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Abstract: In recent years, there has been an increasing interest in applying inverse data envelopment
analysis (DEA) to a wide range of disciplines, and most applications have adopted radial-based
inverse DEA models. However, results given by existing radial based inverse DEA models can be
unreliable as they neglect slacks while evaluating decision-making units’ (DMUs) overall efficiency
level, whereas classic radial DEA models measure the efficiency level through not only radial
efficiency index but also slacks. This paper points out these disadvantages with a counterexample,
where current inverse DEA models give results that outputs shall increase when inputs decrease.
We show that these unreasonable results are the consequence of existing inverse DEA models’
failure in preserving DMU’s efficiency level. To rectify this problem, we propose a revised model
for the situation where the investigated DMU has no slacks. Compared to existing radial inverse
DEA models, our revised model can preserve radial efficiency index as well as eliminating all slacks,
thus fulfilling the requirement of efficiency level invariant. Numerical examples are provided to
illustrate the validity and limitations of the revised model.
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1. Introduction

Data envelopment analysis (DEA) is a linear programming (LP) based method to assess the
efficiency level of decision-making units (DMUs) with multiple inputs and outputs. DEA is useful
for empirically measuring the productive efficiency of DMUs [1], for example, health care [2,3],
education [4], economies [5–7], banks [8,9], etc. The first DEA model, the Charnes, Cooper, and Rhodes
(CCR) model [10], evaluates the efficiency level of each DMU in two aspects, radial inefficiency and
mix inefficiency. The radial inefficiency is measured by a scalar named radial efficiency index, while
the mix inefficiency is identified by slacks of the corresponding LP. This evaluation process indicates
that not only radial efficiency index but also slacks should be considered to measure the efficiency
level. The CCR model and other DEA models with similar evaluation process are referred to as radial
DEA models in the literature.

Inverse DEA is an extension of DEA that has been extensively studied and applied during
the last two decades. It has been proved useful in various real-life applications as it enhanced
conventional DEA with the function of making predictions. The underlying assumption of inverse DEA
is that, during the period of interest, the efficiency level of DMUs remains the same [11]. Under this
assumption, for example, if inputs of a DMU alter to a different level, then it will adjust its outputs so
that the DMU’s efficiency status remains unchanged. Inverse DEA aims to find such outputs level
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(inputs level if a target outputs level is preassigned). An inverse DEA model has two key features:
its base DEA model and the efficiency measure it has adopted. In this paper, we only study inverse
DEA models that are based on radial DEA models and refer to them as radial inverse DEA models;
in fact, most existing inverse DEA models belong to this category. As for the measure of efficiency
level, all radial inverse DEA models only consider radial efficiency index and neglect slacks. However,
as the efficiency evaluation process of radial DEA models suggests, the efficiency level of DMUs is
measured by not only radial efficiency but also slacks. Therefore, current radial inverse DEA models
may fail to meet the requirement of efficiency invariant, and the predictions given by these models
are not always reliable. Though this disadvantage can severely undermine the credibility of inverse
DEA models, to our best knowledge, it has not been noticed in literature. In this paper, we attempt to
fill this gap by assessing the influence of this disadvantage on inverse DEA and giving revision for
some situations.

Inverse DEA was initialized by Zhang and Cui [12]. Zhang and Cui proposed a model to estimate
the inputs level of a DMU given outputs’ increments, under the constraint that the Constant Return to
Scale (CRS) index of the DMU is unchanged. Wei et al. [11] generalized inverse DEA to preserve various
return to scale (VRS), non-increasing return to scale(NIRS) and non-decreasing return to scale (NDRS)
index. They also introduced a multi-objective linear programming (MOLP) technique to formalize
inverse DEA models as well as the scalarization method to solve the corresponding MOLP. Based
on the paradigm of [11], various extensions of inverse DEA have been developed. In general, these
extensions can be classified into three categories. Extensions in the first category aim to complement
uncovered scenarios of inverse DEA based on the classic radial DEA models. See, e.g., [13–16]. Recently,
Zhang and Cui [17] integrated inverse DEA models of this category into 12 different cases. The second
category consists of works that extend inverse DEA by introducing additional factors such as preference
cone [18], undesirable outputs or inputs [19,20], and cost efficiency [21]. The last category includes
studies that relax some requirements of conventional inverse DEA. For example, in [22], the constraint
of unchanged efficiency level is generalized to a target efficiency level, and Lim [23] considered frontier
shift. Extensions in this category still follow the principle of inverse DEA and also resort to the
MOLP technique. Besides theoretical developments, practically there has been an increasing interest
in using inverse DEA to solve problems across a wide range of disciplines. Applications of inverse
DEA include but not limited to: revenue setting [24], agricultural resources demand estimation [25],
enterprise reconstruction [26–28], carbon abatement allocation [29,30], and sustainability analysis [31].
However, despite the variations, all studies mentioned above are based on radial DEA models and
employ radial efficiency index as the only efficiency measure, which means that all of them have used
an incomplete efficiency measure. For example, Emrouznejad et al. [30] allocated carbon emission
abatement across 31 sub-level industrial manufacturing in China based on a radial model. With an
abatement on about 9% of the total carbon emission, their proposed radial model suggests cutting
95% of the total carbon emission abatement in one sub-level industries (Manufacture of Non-metallic
Mineral Products), which is unreasonable in practice. There are a few works based on the non-radial
DEA model [32,33], where an inverse problem is designed for the enhanced Russel model. However,
solving these problems is difficult due to the non-convexity in the objective functions and constraints
in these problems. Radial models are widely applied in allocation problems since many of them can be
reshaped as linear programming. Due to the incomplete efficiency measure problem in a radial model,
it is important to determine the cases where these radial models can be efficiently and reasonably
applied. In addition, it is of great importance to develop a revised inverse radial DEA model to fix the
incomplete efficiency measure problem.

