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Abstract: The Efficient Market Hypothesis (EMH) states that all available information is immediately
reflected in the price of any asset or financial instrument, so that it is impossible to predict its future
values, making it follow a pure stochastic process. Among all financial markets, FOREX is usually
addressed as one of the most efficient. This paper tests the efficiency of the EURUSD pair taking
only into consideration the price itself. A novel categorical classification, based on adaptive criteria,
of all possible single candlestick patterns is presented. The predictive power of candlestick patterns
is evaluated from a statistical inference approach, where the mean of the average returns of the
strategies in out-of-sample historical data is taken as sample statistic. No net positive average returns
are found in any case after taking into account transaction costs. More complex candlestick patterns
are considered feeding supervised learning systems with the information of past bars. No edge is
found even in the case of considering the information of up to 24 preceding candlesticks.

Keywords: FOREX; efficient market hypothesis; adaptive candlestick patterns; decision trees; random
forest; adaboost; finance

1. Introduction

Intensive research has been done on checking the validity of the Efficient Market Hypothesis
(EMH) and its softer variations in financial markets. In fact, different markets have been tested to
offer inefficiencies and some works conclude there exists some, for example in the Stock Exchange of
Thailand [1], European stock exchanges [2], European emerging stock markets [3], or African stock
markets [4].

Candlestick patterns predictive power has been widely studied for several financial instruments.
Shooting star and hammer patterns for S&P500 index have been recently studied [5] finding little
forecasting reliability when using close prices. In addition, morning and evening star patterns have
been studied for Shanghai 180 index component stocks where some predictive power is concluded [6].
Some works (e.g., [7]) show how the predictive power of certain Japanese candlestick patterns vanishes
as predicting time increases in Chinese stock market, in line with the conclusions of this paper. Some
works have studied two-candlestick patterns, finding certain predictive power for the emerging equity
market of Taiwan [8].

This work explores the role of candlestick patterns in price forecasting for the EURUSD pair in
the FOREX market. Four different timeframes are employed in our analysis: 30, 60, 240 and 1440 min.
These periods of time refer to how long is represented in each single candlestick. For this purpose,
several trading strategies are analysed, each one defined by a different entry condition for its trades:
the occurrence of a specific candlestick pattern. Simple and complex candlestick patterns are studied
when the pattern is comprised of one or more candlesticks. In the latter case, supervised learning
methods are employed to define which exact pattern offers better results for the trading strategy, that is,
which complex patterns yield better equity curves when used as entry signals. Although these complex
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patterns are not explicitly described, they emerge from the output of the tree-based supervised learning
algorithms.

As we can see, many of the studies mentioned above focus only on certain specific patterns.
Our approach deals with all possible single candlestick patterns. For analysing more complex
predictive structures of the price, we focus our attention on one specific candlestick pattern (which
is our reference-pattern) and then we try to find out which the influence of previous candlesticks is
over the performance of the strategy that uses the reference pattern as a signal to enter the market.
This influence is studied using a machine learning setup, where different supervised learning systems
are trained in order to improve the performance of the strategy. We use the three-barrier method
presented in [9] for labelling all orders (whether they are profitable or not) to be used for feeding the
supervised learning algorithm.

Figure 1. Volatility clustering can be appreciated in EURUSD price history.

Taking into account market dynamics is essential whenever one pretends to check the predictive
power of certain patterns. These patterns should adapt to the market if we want to use them under
different market regimes. It is well known that volatility clustering occurs frequently in financial
instruments, as we can see in Figure 1, making it clear that things that may work in high volatility
conditions may work differently when low volatility comes to the market. One of the possibilities to
adapt to this behaviour of the market is to classify different patterns according to different regimes
of the market. In this sense, it is possible to use Hidden Markov Chain Models (HMCM) to predict
different regimes of the market [10]. Normalisation of the data using a rolling window of certain
period is also a possibility to try to adapt to market changing conditions. This way we could compare
the evolution of the series no matter which regime they pertain to.

A novel categorical and adaptive classification of candlestick patterns is employed in this work,
which relies on classifying candlestick features such as the size of its body and shadows (upper and
lower) categorically, defining three different values depending on its relative size compared to their
average size in a rolling window. Possible values are big, medium and small for all three features
characterising a single candlestick. The exact procedure for obtaining the adaptive candlesticks is
further explained in Section 2.

In this work, integer difference over the close prices is calculated to obtain the return of the price
along different timeframes. However, this calculation produces a stationary time series that erases
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all possible memory that could be present in the original series. By this, we mean that there does not
remain any correlation among the original series and its differentiated series. Although stationarity
obtained by the differencing procedure is a valuable characteristic of any feature feeding classification
methods [11], such as those that are employed in this paper, by doing so, we are also erasing all
possible predictive power of the original time series, thus leading to noninformative features for our
machine learning algorithm. It has been recently suggested that the calculation of fractional differences
addresses this problem, thus obtaining a stationary series that is still correlated with the original time
series [11]. Although not being at the core of this paper, two innovative results are shown in this paper
regarding the use of decision-tree based classifiers in forecasting prices of the FOREX market: First, we
give a quantitative measure to show how different their forecasting abilities are for supervised learning
methods employing fractional differenced variables as input features respect to the typical integer
differencing procedure. Second, tests are done with three different supervised learning algorithms,
named Decision Trees (DT), Random Forests (RF) and AdaBoost (AB), that allow us to conclude which
of them is better suited for the problem of forecasting prices in the FOREX market.

After this Introduction we present in Section 2 the methodology employed, paying special
attention to the way categorical classification of candlestick patterns has been done, and how statistical
tools are employed to get rid of all possible biases of our analysis. Section 3 presents the main results
and discussion of our studies consisting of single candlestick pattern triggered strategies as well as
more complex candlestick patterns using supervised learning algorithms. Finally, Section 4 shows our
concluding remarks and potential future works.

