y1 = a1l1ε1c1 − a1l1ω2

1s1 .
(A25)

{
x2 = l1c1 + a2l2c2;
y2 = l1s1 + a2l2s2

{ .
x2 = −l1ω1s1 − a2l2ω2s2;
.
y2 = l1ω1c1 + a2l2ω2c2

{ ..
x2 = −l1ε1s1 − a2l2ε2s2 − l1ω2

1c1 − a2l2ω2
2c2;

..
y2 = l1ε1c1 + a2l2ε2c2 − l1ω2

1s1 − a2l2ω2
2s2

(A26){
x3 = l1c1 + l2c2 + hg·c3−ψ−ξ;
y3 = l1s1 + l2s2 + hg·s3−ψ−ξ

{ .
x3 = −l1ω1s1 − l2ω2s2 − hg·ω3s3−ψ−ξ;
.
y3 = l1ω1c1 + l2ω2c2 + hg·ω3c3−ψ−ξ

(A27)

{ ..
x3 = −l1ε1s1 − l2ε2s2 − hg·ε3s3−ψ−ξ − l1ω2

1c1 − l2ω2
2c2 − hg·ω2

3c3−ψ−ξ;
..
y3 = l1ε1c1 + l2ε2c2 + hg·ε3c3−ψ−ξ − l1ω2

1s1 − l2ω2
2s2 − hg·ω2

3s3−ψ−ξ .
(A28)

{
ω2

ω3

}
=

 a11l1
l2

a12
l2

a21l1
h

a22
h

{ ω1
.
xD

}
(A29)
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{
ε2

ε3

}
=

 a11l1
l2

a12
l2

a21l1
h

a22
h

{ ε1
..
xD

}
+


b11l21

l2
b12l1

l2
b13
l2

b21l21
h

b22l1
h

b23
h




ω2
1

ω1
.
xD

.
x2

D

 (A30)

{a} =



..
x1
..
y1
ε1
..
x2
..
y2
ε2
..
x3
..
y3
ε3
..
xD



=



−a1s1l1 0
a1c1l1 0

1 0
−s1l1 − a2s2a11l1 −a2s2a12

c1l1 + a2c2a11l1 a2c2a12
a11l1

l2
a12
l2

−s1l1 − s2a11l1 − s3−ψ−ξhg a21l1
h −s2a12 − s3−ψ−ξhg a22

h
c1l1 + c2a11l1 + c3−ψ−ξhg a21l1

h c2a12 + c3−ψ−ξhg a22
h

a21l1
h

a22
h

0 1



{
ε1
..
xD

}
+

+



−a1c1l1
−a1s1l1

0

−c1l1 −
a2s2b11

l21
− a2c2l2

( a11
l2

l1
)2

−s1l1 +
a2c2b11

l21
− a2s2l2

( a11
l2

l1
)2

b11
l2l21

−c1l1 −
s2b11

l21
− s3−ψ−ξhg b21

l21h
− c2l2

( a11
l2

l1
)2
− c3−ψ−ξhg

( a21
h l1

)2

−s1l1 +
c2b11

l21
+ c3−ψ−ξhg b21

l21h
− s2l2

( a11
l2

l1
)2
− s3−ψ−ξhg

( a21
h l1

)2

b21
l21h

0



ω2
1+

+



0
0
0

−
a2s2b12

l1
− a2c2l22 a11a12

l22
l1

a2c2b12
l1
− a2s2l22 a11a12

l22
l1

b12
l1l2

−
s2b12

l1
− s3−ψ−ξhg b22

l1h − 2c2l2
a11a12

l22
l1 − 2c3−ψ−ξhg a21a22

h2 l1
c2b12

l1
+ c3−ψ−ξhg b22

l1h − 2s2l2
a11a12

l22
l1 − 2s3−ψ−ξhg a21a22

h2 l1
b22
l1h
0



ω1
.
xD+

+



0
0
0

−a2c2l2
( a12

l2

)2
− a2s2b13

−a2s2l2
( a12

l2

)2
+ a2c2b13

b13
l2

−c2l2
( a12

l2

)2
− c3−ψ−ξhg

( a22
h

)2
− s2b13 − s3−ψ−ξhg b23

h

−s2l2
( a12

l2

)2
− s3−ψ−ξhg

( a22
h

)2
+ c2b13 + c3−ψ−ξhg b23

h
b23
h
0



.
x2

D

(A31)
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Finally you can write:

{a} = [{A1} {A2}]

{
ε1
..
xD

}
+ [{B1} {B2} {B3}]


(ω1)

2

(ω1
.
xD)

(
.
xD)

2

 = [A]

{
ε1
..
xD

}
+ [B]


(ω1)

2

(ω1
.
xD)

(
.
xD)

2

 (A31)

where the notations for the matrices {A1}, {A2}, {B1}, {B2}, {B3}, [A] = [{A1} {A2}], [B] = [{B1} {B2} {B3}]

are obvious.
The motion equations (see Figure 4):

m1
..
x1 = XA + XB

m1
..
y1 = YA + YB −G1

J1ε1 = Mm −XAa1l1 cos( 3π
2 −ϕ1) + YAa1l1 sin( 3π

2 −ϕ1)