The contributions of this paper are two-fold. Firstly, we show that neglecting slacks in radial
inverse DEA can lead to unreasonable results. We give a numerical example to support this assertion,
where an inverse DEA model predicts outputs to decrease while inputs increase. When the investigated
DMU has non-zero slacks, this kind of failure is inevitable. Secondly, for DMUs without mix inefficiency,
we propose a revised inverse DEA model that can satisfy the requirement of efficiency invariant.
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The revised model is constructed by supplementing an extra constraint to confine DMUs to possess no
mix inefficiency after the change. We develop an algorithm to solve the revised model in a simplex-liked
manner. In our numerical examples, Algorithm 1 computes all pareto solutions for our test examples,
where their radial efficiency indexes are unchanged and the mix inefficiency is avoided. Numerical
experiments illustrate that our algorithm can keep the radial efficiency level of DMUs unchanged
during the prediction. In addition, the traditional inverse DEA [11] requires prefixed relative weights of
each output, which may cause manipulating the results according to one’s own preference. Our model
avoids prior assumptions about relative weights of each input and output while accessing DMUs’
relative efficiency. The weights prescribed by the DEA model are derived directly from the data and
each DMU is evaluated in its best possible light. However, the premise of our model leads to the
limitations, and our model can only predict DMUs with no mix inefficiency during the two-phase
procedure. In addition, for DMUs that meet this condition, the predictable range is also limited. As a
conclusion, these numerical examples further show the validity and limitations of our method.

This paper is organized as follows. Section 2 provides some preliminary materials including
radial-based DEA models, two-phase method, properties of MOLP, and inverse DEA models. We also
state our assumptions in this section. A numerical counterexample is given in Section 3. Section 4 presents
the revised inverse DEA model and the simplex algorithm to solve it. Two numerical illustrations are
also exhibited in this section. Finally, Section 5 concludes the paper and suggests future studies.

2. Preliminaries

2.1. Radial DEA Models

We consider a system of n DMUs, where inputs and outputs matrices are X = (xij) ∈ Rm×n, X ≥ 0
and Y = (yij) ∈ Rs×n, Y ≥ 0, respectively. Let λ = (λ1, . . . , λn) ∈ Rn, the general production possible
set (PPS) be defined as:

T = {(x, y) :
n

∑
j=1

xjλj ≤ x,
n

∑
j=1

yjλj ≥ y, λ ∈ Λ}, (1)

where Λ is one of the following:

1 ΛC = {λ : λ ≥ 0}, corresponds to constant return to scale (CRS),
2 ΛV = {λ : ∑n

j=1 λj = 1, λ ≥ 0}, corresponds to various return to scale (VRS),
3 ΛNI = {λ : ∑n

j=1 λj ≤ 1, λ ≥ 0}, corresponds to non-increase return to scale (NIRS),
4 ΛND = {λ : ∑n

j=1 λj ≥ 1, λ ≥ 0}, corresponds to non-decrease return to scale (NDRS).

Radial DEA models can be input-oriented or output-oriented, for simplicity, we confined our
study to input-oriented models in this paper. Nevertheless, our results are valid for output-oriented
models with proper modifications.

Input-oriented models evaluate DMUs’ efficiency level through a two-phase procedure [34].
Denote the investigated DMU as DMUo, and its inputs and outputs as Xo and Yo, the two-phase
procedure proceeds as follows:

Phase 1

Solve:
(DLPI) min θ

s.t. (θXo, Yo) ∈ T
θ ∈ R

(2)

let the optimal solution be θ∗.
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Phase 2

Insert the value of θ∗ to solve the following LP :

(MAXS) maxλ,s− ,s+ ω = wT
x s− + wT

y s+

s.t. s− = θ∗xo − Xλ

s+ = Yλ− yo

λ ∈ Λ, s− ≥ 0, s+ ≥ 0

(3)

where wx ∈ Rm and wy ∈ Rs are arbitrary positive weight vectors. With a little abuse of nation, in the
rest of this paper, we use (θ∗, s−, s+) to denote the results of phase 1 and phase 2.

Phase 1 attempts to reduce the inputs of DMUo proportionally (radially) as much as possible while
keeping the changed DMUo remaining in T. The optimal value solution θ∗ is called radial efficiency
index of DMUo. Phase 2 seeks to find maximal possible inputs excesses and outputs shortfalls while
maintaining θ∗. Slack variables, s− and s+, reflect these excesses and shortfalls, respectively. If non-zero
slacks appear in the optimal solution, it indicates that there exists an extra source of inefficiency besides
radial efficiency, and this kind of inefficiency is referred to as mix inefficiency. We will use non-zero
slacks and mix inefficiency interchangeably in the rest of this paper.