2. Methodology

The analysis presented in this paper is based on the study of the performance of different trading
strategies. A trading strategy refers to a set of rules that define all decisions necessary to deploy trading
activity in any market, in a unique way. There are many variables which will affect to the performance
of a trading strategy. Some of them are under our control and some other are not. Typically, those
variables which are under our control refer to the rules that define how the trades are done, so we will
refer to them as endogenous variables. However, a trading strategy is applied to certain market, and
there are some variables that depend on the market itself and not on the trading strategy. We refer to
these out-of-control variables as exogenous variables. Both variables must be known in order to assess
the actual performance of a trading strategy.

Main endogenous variables are:

• Entry condition: It refers to the condition that has to be met to open a position in the market.
It can be defined by a specific price (open a buy when the ask price hits certain level), a specific
time (open a buy at 9 : 00 a.m), or any other condition which may depend on the value of other
parameter (open a buy when the value of the moving average of the close price is below the ask
price).

• Exit condition: It refers to the condition that has to be met to close a position in the market. It is
defined in the same way as the entry condition. When specific prices are set to exit the position,
we are defining a level of price at which we exit the position with earnings, which we refer to
as Take Profit (TP) level, and a level of price at which we exit the trade with loses, the Stop Loss
(SL) level.

• Direction: The direction of the trade defines whether a buy (going long) or a sell (going short) is
opened.

• Size of the trade: In FOREX, it refers to the amount of lots to be traded.

Main exogenous variables are:

• Lot size: In Foreign Exchange Market (FOREX), it refers to the amount of currency units that
define one lot, which is what is actually traded.
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• Leverage: It permits the trader to open positions much larger that his own capital. It depends on
the instrument being traded and the broker which offers you the trading service.

• Margin: It defines a minimum capital to be held in the account, without being invested in any
trade. The higher is the leverage, the lower is the margin required to open a position, and
conversely.

• Transaction costs: There are several components that form the actual transaction cost of a trade,
e.g., the spread (difference between ask price and bid price), commission per order (a fixed
amount per lot) and swap (in FOREX, it is a daily commission depending on which currency pair
is being traded).

When analysing the predictive power of a trading strategy, we only consider the direction of the
trades, and their entry and exit conditions for its design. This is because we measure the performance
of the strategy using pips (the minimum variation of price in FOREX market, typically ten thounsandth
the quote currency unit being traded in FOREX). That means we use price quotations of the EURUSD
pair when analysing the predictive power of candlestick patterns. All data were downloaded for
free from Dukascopy server, https://www.dukascopy.com/trading-tools/widgets/quotes/historical_
data_feed. Such data are not meant to indicate the actual value at any given point in time but represent
a discretionary assessment by Dukascopy Bank SA only. That makes our analysis independent of
any money management policy, so that exogenous variables do not take part in the analysis done to
conclude about the forecasting ability of candlestick patterns. From this approach, we understand
a positive performance of a trading strategy implies that its returns, measured in pips, are positive.
When trying to find out whether a strategy showing predictive power is profitable or not, we consider
all variables, endogenous and exogenous.

Our main goal is showing the predictive power arising from the use of adaptive candlestick
patterns for the EURUSD pair in the FOREX market. We present different analysis, which may be
classified in three different stages:

• First, we show the results coming from the analysis of the performance of the trading strategies
that use the occurrence of all single candlestick patterns as their entry condition. These strategies
enter the market at the next open price of a certain candlestick pattern and exit the market at its
close price. Thus, the exit condition is event based. Both directions (long and short) are considered
for all possible single candlestick patterns.

• Then, we want to know whether changing the exit condition, from an event based exit condition
to a price fixed-level strategy for both TP and SL, could improve the performance of the best
strategy found in the previous analysis.

• Finally, we ask ourselves whether supervised learning algorithms could improve the performance
of the best price fixed-level strategy found. We use three different supervised learning algorithms
for classification purposes: a Decision Tree (DT) and two ensemble methods, Random Forest
classifier (RF) and AdaBoost classifier (AB) . Each of these three learning algorithms is fed in
two different ways: first, with all parameters defining last Nc candlesticks (which are the relative
size of its body and shadows and the integer difference of two consecutive close prices), which
yields a total of 4Nc features for the classification algorithm, and, second, the same features as
before but changing the value of the integer difference of two consecutive close prices for the
fractional difference of two consecutive close prices. This way we can compare the equity curves
of the strategies arising from all classification models and conclude which one performs better
and which features present better predictive power.

Once the analysis of predictive power for each stage is finished, we proceed with the analysis of
the profitability of the best trading strategy found. For this purpose, size of the trades is fixed to one
lot for all trading strategies and all exogenous variables are also determined: lot size is considered to
be 100,000 currency units, which is usually referred to as the standard lot size. Leverage of EURUSD
pair in FOREX is fixed to 30:1, which makes the margin 3.33%. These latter values are usually fixed for
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retail trading, and it makes sense to take them into account when we only want to study how an initial
capital is evolving with trading, since it shows which percentage of the initial capital is available for
entering new trades. Since we are not studying how an initial capital evolves, we do not use these
parameters, as they do not influence on the actual profitability of the strategy in absolute terms when
enough initial capital is considered. Finally, spread and commissions per trade are also considered
as transaction costs, using typical values for these parameters among different brokers. Swap is not
considered since it is a commission only charged to an account when a trade is opened along certain
periods of time, typically at the end of the day, and most of our trades do not meet that requirement.

2.1. Adaptive Candlestick Patterns Classification

First, we present the method employed to classify the candlesticks categorically, and then we
discuss the parameters that arise as degrees of freedom involved in the classification process.