+XB(1− a1)l1 cos( 3π
2 −ϕ1) −YB(1− a1)l1 sin( 3π

2 −ϕ1)

(A32)

The last relationship becomes, after performing the calculations:

J1ε1 = Mm + XAa1l1s1 −YAa1l1c1 −XB(1− a1)l1s1 + YB(1− a1)c1 (A33)

m2
..
x2 = −XB + XC

m2
..
y2 = −YB −YC −G2

J2ε2 = XBa2l2 sin(2π−ϕ2) + YBa2l2 cos(2π−ϕ2)

+XC(1− a2)l2 sin(2π−ϕ2) + YC(1− a2)l2 cos(2π−ϕ2)

(A34)

The last relationship becomes:

J2ε2 = −XBa2l2s2 + YBa2l2c2 −XC(1− a2)l2s2 −YC(1− a2)l2c2 (A35)

(m3 + M3)
..
x3 = XD −XC

(m3 + M3)
..
y3 = −YD + YC −G3 −G

J3ε3 = −XDyD −YDxD + XC·yC −YC·xC + G(−xD + Lc3)

(A36)

xD = −hg cos(ξ−ϕ3 +ψ) + h cos(ϕ3 −ψ) (A37)

yD = hg sin(ξ−ϕ3 +ψ) + hs sin(ϕ3 −ψ) (A38)

xC = −hg cos(ξ−ϕ3 +ψ) (A39)

yC = hg sin(ξ−ϕ3 +ψ) (A40)

mD
..
xD = −XD − Frsgn(

.
xD) (A41)

It is denoted:

[m] =



m1

m1

J1 0
m2

m2

J2

m3

0 m3

J3

mD
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The vector of generalized forces, corresponding to the generalized coordinates considered is:

{Q} =



XA + XB

YA + YB −G1

Mm + XAa1l1s1 −YAa1l1c1 −XB(1− a1)l1s1 + YB(1− a1)c1

−XB + XC
−YB −YC −G2

−XBa2l2s2 + YBa2l2c2 −XC(1− a2)l2s2 −YC(1− a2)l2c2

XD −XC
−YD + YC −G3 −G

−XDyD −YDxD + XC·yC −YC·xC + G(−xD + Lc3)

−XD − Frsgn(
.
xD) − k(xD − xDo)



=

=



0
−G1

Mm

0
−G2

0
0

−G3 −G
G(−xD + Lc3)

−Frsgn(
.
xD)



+



XA + XB

YA + YB

XAa1l1s1 −YAa1l1c1 −XB(1− a1)l1s1 + YB(1− a1)c1

−XB + XC
−YB −YC

−XBa2l2s2 + YBa2l2c2 −XC(1− a2)l2s2 −YC(1− a2)l2c2

XD −XC
−YD + YC

−XDyD −YDxD + XC·yC −YC·xC
−XD



=

=
{
Qext

}
+

{
Qliaison

}

(A42)

where the notations are obvious. The equations of motion can be written in symbolic form:

[m]{a} =
{
Qext

}
+

{
Qliaison

}
(A43)

If the accelerations are known, after the integration of the system of equations or their experimental
measurement, rel. (A43) allows the determination of the liaison forces by simply solving a linear
system. If the acceleration vector determined above is introduced into this equation, the following
is obtained:

[m]([{A1} {A2}]

{
ε1
..
xD

}
+ [{B1} {B2} {B3}]


ω2

1
ω1

.
xD

.
x2

D

) =
{
Qext

}
+

{
Qliaison

}
(A44)

To eliminate the unknown liaison forces, we multiply with the matrix
[
{A1}

T

{A2}
T

]
and it obtains:

[
{A1}

T

{A2}
T

]
[m]([{A1} {A2}]

{
ε1
.
xD

}
+ [{B1} {B2} {B3}]


ω2

1
ω1

.
xD

.
x2

D

) =
[
{A1}

T

{A2}
T

]({
Qext

}
+

{
Qliaison

})
(A45)

If the calculations are done it results:[
{A1}

T[m]{A1} {A1}
T[m]{A2}

{A2}
T[m]{A1} {A2}

T[m]{A2}

]{
ε1
..
xD

}
+

+

[
{A1}

T[m]{B1} {A1}
T[m]{B2} {A1}

T[m]{B3}

{A2}
T[m]{B1} {A2}

T[m]{B2} {A2}
T[m]{B3}

]
ω2

1
ω1

.
xD

.
x2

D

 =

 {A1}
T
{
Qext

}
{A2}

T
{
Qext

}  (A46)
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and:
[
{A1}

T

{A2}
T

]{
Qliaison

}
= 0 (the work of the liaisons forces are null for a displacement compatible

with the liaison [18]). Thus, a system of two second order differential equations is obtained which by
integration can provide the law of motion for the generalized coordinates chosen.
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