Based on the results of these two phases, we define the strongly and weakly efficient as:

Definition 1. If an optimal solution of above two-phase procedure satisfies θ∗ = 1 and all slacks are zero, then
DMUo is called strongly efficient;
If θ∗ = 1 and there are non-zero slacks, then DMUo is called weakly efficient.

Remark 1. If two DMUs have the same radial efficiency index θ∗ but different slacks, their efficiency is different.

2.2. Multiple Objective Linear Programming

Almost all inverse DEA models resort to MOLP. Therefore, it is necessary to review some
properties of MOLP before we proceed to inverse DEA models. A general MOLP can be represented as:

V- maxx y = Cx
s.t. Ax = b

x ≥ 0
(4)

where V-max indicates it is a vector to be maximized, and C ∈ Rp×n means there are p objectives,
hence we have y ∈ Rp.

By convention, we always assume that:

Assumption 1. The p objects of above MOLP can not be optimized at the same time.

Assumption 2. For any obtainable objective vector y, the corresponding feasible solution x is unique.

The solutions’ concepts of MOLP are defined as follows.

Definition 2 (Strongly efficient Solution). A feasible solution x is a strong efficient solution of the MOLP
above if there is no feasible solution x′ such that y′i ≥ yi for all i = 1, 2, . . . , p and y′i > yi for at least one i.

Definition 3 (Weakly efficient Solution). A feasible solution x is a strong efficient solution of the MOLP
above if there is no feasible solution x′ such that y′i > yi for all i = 1, 2, . . . , p.

Since all properties we are going to present are valid for both solution concepts, in the rest of
this subsection, we will not differentiate them and refer to them collectively as efficient solutions.
Denote the feasible space of MOLP as X , XE as the subset of X that contains all efficient solutions.
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Definition 4. Face F ∈ X is called efficient face if F ∈ XE. If there is no efficient face F ′ that F ∈ F ′, it is
called maximal efficient face.

For the structure of strongly (weakly) efficient solutions of MOLP, we have:

Proposition 1. XE is the union of maximal efficient faces.

Proposition 2. XE is connected.

MOLP and LP have a feasible region of the same form as polyhedrons. In the simplex algorithm
of LP, feasible solutions of LP that correspond to extreme points of the polyhedron are called basic
feasible solutions (BFSs), and basis related to BFSs is called the feasible basis (FB). Analogously, we
can define:

Definition 5 (Basic Efficient Solution, Efficient Basis). An efficient solution of an MOLP is called Basic
Efficient Solution (BES) if it corresponds to an extreme point of XE. Basis that corresponds to BESs is called
Efficient Basis (EB).

In addition, adjacent relations as:

Definition 6 (Efficient Basis Adjacent, Neighbor). Efficient basis EB1 and EB2 are called adjacent if they
are different in a single component. EB1 and EB2 are neighbors of each other.

MOLP can be solved by the multiple objective simplex algorithms; see, e.g., [35,36].
These algorithms can locate all BES of MOLP and give a complete description of XE. The key procedure
of these algorithms is the efficient pivot rule that can probe among all BESs, and each pivot is usually
achieved by solving a linear programming.

2.3. Inverse DEA Model

Current radial inverse DEA models seek to estimate inputs/outputs while maintaining the radial
efficiency index. In this paper, we only study the case where DMU of interest is inefficient, which is
θo < 1. Consider the inverse DEA model given in [17] for an inefficient DMU denoted as DMUo:

(IntputX) V- max β

s.t. (θoα, β) ∈ T
β ∈ Rs

(5)

where the name InputX indicates that this model is input-oriented and assigned change is on the input
side; α is the inputs after change; β is the outputs to be found; and θo < 1 is the radial index of DMUo.

Model InputX aims to find outputs that can preserve radial index θo when inputs change to α.
Wei et al. [11] introduced the MOLP technique to solve models like InputX. In their work, a weakly
efficient solution of MOLP is used as a prediction result. Later, Hadi-Vencheh et al. [15] found a
counterexample of the method in [11] and suggested to use a strong solution instead of a weak solution
of MOLP. Furthermore, Zhang and Cui [17] gave a detailed description of the necessary conditions to
use inverse DEA models. Without loss of generality, we adopt the method of Hadi-Vencheh et al. [15]
in this paper and assume the conditions mentioned in [17] are satisfied.

Finally, we have:

Theorem 1 ([11,15,17]). Suppose (β, λ) is a feasible solution of model InputX. Then, new DMU with
production combination (α, β) has the same radial efficiency index as DMUo if (β, λ) is a strongly efficient
solution of InputX.
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The strongly efficient solution can be found using a scalarization technique introduced in [11].

3. Drawbacks of Inverse DEA on Radial Models

3.1. A Numerical Counterexample

We use model InputX under the variable return to scale (VRS) assumption to present the numerical
example. Table 1 exhibits the dataset, and the results of the corresponding two-phase procedure are
listed in Table 2.