We pretend to classify all possible types of one single candlestick pattern. For this purpose,
we focus on three parameters: the size of the three different parts in which a candlestick can be divided,
i.e., its body and its upper and lower shadows, as shown in Figure 2a. This way, we distinguish
among those candlesticks which have a large body or a small lower shadow respect to an average
value, for example. It is interesting to point out that it is possible to establish certain correspondence
among the different type of candlestick patterns arising from this classification and the existing
classification coming from Japanese candlestick realm where many candlestick configurations are
already classified [12]. For example, doji or hammer candlesticks, to present a couple of examples,
could have its correspondent equivalent, as presented in Figure 2b.

(a) (b)

Figure 2. (a) Different parts of a bearish candlestick. (b) A doji is a kind of candlestick where the size
of the body is much smaller than both shadows, while a hammer has a small body, one small shadow,
and one big shadow (depending on whether we are referring to an inverted hammer or not).

The problem that arises here is that a comparison is needed to correctly define what is big and
what is small. We could use a fixed value serving as a reference to which we compare with in order to
find out the relative size of whatever we are analysing. The problem with this approach is that it is not
adaptive, thus it may make no sense to compare the bodies of two candlesticks which are classified as
big but in different market regimes, where volatility may be very different. They may have nothing
in common, so the comparison may not provide any useful information. To deal with this problem,
we need to look back at the past, say n periods, and compare the current value of the parameter with
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the distribution comprised of all past n values for that parameter. When this distribution is ordered,
what place takes our current value on that distribution? The answer to this question leads us in a solid
way to state that certain parameter is a big or small respect to the past n values of that same parameter.
Thus, we use dynamic reference for comparing purposes. It is yet not defined what is big and small
when being compared with the past n values. We need to define thresholds that distinguish different
sizes. These thresholds have to do with the frequency of appearance of the parameter values in the
distribution conformed by the past n values of the parameter. We consider that a value which fits
into the first quartile in the distribution defined before is small, because that will mean that there are
few values which have a size lower than that which is being analysed (at most 25% of the n values
considered in the distribution). Those values located in the second and third quartiles are classified
as medium size and those values which are bigger than the third quartile are considered big. Here,
we introduce two degrees of freedom: first, the rolling window size, n, which defines the size of the
distribution we use to compare with as a reference, and, second, the quantile Q used as a threshold to
delimit different classes of sizes.

2.1.1. Effect of Rolling Window Size, n

The size of the rolling window, n, defining the size of the distribution to which we compare with,
impacts directly on the capability of our strategy to adapt to quick changes in the market. The bigger
is n, the slower is the adaption to new conditions of our strategy. On the other side, the lower is n, the
quicker is the adaption to new scenarios but also the less meaning there is to our parameter values
(because we compare with just a few values).

Figure 3. There is not a clear pattern of how the parameter n affects the performance of
different strategies.

Figure 3 shows different equity curves of one single candlestick pattern strategy changing the
value of n for different trigger signals. We can see the behaviour cannot be generalised since it depends
on how well our strategy behaves for certain historical data. That is why it probably makes no sense
to try to optimise this parameter. We need different criteria to choose a value for this parameter n.
In this sense, we want to make sure that the size of the rolling window, n, is big enough for the price
to have experienced different market behaviours. Let us suppose that market behaviour is heavily
influenced by the volume being traded. This is exactly true if one considers all real volume traded
for an asset, and it is as approximate as the relative size of the volume considered referred to the total
real volume. We also know that volume data show periodicity in all timeframes since they reflect
the trading habits of all stakeholders, from retail traders to institutional investors. We can see this
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periodicity in the volume data for EURUSD pair in Figure 4, where a daily period is clearly seen in all
timeframes. From that ground, we should look for periods of time comprising some periods of volume
data. Since all intraday timeframes exhibit that daily periodicity, choosing a rolling window size that
comprises a whole labour week for all these timeframes makes sense. For daily candlesticks, having
just five candlesticks as a reference to measure the relative size of the candlestick parameters may be
too low, and that is why we choose a whole month for the daily case. All different values used in our
simulations are shown in Table 1.

Table 1. Rolling window size n shrinks as the timeframe expands.

Timeframe (min) Rolling Window Size n

30 240
60 120

240 30
1440 22

Figure 4. Daily periodicity of volume data for EURUSD pair in May 2018.

2.1.2. Effect of the Quantiles Used as Thresholds

The second degree of freedom is the threshold (if symmetric, otherwise there are two degrees
of freedom, one per threshold) defining whether something is usual or not taking into account
its frequency of appearance in the reference distribution. We choose a symmetric threshold when
considering all the values that are below the Q% of values or above the (100−Q)% of values in the
reference distribution. This gives us two quantiles for defining the lower and upper bounds that let us
distinguish what is frequent and what is not, which tells us whether a certain size is big (if not frequent
in the reference distribution and above the average), medium, or small. If we take Q as very small, we
focus mainly on outliers (with respect to our reference distribution). The point is that, in this latter
case, we may be left with most of the candlesticks pertaining to a medium size while few candlesticks
fall into the big and small categories. Working under these conditions may provide us very few signals
when focused on big or small values, and may yield non-statistically significant results. Thus, we are
interested in a more balanced classification of what is small and big. That is why we take the value
Q = 25%. We can see in Figure 5 two different histograms showing the frequency of appearance of
each type of candlestick, using different Q thresholds.

The classification of single candlestick patterns considering three different parameters, lower
shadow, body and upper shadow, and three different sizes, big, medium and small, yields 27 different
types of candlesticks. When considering whether they are bullish or bearish, we are left with a total of
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54 different type of one-single candlestick patterns. Figure 6 shows how all different type of bearish
candlesticks could look, just to give more intuition on what we are working with. Remember, we are
not doing any calculations on our candlesticks, just classifying them in a categorical way based on how
big their parameter sizes are with respect to the past n candlesticks values. It can be seen in Figure 5
how the frequency of occurrence of each candlestick pattern is approximately discretely distributed and
heavily dependent on how many parameters are classified as medium size: by construction, we have the
highest frequency of appearance for the case where all three defining parameters of a candlestick are
classified as medium size. We classify these candlestick patterns as Class 1 patterns, the most frequent
ones. The following candlestick patterns by frequency of appearance are those which have two out
of three parameters that are medium size, which we refer to as Class 2 candlestick patterns, yielding a
number of trades that are approximately half of those corresponding to Class 1 candlestick patterns
strategies. A similar approach is followed to obtain Class 3, just one parameter classified as medium
size and Class 4 with no parameters classified as medium size.

Figure 5. When the quantile chosen is low, we see two peaks at those candlesticks which have medium
size for all three parameters (body and shadows), one bullish and the other bearish. This concentration
disappears as the quantile used as a threshold grows.

Figure 6. Each box is identified by the size of each parameter defining the single-candlestick pattern. In
the upper area of each box, we read the size of the top shadow (STS, MTS and BTS for small, medium
and big sizes, respectively). Similarly, we find the information about the lower shadow in the lower
part of each box.
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2.2. Hypothesis Testing

The scientific method is necessary to make new findings and discover alphas in the form of robust
and profitable trading strategies. However, it is often easy to follow some common reasonings which
are subtly full of different biases that are responsible for many trading strategies underperforming just
after beginning their way in real accounts.

Following Aronson’s approach [13], we first define our hypothesis and design experiments that
may let us infer their validity following a statistical analysis approach. Our goal is to determine whether
a trading strategy based on buying or selling a whole candlestick (entering at its open price and closing
the position at its close price) of the timeframe we are working with is profitable consistently in time for
EURUSD pair in FOREX. Long and short signals are defined by a specific type of candlestick pattern
(which may be a single candlestick pattern or a more complex one), the appearance of which triggers
our trade at the open price of the next candlestick.

It is time to define our claim clearly. We use a conditional syllogism to find out whether a trading
strategy has any predictive power. This conditional syllogism has two premises and one conclusion.
These premises are based in the hypothesis that the strategies considered are free of biases (such as
trend bias or data mining bias, which we focus in later to make sure these hypothesis hold). The major
premise reads: If the trading strategy has no predictive power, its average return is zero. The minor premise
is: The strategy considered yields a non-zero average return. Since we are negating the consequence of the
major premise, we are led to negate the antecedent of the major premise as a conclusion. Thus, the
conclusion reads as: The strategy considered has predictive power.

Now, we want to focus on finding out the validity of the minor premise, i.e., whether or not
the strategy yields a non-zero average return. This is where we use hypothesis testing, where the
null-hypothesis H0 is: The average return of the strategy is zero. As far as we find sufficiently large positive
values for the metric considered (the average return of the strategy) for assessing the profitability of
the trading strategy, we can reject the null hypothesis, thus leading to affirming the minor premise
aforesaid, which means we have found a profitable trading strategy, following the modus tollens logic.
In this latter case, we would have shown empirically that it is possible to produce positive returns
coming from the predictive power of certain candlestick patterns, thus contravening the stronger form
versions of the EMH.

Thus, our sample statistic is the average return of the strategy, and the sampling distribution for
the mean of the average return of the strategy follows a normal distribution with zero mean, as long as
we can apply the Central Limit Theorem (CLT) [14]. It is important to say that the application of CLT
in this case is an approximation that is more accurate when the suppositions made by the CLT are
more realistic. There are two prerequisites: all of the samples forming the sampling distribution for the
mean of the average returns must be independent and identically distributed. The latter condition is
usually not true in the financial realm, but usually employed since it offers a way of approximating to
the solution of the problem. We use a confidence level of 95%, which means that a p-value lower than
0.05 is necessary to reject the null hypothesis.

For the average return of a random strategy to be zero, we must check first that the average return
of the price itself (we work with the close price) in the historical data is also zero, otherwise we may
get positive (or negative) average returns due to a trend bias present in the price itself. Thus, we work,
when calculating the returns (given by the difference of the close prices between two consecutive
candlesticks) of our trading strategy, with the detrended series of returns for the close price of EURUSD
pair, by subtracting to the time series of differenced close prices the average of the same series itself.

Since we are looking for the best rule performance among all different candlestick patterns, we
have to consider data mining bias being present in our results. Positive returns of a trading strategy
may be due to two main reasons: luck and predictive power [13]. Luck due to good fit of the parameters
of a trading strategy to the price history is a data mining bias appearing whenever a set of parameters
is chosen among a big space of parameters that have been simulated and the best performing one
is chosen. Given a trading strategy, we can get rid of the luck component of the average returns by
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calculating different samples generated randomly, using Monte Carlo method, forming the sampling
distribution to be employed in the hypothesis test [13].

Calculating Sampling Distributions

Monte Carlo is employed for obtaining the sampling distribution of the average return of a strategy.
Monte Carlo can tell us how big is the luck component of the average return since it yields values of
average returns that arise from random entries for our trades. Doing this experiment N times obtains
a sampling distribution for the average return of a strategy, where one can do frequentist inference
to accept or reject the null hypothesis. While this approach is perfectly feasible for non-fixed levels
for exiting the trades, it is not for the fixed level strategies. In this latter case, the returns arising from
randomly shuffling the trades in our historical data requires looping for all trades in 1-min timeframe
bars to check what exactly happens for each trade. That process is very computationally expensive (we
have 3000 MC simulations with around 1000 trades per simulation). Thus, an approximation is used in
this latter case (fixed-level exit conditions) to obtain the sampling distribution: instead of checking
one by one all trades, we need to have an estimate of which the percentage of winning trades could
arise by chance, which defines the average return of the strategy. The estimation of this percentage
for winning trades is a Gaussian 50%-entered distribution (as long as the process is random, 50%
of the trades are expected to be winners) whose dispersion is calculated as the standard deviation
of the winning percentage for all strategies arising from the same candlestick pattern class, for it to
have similar number of trades for the in-sample period. The concept of pattern class is explained at
the end of Section 2.1.2. We understand this approximation is realistic since in-sample period and
out-of-sample period are the same length (approximately eight years) and a similar number of trades
is expected for the same class of candlestick patterns in both periods, thus the sampling variance is
expected to be similar for both cases.