Table 1. Production dataset.

DMU1 DMU2 DMU3 DMU4 DMU5

Input 1 4 6 1 4 2
Input 2 3 6 1 2 4
Output 1 1 4 3 4 4
Output 2 1 3.5 4 5 2

Table 2. Results of two phase procedure.

DMU1 DMU2 DMU3 DMU4 DMU5 DMU′1
Efficiency 1/3 1/2 1 1 1 1/3
s−1 1/3 0 0 0 0 0
s−2 0 0 0 0 0 0
s+1 2 0 0 0 0 0
s+2 3 0 0 0 0 0

Suppose the inputs of DMU1 decrease to α = (3, 3), and the goal is to find outputs β that can
maintain the radial efficiency index.

It can be checked that β = (3, 4) is a solution that satisfies model InputX, as DMU with inputs
level α and outputs level β has radial efficiency index 1/3 = θ1. However, this result does not conform
to common experience. While the inputs of DMU1 are assigned to decrease, the inverse DEA model
predicts the outputs shall increase as (3, 4) > (1, 1). This example reveals that radial inverse DEA
models can give unreasonable results.

Furthermore, let the DMU with production combination (α, β) be DMU′1 and perform the
two-phase procedure on it. The result can be found in the last column of Table 2, where all slacks are
zero. Note that DMU1 has no mix inefficiency after the change, whereas, before the change, DMU1

possesses both radial and mix inefficiencies. Since the radial inefficiency is preserved during the
process, the overall efficiency level of DMU1 improved, which violates the inverse DEA’s requirement
of efficiency invariant.

3.2. Theoretic Analysis on the Reason for Drawbacks

The unreasonable result is not an occasional failure. Instead, it is the inevitable consequence of
neglecting mix inefficiency. In this subsection, we extend the counterexample to a general case to
support this assertion.

Theorem 2. Suppose the optimal solution of two-phase procedure of DMUo is (θ∗, s−, s+). If xo is reduced to
α and xo − 1

θ∗ s− ≤ α ≤ xo and β = yo + s+, then (α, β) has radial efficiency index θ∗.

Proof. Denote DMU with production profile (α, β) as DMU′o.
By our assumption that θ∗ < 1 and according to Lemma 1 in [17], we have λ∗o = 0. For inputs,

j = 1, . . . , m:
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∑n
i=1 xjiλi = θ∗xjo − s−j

= θ∗(xjo − 1
θ∗ s−j )

≤ θ∗α

(6)

For outputs, j = 1, . . . , s:

∑n
i=1 yjiλi = yjo − s+j

= β
(7)

By Equations (6) and (7), (θ∗, λ∗) is feasible to model DLPI. Therefore, θ∗ ≥ θ′, where θ′ is the
efficiency index of DMU′o.

Now assume by contradiction that θ∗ > θ′.
Let (θ′, λ′, s−

′
, s+

′
) be the optimal solution of two-phase procedure of DMU′o. We have :

Xλ′ ≤ θ′α < θ∗α ≤ θ∗xo, (8)

Yλ′ ≥ β ≥ yo. (9)

The strict inequality in Equation (8) reveals that there exists λ′ that Xλ′ < θ∗xo; as a consequence,
θ∗ is suboptimal to original model, which is a contradiction.

Base on Theorem 2, we can obtain Corollary 1 that characterizes the counterexample.

Corollary 1. Suppose the optimal solution of two-phase procedure of DMUo is (θ∗, λ∗, s−∗, s+∗). If xo is
reduced to α and α = xo − 1

θ s−∗ and β = yo + s+∗, then (α, β) has radial efficiency index θ∗.

The key observation of the above counterexamples is that current inverse DEA models allow
DMUs’ inputs and outputs to vary within the range of slacks, even in a controversial way. Such
ambiguousness will undermine inverse DEA’s credibility as a prediction and production planning tool.
Take resource allocation, for instance. Because the goal is commonly set to maximize overall outputs,
the problem reported in this section would lead to an overly optimistic result as if outputs of some
DMUs can increase for free. Therefore, results given by current radial inverse DEA models should be
reexamined, especially when slacks are comparatively notable.

A similar phenomenon has been reported in the literature but interpreted differently.
Jahan-shahloo et al. [13] studied the situation where a certain amount of inputs can be reduced
without altering the radial efficiency index. They regarded reduced inputs as extra resources instead of
sources of inefficiency. However, this interpretation implies that DMUs choose to waste some inputs
resources on purpose when making production decisions, contradicting the conventional assumption
that DMUs are rational.

Instead, we attribute the counterexamples to the altered efficiency status of DMUs, as we
explained in the preceding subsection. Furthermore, since current radial DEA models neglect slacks
while evaluating the efficiency of DMUs, it is unclear if they have preserved the efficiency status of
DMUs as required. As a result, even if the undesirable effects do not show up, results given by current
radial inverse DEA models are nevertheless questionable.

We finally remark that, although our counterexample is about outputs’ estimation under inputs’
decrease, it hints at other scenarios where solutions given by inverse DEA models can be controversial.
For example, consider an opposite process of our example to find inputs’ level under outputs’ increase,
our analysis is also valid. Similar problems can be found in other scenarios or output-orientated models.