To estimate how profitable it is certain strategy, we need to have an estimate for its average return
and this can be done by subtracting from the actual average return obtained for our strategy first the
average return given by the 95% percentile of the sampling distribution obtained by Monte Carlo
method (this is the component due to luck) and second the transactional costs per trade. Thus, we are
left with the net average profit of our strategy due to its predictive power.

2.3. Robustness of the Strategies

We use Walk Forward Analysis (WFA) as presented by Pardo [15] to define the robustness of our
strategy. We want to know whether the strategy behaviour we see in-sample holds for the out-of-sample
period of our historical data. As long as this happens, we have a robust strategy.

To decide which are the different folds of our historical data, we define two parameters: Nb, the
number of different folds we would like to have as in sample data, and r = sizeIS

sizeOOS
, which tells us

the ratio of sizes between the in sample folds and the out of sample data for each fold. Let us use an
example to clearly show how folds are defined. Let n be the sample size of all the historical data and
α = n

r+Nb
− 1. We have that each fold is defined by:

DIS−k := [k · α : (k + r)α]

DOOS−k := [(k + r) · α : (k + r + 1)α]

}
, k ∈ [0, Nb − 1] (1)

It is interesting to notice that, whenever we decide Nb = r, then we are left with two halves of the
historical data, being the first half the first in sample block and the second half the total out of sample
data, comprised of Nb smaller chunks of out of sample put together, as shown in Figure 7.
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Figure 7. The final out-of-sample period is comprised of all smaller out-of-sample periods coming
from different folds.

WFA is usually considered to incur in selection bias whenever it is employed to optimise the
strategy, choosing the best OOS performance or the best OOS efficiency (the ratio between the strategy’s
performance OOS respect to its performance IS). This is not our case since we use the out of sample
performance as a robustness measure and not a feature we consider in our optimisation process.

2.4. Stop Loss (SL) and Take Profit (TP) Levels

When setting levels for TP and/or SL for each trade, tick data are necessary to check which of
the two conditions is reached first, which gives us the result of the trade. Working with tick data for a
long historical period is hard because of the very large amount of memory needed and subsequent
computational cost. In this study, we work with 1-min candlesticks close price as the best resolution
in the change of the close prices since it permits to do calculations in a reasonable amount of time.
However, we have to take into account that the minimum change our calculations we can notice has
an upper bound equal to the volatility experienced in the 1-min timeframe, since all tick data are
not being registered. That fact imposes a restriction when analysing our strategies results, which is
that we should not work with SL and TP levels that are close to the 1-min volatility, since the results
would not be reliable. Let us define a threshold representing a value for the 1-min volatility (defined
as the difference between high and low prices) that is not surpassed most of the time. The cumulative
distribution function (CDF) of the 1-min volatility can be seen in Figure 8. Fixing a threshold in
percentile 0.95 for this CDF gives a value of vth = 7.3 pips for the period considered. This is the value
we use as a reference when assessing whether our results are accurate or not.

We decide to keep SL = TP = L since it offers a very clear idea of when the expected value of the
strategy is positive: whenever the percentage of winning trades is higher than the percentage of losing
trades. Regarding the exact value we give to this level, we want these levels to depend on the volatility,
so that they are bigger when volatility is high and get closer when volatility is low. We define this level
as a multiple of the volatility average evaluated in a rolling window of size n, the same size we use for
categorising the candlesticks types shown in Figure 6, thus we are left with

L = c · 1
n

n

∑
i=1

(ht−i − lt−i) (2)

where c is a coefficient that permits us to go over or below the average of the volatility of the price at
that timeframe and hi and li stand for the high and low prices, respectively.
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Figure 8. The volatility of EURUSD in the 1-min timeframe experiences values above vth = 7.3 pips
just 5% of the time for the period considered.

2.5. Role of Supervised Learning Methods

When dealing with patterns of more than one candlestick, the computational cost increases
exponentially. In fact, there are bn different n-candlestick patterns when considering b different types
of a single candlestick. Besides, as the number of different possible patterns increases, it decreases
the size of the available sample for each pattern, thus leading to non-statistically significant samples
because of the low number of trades. This is why we propose a novel method to consider how
other candles than that we are studying influence in the strategy returns: we first decide which
single candlestick pattern we want to analyse in a deeper way. Then, we want to find out how those
parameters which define the type of past candlesticks, i.e. the relative size of their body and shadows,
affect the strategy’s results. For this purpose, we use supervised learning algorithms (DT, RF and AB)
that learn to predict the result of a trade (profitable or not) based on the parameters defining the last x
candlesticks and the difference of the close prices (integer or fractional). Since we train a supervised
learning algorithm, we want to work in a scenario where fat tails of returns are not present because
that could do it opaquely to find the reasons that explain the strategy’s returns. That is why, when
attempting to find out the best performing strategy with complex candlesticks patterns, we use fixed
levels of Take Profit (TP) and Stop Loss (SL) for each trade instead of keeping the position open the
whole next candlestick. Some more details on the consequences and calculation procedure on this
fixed level strategy are explained in Section 2.4.

It is necessary to label all the trades depending on their profitability in the training set of the
historical data, for this information to be used as an input of the supervised learning algorithm.
The three-barrier method presented in [11] is used for trade labelling purposes. We do not keep only
the result of each trade, but also its open and close times. We use two different flag variables, one
devoted to catch the trades which closed at TP level, f lagTP = 1 if TP is touched, f lagTP = 0 otherwise,
and the other flag variable with the same purpose but related to the SL level this time. In our study,
we do not consider the case where neither TP nor SL is reached within the holding period of the trade.
We set a holding period equivalent to 20 times the timeframe we are working with in order to ensure
that the amount of trades not being closed by touching the predefined levels is low. In the case any of
the trades remain open after that period of time, we would set the trade result as a loss, considering
the worst possible case in these situations, thus we get a lower bound of the total strategy return.