Mathematics 2020, 8, 803 8 of 17

4. A Revised Inverse DEA Model

4.1. A Revised Inverse DEA Model

Failures reported in Section 3 reflect the conflict between the inverse DEA’s requirement of
evaluating efficiency level explicitly and the fact that classic radial DEA models do not provide a
unified efficiency measure. This conflict is irreconcilable for general situations. Nevertheless, we can
avoid it in a particular situation, where DMU of interest has no mix inefficiency. In this situation, the
radial efficiency index is a comprehensive measure of efficiency. Thus, the requirement of inverse DEA
can be fulfilled by preserving radial efficiency index and restraining all slacks in the corresponding
two-phase procedure to be zero.

We adopt the same notations in Section 3. Denote DMUo as the investigate DMU, whose original
inputs and outputs are (xo, yo) with radial efficiency index θo and no mix inefficiency.

Since conventional inverse DEA models have already solved the problem of maintaining radial
efficiency index, we only need to consider slack variables. The following lemma shows that slack
variables can be handled via model InputX.

Lemma 1. Suppose the inputs of DMUo change to α, and x = (β, λT , s−, s+) is a strongly efficient solution of
model InputX. Then, model MAXS with production profile (α, β) has optimal value zero if and only if s− = 0,
s+ = 0.

Proof. Notice that any solution of InputX is also feasible to MAXS.
For the side of the theorem, suppose MAXS has an optimal solution x̃ = (λ̃, s̃−, s̃+) that some

slack variables are not equal to zero.
Firstly, we prove that, in any optimal solution of MAXS, s̃+ = 0.
By the constraints of model MAXS, we know β = Yλ̃ − s̃+; then, (Yλ̃, λ̃, s̃−, 0) is feasible to

InputX. However, if s̃+ > 0, we will have Yλ̃ > β, which is not possible since β is strongly efficient.
An implication of this fact is that any optimal solution x̂ of MAXS is also a strongly efficient solution of
InputX; this is obvious since, if s̃+ = 0, Yλ̃ = β is strongly efficient.

Secondly, we establish that s̃− = 0.
Any convex combination of x̂ and x is also strongly efficient, with the same objective vector β.

This leads to a contradiction to Assumption 2; therefore, we must have s̃− = 0. Hence, the if side holds.
The only if side of this theorem is obvious.

This lemma aids us to transform InputX into a more compact representation:

Corollary 2. Model InputX is equivalent to model below:

(Input′X) V- maxλ,s− Yλ

s.t. Xλ + s− = θα

λ ∈ Λ
(10)

With the help of Lemma 1 and Corollary 2, our goal is specified as: to find a strongly efficient
solution MOLP Input′X which has only zero slacks. Since there is no guarantee that such a strongly
efficient solution always exists, the revised model should be able to decide whether a solution satisfies
the requirements that exists at all.

Now, we are in the position to present our revised inverse DEA model:

(R-InputX) minλ,s− δ = eTs−

s.t. (λ, s−) ∈ XE,
(11)

where e ∈ Rm is unit vector. If the optimal value of R-InputX is greater than 0, it indicates that
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there is no outputs level β that can satisfy radial efficiency invariant and zero slacks at the same
time. Otherwise, if R-InputX has an optimal value that is equal to 0, then the desired outputs can be
computed by Yλ∗, where (λ∗, 0) is a optimal solution.

For the correctness of this model, we have:

Theorem 3. Model Input′X has strongly efficient solution with only zero slacks if and only if model R-InputX

has optimal value zero.

Proof. R-InputX is bounded below by 0 as s− ≥ 0, therefore it has optimal value zero only when
s− = 0. The rest of the proof is obvious.

Model R-InputX is defined over the strongly efficient solution XE, which can be problematic
as we do not have a complete representation of XE. Furthermore, representing XE explicitly can be
computationally prohibitive, as such representation could include faces with number exponential to
n, m, s [37]. We developed a simplex algorithm for R-InputX to avoid enumerating all strongly efficient
solutions. See Algorithm 1.

Algorithm 1 Simplex algorithm for R-InputX

Require: Input matrix X, output matrix Y, α, θo.
Ensure: Optimal solution (λ∗, s−), optimal value δ

1: Initial: Label variables (λ, s−) with index 1 to n + m. Set C = ∅ as current base, N = ∅ as strong
efficient neighbors of C.

2: if R-InputX is infeasible then
3: (λ∗, s−) = ∅, δ = ∅.
4: break
5: else
6: Find one basic efficient solution xo and corresponding base B, C = B.
7: while C 6= ∅ do
8: Compute all neighbors of C using efficient pivot rule.
9: Find all neighbors that can improve objective, update N to include them.

10: if N = ∅ then
11: Compute (λ∗, s−), δ.
12: break
13: else
14: Find B′ ∈ N with maximal improvement, C = B′, N = ∅.
15: end if
16: end while
17: end if
18: return (λ∗, s−), optimal value.

The basic idea of this algorithm is to improve the objective of R-InputX by pivoting among
efficient basis. If the model is feasible, we can find an initial basic efficient using methods like [38].
The efficient pivot rules can recognize or exclude a neighbor of the current efficient base as an adjacent
BES by solving a linear programming (We are not going to give a complete description of these rules,
knowing they are effective is sufficient for the purpose here. Details of these pivoting rules can be
found in various sources like [36,37] ). Therefore, Algorithm 1 proceeds in a simplex algorithm manner;
at each step, it seeks to improve the objective value by pivoting to an adjacent base. The maximal
improvement protocol, which is the Bland’s rule [39], guarantees that the procedure is circling free in
case of degeneracy.

Now, we are going to justify the algorithm. In Algorithm 1, we only probe BESs of Input′X,
which is only a subset of all strongly efficient solution XE. Lemma 2 confirms that considering only
BESs is sufficient.
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Lemma 2. If there exists a strongly efficient solution x of Input′X that s− = 0, then there exist BES that
s− = 0.

Proof. Notice that the efficient face of MOLP is a polyhedron and any strongly efficient solution must
be on some efficient faces. Suppose x is on face F .

If F is bounded, then x can be represented as a convex combination of the extreme points of
F . Denote the extreme points as e1, . . . , ek; by representation theorem of a polyhedron, there exist
nonnegative real numbers µi, i = 1, . . . , k such that 0 ≤ µi ≤ 1, i = 1, . . . , k, ∑k

i=1 µ = 1 satisfies:

(λT , 0, 0)T =
k

∑
i=1

µiei. (12)

Since s− = 0, s+ = 0, the corresponding parts of extreme points ei, i = 1, 2, . . . , l must be zero.
If F is unbounded, then x can be represented as a combination of extreme points and extreme

rays. Let the extreme points be e1, . . . , ek and extreme rays be d1, . . . , dl . Then, there are nonnegative
real numbers µi, i = 1, . . . , k and positive real numbers νi, i = 1, . . . , l such that 0 ≤ µi ≤ 1, i = 1,
. . . , k, ∑k

i=1 µ = 1 satisfy:

(λT , 0, 0)T =
k

∑
i=1

µiei +
l

∑
j=1

νjdj. (13)

The same logic in the bounded case holds, all slack variables of extreme points and extreme rays
must be zero.

Finally, we have:

Theorem 4. Model R-InputX has optimal value zero if and only if Algorithm 1 outputs zero as the optimal value.

Proof. Recall that model R-InputX has a linear objective function.
According to Proposition 1 and Proposition 2, XE consists of some connected surface of

a polyhedron. If we relax R-InputX to an LP by taking the convex hull of XE, the optimal value
and solution will stay the same, since optimal solutions of LP must lie on the surface of the
corresponding feasible region. As a result, Algorithm 1 is a simplex algorithm for solving the relaxed
LP of R-InputX, which completes the proof.

Remark 2. Algorithm 1 is also capable of generating the basis of all solutions with zero slacks. This can be
achieved by changing the termination condition on line 9 to cache all neighbors when a corresponding objective
is zero-valued.

4.2. Numerical Examples

In this subsection, we give two numerical examples to illustrate our revised model. As mentioned
in the Introduction that Zhang and Cui [17] integrated inverse DEA models into 12 different cases,
including the cases proposed by previous authors [11–16]. Therefore, we use the models in [17] to
make a comparison. Note that existing inverse DEA models require a priori weight of each output.
We default all the weights by one as [11], which is also a common practice in the literature.

4.2.1. Example 1

The dataset in Example 1, presented in Table 3, is the same as Table 1, where the inputs of DMU2

change and we need to find suitable outputs. Note that DMU2 has only zero slacks in Table 2, which
means the desired outputs level should keep all slacks zero-valued.
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Table 3. Production Example 1.

DMU1 DMU2 DMU3 DMU4 DMU5

Input 1 4 6 1 4 2
Input 2 3 6 1 2 4
Output 1 1 4 3 4 4
Output 2 1 3.5 4 5 2

Case 1

The inputs of DMU2 are altered to α1 = (7, 5), and denote the desired outputs level as β1.
Label variable λi, i = 1, . . . , 5 and slack variables s−1 , s−2 sequentially as 1, . . . , 7, solving R-InputX by
invoking Algorithm 1. The programming is feasible, and (3, 4, 6) is an initial basis that corresponds
to efficient solution x0 = (0, 0, 1/6, 5/6, 0, 0, 2/3), which is C = (3, 4, 6). The objective value of
eTs− can still be improved by pivoting to an adjacent basis (4, 5, 6) that corresponds to efficient
solution x1 = (0, 0, 0, 3/4, 1/4, 0, 0), where eTs− = 0. Thus, we have reached to an optimal solution
with β1 = (4, 17/4). The new DMU with production profile (α1, β1) has the radial efficiency index
before change; moreover, it has no mix inefficiency.

On the contrary, if we employ the scalarization technique given in [17] to solve this case, it will
result in x0 with β = (23/6, 29/6), s− = (0, 2/3), which are not satisfying outputs to preserve mix
inefficiency status.