Supervised learning algorithms are trained to learn when trades are profitable based on the
defining parameters of the past x candlesticks, thus we are left with 4 · x features (size of the body
and shadows for each candlestick and the close difference between two consecutive candlesticks)
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as predictors and one target, which is the flag used to label the profitability of the strategy trades,
f lagTP. In the testing period of our historical data, the signal for entering a position is the output of
this algorithm, i.e. the prediction of whether that trade is going to touch the TP level or not. In the case
of any of the features employed being informative, we expect to reduce the amount of losing trades of
our strategy, which would increase the rate of profitable trades at the cost of reducing the total number
of trades done. It may lead to lower the total returns of the strategy but we also expect a less risky
strategy, thus it may still be profitable in terms of metrics that consider both the total return and the
deviation of the returns, such as the SQN R© [16].

Let us take a case where a classifier has worked well. Specifically, the results shown in Figure 9
and Table 2 come from a hourly timeframe AB classifier fed with fractional differences, choosing the
feature set number 11 (meaning we take the information of 11 past bars to form all input features of
the classifier) and a value of the coefficient c = 1.5, being c the parameter introduced in Section2.4.
Equity curves of both a base strategy and its improved version through the use of supervised learning
methods are shown in Figure 9. The base strategy is defined by a single candlestick pattern triggering
the signal to enter the market for each trade. It can be seen how the AB classifier is able to cut losing
trades in order to reach higher net profits (cumulative pips) and, consequently, also higher SQN value.

Figure 9. Blue curve shows the out of sample equity curve arising from the optimal single candlestick
pattern strategy. In green, we have the equity curve of the same strategy, where a AB classifier algorithm
was used to define the signal for entering the market on the same training data used by the single
candlestick pattern strategy.

If we take a deeper look into what happened in the month of September 2015 for the trading
strategies for which equity curves are shown in Figure 9, we can see in Table 2 how the predictions of
the classifier, when used as a signal to enter the market, worked much better than the original trading
signal consisting of the occurrence of a single candlestick pattern. In fact, it succeeded in cutting loser
trades, while keeping winners, resulting in a total amount of 88.1 pips of cumulative profit, instead of
the −100.9 pips from the original trading strategy.
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Table 2. Trade returns of an hourly timeframe trading strategy and its filtered version using AdaBoost
classifier to learn which trades are profitable. Only the performance of the month of September is
shown in this table. Figure 9 shows both equity curves for all the out-of-sample data. Notice how the
AB-filtered strategy shows 0 for the returns of all those trades which were predicted to yield negative
returns and a non-zero value for all those trades which were predicted to yield positive returns. It can
be seen that the prediction is not always good, since there are negative predictions for true positive
returns and conversely.

Date of the Trade Trade Returns of Base Strategy (Pips) Trade Returns of AB-Filtered Strategy (Pips)

2015-09-03 21:00:00 −35.1 0
2015-09-07 11:00:00 −33.2 −33.2
2015-09-08 07:00:00 31.3 31.3
2015-09-08 16:00:00 −29.8 0
2015-09-11 16:00:00 −28.4 0
2015-09-15 11:00:00 28.5 28.5
2015-09-16 16:00:00 −28.7 0
2015-09-18 12:00:00 28.5 28.5
2015-09-23 19:00:00 −32.5 0
2015-09-24 14:00:00 −33.9 0
2015-09-24 15:00:00 −33.9 0
2015-09-25 13:00:00 33.3 0
2015-09-28 11:00:00 33.0 33.0

TOTAL −100.9 88.1

2.6. Supervised Learning Methods Employed for Classification Purposes

As mentioned above, three different classification models are employed in this study, each of
which is fed in two different ways, producing a total amount of six different classification models.
The first kind of classification model is a decision tree, which is commonly used for classification
purposes because of its easy calculation and good performance. However, decision trees can overfit
easily to the training data, yielding poor prediction performance. This is tuned with the parameter
minimum-samples-split that was set to a value equal to 15% of the size of the training set, which we
understand is big enough to not overfit easily at the time it provides reasonable predictions, according
to the simulations performed by the author. A lower value would better fit the training set, yielding
poorer predictions and a higher value would fit in a looser way the training data and also produce
poor predictions due to its inability to catch important features of the data.

Random forest is the second classifier employed, which introduces randomness in two different
ways: first, doing bootstrapping (resample with substitution) in the data which feeds the algorithm
(the predictors and the target, accordingly) and, second, randomising the predictors employed in
each decision tree forming the forest setting a prefixed maximum of predictors. Random forest is an
ensemble method which usually improves the performance of decision trees. We did not use the latter
way of introducing randomness in the decision trees forming the forest because we wanted all the
trees considering all the predictors, since they are the parameters defining the past Nb candlesticks.
In total, 300 estimators (decision trees) were used to form the random forest, which is far above the
default value (100) for that parameter in scikit-learn package for python.

Finally, AdaBoost classifier was also employed. It is an ensemble method which works over a base
model which is a weak learner (in the sense that it provides predictions that are slightly better than
random) given by a decision tree with a maximum depth of one, which means that only one predictor
(the most informative one) is used as splitting variable. The idea behind AdaBoost is iteratively
improving the performance of decision trees that follow by focusing more on those results which have
been incorrectly classified from past decision trees using higher weights for wrongly classified items
and lower weights for correctly classified ones [17]. This method can emphasise the different prediction
capabilities of different predictors (since each weak learner has a maximum depth of one, only one
splitting predictor, the most informative one) and this is why it is so interesting in our case, in which
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we want to know which predictors perform better classifications. In this case, 300 estimators were also
used since it is a number that provide a good balance between the computational effort required for its
calculation and the precision of the method, and it coincides with the number of estimators employed
for the RF classifier, thus it is reasonable to compare the results of both classifiers.