Case 2

In this case, we let inputs of DMU2 change to α2 = (5, 5) and denote the desired outputs level as
β2. Label variable λi, i = 1, . . . , 5 and slack variables s−1 , s−2 sequentially as 1, . . . , 7, solving R-InputX by
invoking Algorithm 1. The programming is feasible, and by the same procedure in Case 1 the efficient
solution is x1 = (0, 0, 1/4, 3/8, 3/8, 0, 0), where eTs− = 0. Thus, we have reached an optimal solution
with β2 = (15/4, 29/8). The new DMU with production profile (α1, β1) has the radial efficiency index
before change; moreover, it has no mix inefficiency.

However, the scalarization technique given in [17] will result in x0 with β = (7/2, 9/2), s− = (0, 1),
which are not satisfying outputs to preserve mix inefficiency status.

Case 3

For another case, if we let inputs of DMU2 change to α2 = (4, 5/2), then the optimal solution of
R-InputX is (0, 0, 2/3, 1/3, 0, 0, 1/6) and the optimal objective value is no longer zero. This means that
no output level can keep radial efficiency index invariant and no mix inefficiency at the same time.

The scalarization technique given in [17] results in x0 with β = (13/4, 17/4), s− = (1/4, 0),
neither of which are satisfying outputs that can preserve mix inefficiency status.

From the definition of XE, we can derive the expression for the predictable range of DMUs’ inputs
from (λ, s−) in XE. We present the predictable range for all DMUs in Figure 1, it is worth mentioning
that DMU1 is not predictable for its non-zero mix inefficiency.
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Figure 1. The predictable range of inputs on DMUs in Example 1.

4.2.2. Example 2

In this numerical example, we show that our algorithm may give several different satisfying
predictions. We construct Example 2 by adding DMU6 and DMU7 to Example 1; the details are
presented in Table 4. The DEA analysis results of this example are listed in Table 5; DMU3–DMU7

are strongly efficient, DMU1 is inefficient with non-zero slacks, DMU2 is inefficient with no slacks.
Therefore, DMU1 is non-predictable and DMU3–DMU7 are predictable. The predictable range of
inputs for DMU3 - DMU7 are presented in Figure 2. Here, we still analyze the three cases of DMU2 in
Example 1.

Table 4. Production Example 2.

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7

Input 1 4 6 1 4 2 3 1.5
Input 2 3 6 1 2 4 1.5 3
Output 1 1 4 3 4 4 1 4
Output 2 1 3.5 4 5 2 5 1

Table 5. Results of two phase procedure.

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7

Efficiency 1/3 1/2 1 1 1 1 1
s−1 1/3 0 0 0 0 0 0
s−2 0 0 0 0 0 0 0
s+1 2 0 0 0 0 0 0
s+2 3 0 0 0 0 0 0
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Figure 2. The predictable range of inputs on DMUs in Example 2.
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Case 1

The inputs of DMU2 are altered to α1 = (7, 5), and denote the desired outputs level as β′1.
Label variable λi, i = 1, . . . , 7 and slack variables s−1 , s−2 sequentially as 1, . . . , 9, solving R-InputX

by invoking Algorithm 1. The programming is feasible, and the efficient solution is unique, which
is x1 = (0, 0, 0, 3/4, 1/4, 0, 0, 0, 0) with eTs− = 0. Thus, we have reached an optimal solution with
β′1 = (4, 17/4). The new DMU with production profile (α1, β′1) has the radial efficiency index before
change; moreover, it has no mix inefficiency.

The scalarization technique given in [17] results in x0 with β = (23/6, 29/6), s− = (0, 2/3),
which are not satisfying outputs to preserve mix inefficiency status.

Case 2

The inputs of DMU2 are altered to α2 = (5, 5), and denote the desired outputs level as β′2.
Label variable λi, i = 1, . . . , 7 and slack variables s−1 , s−2 sequentially as 1, . . . , 9, solving R-InputX

by invoking Algorithm 1. The programming is feasible, and by the same procedure in the Case
1 of Example 1, the extreme points of all the efficient solution are (0, 0, 1/4, 3/8, 3/8, 0, 0, 0, 0),
(0, 0, 1/22, 9/22, 0, 0, 6/11, 0, 0), (0, 0, 1/22, 0, 9/22, 6/11, 0, 0, 0), where eTs− = 0. Thus, we have
reached optimal solutions, which are the convex combination of (15/4, 29/8),(87/22, 30/11),
(51/22, 41/11). The new DMU has the same radial efficiency index before change; moreover, it has no
mix inefficiency.

The scalarization technique given in [17] results in x0 with β = (7/2, 9/2), s− = (0, 1), which are
not satisfying outputs to preserve mix inefficiency status.

Case 3

If we let inputs of DMU2 change to α3 = (4, 5/2), then the optimal solution of R-InputX is
(0, 0, 1/2, 0, 0, 1/2, 0, 0, 0) with eTs− = 0. Therefore, we reach an optimal solution with β′3 = (2, 9/2).
It is worth mentioning that, with more information (DMU6, DMU7) given, α3 become predictable in
this example.

The scalarization technique given in [17] results in x0 with β = (13/4, 17/4), s− = (1/4, 0),
which are not satisfying outputs to preserve mix inefficiency status.

4.3. Discussion

The numerical examples are summarized in Table 6, where ’Revised’ stands for the inverse DEA
model R-InputX. The mix inefficiency of DMU2 in the two phase procedure was zero before the
changes in both examples, therefore the efficiency level has been preserved. In contrast, inverse DEA
model in [17] will result in a new DMU with non-zero mix inefficiency. According to Remark 1,
the efficiency level of DMU2 has been changed.

Table 6. Comparison of our algorithms and the previous inverse radial model [17]. Revised: our
inverse DEA model R-InputX. Conv: convex combination.

DMU2 (7,5) (5,5) (4,5/2)

Revised [17] Revised [17] B [17]

Example 1 Output (4,17/4) (23/6,29/6) (15/4,29/8) (7/2,9/2) - (13/4,17/4)

Mix inefficiency (0,0) (0,2/3) (0,0) (0,1) - (1/4,0)

Example 2 Output (4,17/4) (23/6,29/6)
Conv ((15/4,29/8),

(87/22,30/11),
(51/22,41/11))

(7/2,9/2) (2,9/2) (13/4,17/4)

Mix inefficiency (0,0) (0,2/3) (0,0) (0,1) (0,0) (1/4,0)

Aside from its ability to preserve the overall efficiency, the inverse DEA model R-InputX can
provide the user with more objective information about the production possibilities. One of the
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advantages of the DEA model is that it avoids prior assumptions about relative weights of each input
and output while accessing DMUs’ relative efficiency. The weights prescribed by the DEA model
are derived directly from the data and each DMU is evaluated in its best possible light. This feature
makes DEA an objective efficiency evaluation method. Although there are techniques that impose
control over the weights, a certain level of flexibility of the weight is still preserved. As we mentioned
in Remark 2, our model can give the basis of all satisfying output combinations without the need to
prescribe the weights. For example, in Case 2 in Example 2, after the inputs for DMU2 are changed to
(5, 5), our model computes three basis solutions: (15/4, 29/8), (87/22, 30/11), (51/22, 41/11), and any
linear combination of these solutions leads to a DMU with the efficiency level before the inputs change.
However, if we use the technique in [17] to solve the inverse DEA model, the relative weights of the
DMU after input change are also specified, which means that the user of the inverse DEA model can
manipulate the weights according to his or her preference. In such cases, the results given by the
inverse DEA model are no longer impartial.

However, there are some limitations of this revised model R-InputX. First of all, it is specially
designed for DMUs without mix inefficiency, whereas non-zero slacks are quite common in practice.
However, as we argued earlier, this is the limitation of radial DEA models. Nevertheless, as model
R-InputX tries to minimize slacks, it can be used to find an approximation result when the mix
inefficiencies are required to be relatively small before and after the change. This result only
implies that no output level can preserve the overall efficiency of DMUo under the current DEA
model. Another limitation of the model R-InputX is that, even for DMUs without mix inefficiency,
the predictable range for the DMUs is limited. However, as illustrated in the numerical experiments,
the more information we are given, the larger range we can predict, which is consistent with
our perception.

5. Conclusions

This paper points out possible failures of existing radial inverse DEA models and provides
a remedy for some situations. Although classic radial DEA models evaluate the total efficiency level of
DMUs through both the radial efficiency index and the mix inefficiency, existing radial inverse DEA
models consider only radial efficiency index. As a consequence, current radial inverse DEA models
may result in a new DMU with different efficiency levels, breaching the assumption of inverse DEA.

We assess the influence of this kind of inconsistency by giving a counterexample where a radial
inverse DEA model predicts outputs to increase while inputs decrease. This kind of failure is inevitable
when slacks exist and will render inverse DEA models unreliable. Because of these drawbacks,
we suggest that the results given by inverse DEA models should be interpreted and used with care.

To rectify this problem, we revise radial inverse DEA models for a particular situation where
DMU of interest has no mix inefficiency, that is, radial efficiency index alone can represent the total
efficiency level. The revised model is developed by excluding all mix inefficiency during the change
while preserving radial efficiency index. Our model can redeem the unaltered efficiency level and can
be solved efficiently using a simplex-like algorithm. Given that standard radial DEA models do not
have a unified measure of efficiency level, it is not clear how to develop inverse DEA models that
apply to general cases.

In our numerical experiments, we find the traditional inverse DEA may manipulate the weights
according to personal preference, which introduces a priori assumptions about relative weights of
each output and violates the property of DEA. In contrast, our model avoids prior assumptions about
relative weights of each input and output while accessing DMUs’ relative efficiency. Therefore, our
algorithm computes all Pareto solutions for our test examples, where the mix inefficiency is avoided.

Finally, it would be an important direction to develop inverse models for non-radial models as
well as an efficient algorithm to solve it, especially models that have a unified efficiency measure.
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The following abbreviations are used in this manuscript:

BES Basic efficient solution
BFS Basic feasible solution
CCR Charnes, Cooper, and Rhodes
CRS Constant Return to Scale
DEA Data envelopment analysis
DMU Decision making units
EB Efficient basis
FB Feasible bases
LP Linear programming
MOLP Multi-objective linear programming
NDRS Non-decreasing return to scale
NIRS Non-increasing return to scale
VRS Various return to Scale
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