2.7. Fractional Differences Calculation

The fractional difference of the close prices can be calculated with Equation (3), with Bpt = pt−1

being the backward operator. As can be seen, an infinite number of terms are necessary to exactly define
the value of any fractional difference value. Since this is not computationally possible, a truncation
criterion must be used. In this work, fixed-window method is employed to calculate a fractional
difference of order d [11]. This means that we set a maximum value to the terms of the expansion
which are considered. Those terms which have a lower value to that of the threshold defined (it works
as a tolerance value or an error estimate) are not considered. We set this tolerance to ε = 1× 10−6

since we want a precision of up to tenths of a pip in the price. Now, we have set the tolerance we
have to decide which value order d we are using for the fractional difference. In other works [9], this
value is taken as the highest order that retains stationarity (predicted by an Augmented Dickey Fuller
test) at the same time it preserves memory in the form of high autocorrelation. Since this amount of
memory is higher when d is lower, we take the lowest d value that does not affect us much in terms of
computational effort and training data size penalty (the lower is the d value, the lower is the effective
training data size). A value of d = 0.3 is taken in this paper, which yields a fixed temporal window
of approximately two years, necessary to perform its calculations, while it still keeps the series to be
stationary. Figure 10 shows how it looks this d = 0.3 fractional difference. The ADF test p-value (95%
confidence interval): 2.98944× 10−10, for d = 0.3 for the hourly timeframe in the period considered,
ranging from 2003-05-05 01:00:00 to 2018-09-12 15:00:00.

(1− B)d =
∞

∑
k=0

(
d
k

)
(−B)k =

∞

∑
k=0

(−B)k
k−1

∏
i=0

d− i
k− i

= 1− dB +
d(d− 1)

2!
B2 + . . .

(3)

3. Discussion of Results

3.1. One Single Candlestick Pattern

3.1.1. Strategies without Fixed Levels for SL and TP

In this case, we are considering the case where no levels are employed to exit the trade. The exit
condition in this case becomes the last value of the candlestick being traded at each timeframe, so that
the return of any trade can be calculated as the difference among the open price and close price of the
candlestick coming just after our one-single candlestick pattern occurs.

Since WFA is done, we do not have just one single candlestick pattern that is optimum for
the whole set of historical data; instead, we have a set of Nb single candlesticks patterns, being
Nb the number of out-of-sample periods, which all together form the optimum single candlestick
pattern vector for that historical data. A size of 20% for the out-of-sample period is usually taken,
referred to the size of a whole period, when doing WFA [13]. Following the procedure explained in
Section 2.3, we take Nb = r = 5 so that we are left with an in-sample period which is four times greater
than each out-of-sample period. Using these numbers and applying Equation (1), we have our first
in-sample period coinciding with the first half of our historical data, and the concatenation of all five
out-of-sample periods as the second half of the historical data.

This analysis is done in four different timeframes, 30-, 60-, 240- and 1440-min candlesticks. Testing
the performance of all 54 single candlestick patterns in each in-sample period, we can choose the best
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performing one to be used in the subsequent out-of-sample period. That produces a big amount of
information dealing with the performance metrics of all of the strategies in-sample (a set of 54× 5× 4
strategies analysed in-sample, 54 per in-sample period per timeframe) and the best ones out-of-sample
(a set of 1× 5× 4 performance analysis out of sample).

Figure 10. The first two years of historical data are needed to compute the first value of the fractional
difference. It can be seen how it is more stationary than the close price at the time it still preserves some
memory since it is still correlated with the close price.

Results of the First In-Sample Period for the 60 min Timeframe

To give a deeper insight of how the performance metrics of theses strategies look, we show in
Table 3 the results from the performance metrics for all 54 strategies in the first in-sample period for the
timeframe of 60 min. Historical data range from 2003-05-05 to 2018-09-12, making the first in-sample
period going from the 2003-05-05 to 2011-09-01, which is the period analysed in Table 3. Let us explain
briefly what each column means:

• ID: This is the identification number for each type of candlestick. It depends on whether it is
bullish (IDs 1–27) or bearish (IDs 28–54), and the relative size of its body and shadows. If one
maps a numeric code into these parameters (0→ small,1→ medium and 2→ big), one could think
in this ID as the decimal number expressed in base 3 by the sequence B, TS, LS, being B the body
of the candlestick, TS its top shadow, and LS its lower shadow.

• Body: This is the relative size of the candlesticks body, classified categorically as small (S), medium
(M), or big (B).

• TS: This is the relative size of the candlesticks top shadow, classified categorically as small (S),
medium (M), or big (B).

• LS: This is the relative size of the candlesticks lower shadow, classified categorically as small (S),
medium (M), or big (B).

• Trades: This is the number of trades done by the strategy. It coincides with the number of each
type of candlestick pattern in the period considered, since that is the signal triggering the order.

• Return: This is the total net return of the strategy, in pips. It coincides with the gross winnings
minus gross loses, in pips.

• APpT: This is the average profit per trade, in pips, calculated as the total net return divided by
the number of trades.

• Drawdown: This is the maximum absolute drawdown, in pips.
• % W: This is the percentage of winning trades.
• % L: This is the percentage of losing trades.
• Winners: This is the average pips for winning trades.
• Losers: This is the average pips for losing trades.
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• SQN R©: This is the System Quality Number R©, from now on SQN, a federally registered trademark
of International Institute of Trading Mastery, calculated as SQN =

√
N · r̄

σr
, being r̄ the mean

value of the returns of the strategy (being each return the result of one trade, since it is held along
one whole period in the corresponding timeframe), σr the standard deviation of the returns of the
strategy and N the number of trades [16].
All parameters that have to do with prices are given in pips so that we make the results of this

study completely independent from the money management policy, which we do not deal with in
this paper. Notice how, according to what is explained in Section 2.1, the more common the size (of
each parameter) is, the higher the amount of trades, being the two candlestick patterns (one bullish
and other bearish) characterised as medium−medium−medium, the two strategies with more trades
over all the rest of the strategies, with IDs 14 and 41, respectively, as they pertain to Class 1 candlestick
patterns. Since the results shown are calculated for long-only strategies, and considering that the exit
condition is symmetric, results are the same for long and short positions but a negative sign in the
total net return mean a positive sign when switching the signal to short-only for that same strategy.
We do not consider here the transaction costs. The best strategy is highlighted in green color, the one
that offers the best SQN value. This means that the best thing we can do in a long-only strategy in the
first in sample period is going long just the next candlestick after appearing a bearish candlestick with
a medium body, a medium top shadow, and a small lower shadow.

Table 3. Results from a long-only strategy. Candlesticks IDs 1–27 are bullish, while Candlesticks IDs
28–54 are bearish. It is highlighted the best SQN-performing strategy, which corresponds to an entry
condition defined by candlestick ID 40.

ID Body TS LS Trades Return APpT Drawdown % W % L Winners Losers SQN

1 S S S 64 194.75 3.04 −34.52 35.94 64.06 11.43 −11.66 1.56

2 S S M 385 87.52 0.23 −164.86 45.45 54.55 9.18 −7.23 0.31

3 S S B 342 36.55 0.11 −282.31 48.83 51.17 10.61 −9.92 0.12

4 S M S 366 38.73 0.11 −240.14 50.55 49.45 8.45 −8.42 0.16

5 S M M 1946 852.09 0.44 −507.75 52.16 47.84 8.41 −8.25 1.51

6 S M B 921 88.53 0.10 −462.47 48.64 51.36 11.86 −11.04 0.17

7 S B S 359 33.44 0.09 −357.42 52.65 47.35 9.75 −10.64 0.12

8 S B M 897 −623.25 −0.69 −766.99 48.83 51.17 11.48 −12.31 −1.18

9 S B B 502 195.24 0.39 −311.01 49.20 50.80 14.03 −12.82 0.45

10 M S S 606 −778.74 −1.29 −846.34 42.74 57.26 8.97 −8.94 −2.39

11 M S M 1514 −651.90 −0.43 −1122.79 43.13 56.87 10.35 −8.61 −1.18

12 M S B 725 −122.83 −0.17 −689.77 45.10 54.90 13.81 −11.65 −0.22

13 M M S 1911 −268.29 −0.14 −1276.31 48.67 51.33 9.62 −9.40 −0.40

14 M M M 3245 −907.66 −0.28 −1143.12 47.92 52.08 10.52 −10.22 −0.98

15 M M B 1240 −572.40 −0.46 −909.52 45.48 54.52 14.06 −12.58 −0.82

16 M B S 1063 677.93 0.64 −355.90 51.18 48.82 12.14 −11.42 1.20

17 M B M 1337 −890.17 −0.67 −1335.98 48.24 51.76 12.44 −12.88 −1.27

18 M B B 599 −861.34 −1.44 −1223.49 46.91 53.09 15.50 −16.41 −1.46

19 B S S 522 −319.08 −0.61 −588.77 39.46 60.54 13.51 −9.82 −0.83

20 B S M 704 −1100.81 −1.56 −1516.04 40.77 59.23 13.76 −12.11 −2.11

21 B S B 296 −703.52 −2.38 −752.88 41.22 58.78 14.66 −14.32 −1.98

22 B M S 1095 −909.80 −0.83 −1335.43 44.29 55.71 13.55 −12.27 −1.42

23 B M M 1211 319.32 0.26 −822.70 47.07 52.93 15.72 −13.48 0.42

24 B M B 480 594.05 1.24 −390.88 48.75 51.25 18.37 −15.06 1.09

25 B B S 786 608.33 0.77 −455.96 49.11 50.89 14.60 −12.56 1.04

26 B B M 670 356.11 0.53 −470.43 50.75 49.25 14.25 −13.60 0.68
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Table 3. Cont.

ID Body TS LS Trades Return APpT Drawdown % W % L Winners Losers SQN

27 B B B 341 774.75 2.27 −302.31 56.01 43.99 17.26 −16.81 1.70

28 S S S 79 −4.46 −0.06 −72.00 46.84 53.16 4.48 −4.06 −0.05

29 S S M 452 −151.63 −0.34 −366.98 47.79 52.21 8.52 −8.44 −0.53

30 S S B 388 −575.38 −1.48 −708.13 43.81 56.19 11.28 −11.43 −1.59

31 S M S 325 −22.44 −0.07 −342.53 52.92 47.08 7.08 −8.11 −0.12

32 S M M 2041 282.42 0.14 −722.18 51.64 48.36 8.42 −8.71 0.47

33 S M B 994 −1105.72 −1.11 −1480.98 47.18 52.82 11.98 −12.80 −1.77

34 S B S 337 383.86 1.14 −209.93 55.49 44.51 10.44 −10.46 1.24

35 S B M 972 572.19 0.59 −319.46 50.41 49.59 12.42 −11.44 1.00

36 S B B 495 −581.96 −1.18 −663.13 48.08 51.92 14.04 −15.26 −1.23

37 M S S 545 −10.10 −0.02 −211.02 53.58 46.42 8.22 −9.53 −0.03

38 M S M 1882 572.23 0.30 −508.57 50.16 49.84 9.00 −8.45 1.00

39 M S B 1020 133.36 0.13 −733.85 52.35 47.65 11.14 −11.97 0.24

40 M M S 1455 2717.64 1.87 −249.93 59.24 40.76 9.24 −8.86 5.34

41 M M M 3140 2157.72 0.69 −513.82 54.17 45.83 10.65 −11.09 2.19

42 M M B 1349 54.82 0.04 −903.55 52.19 47.81 12.43 −13.48 0.08

43 M B S 686 989.30 1.44 −292.12 53.94 46.06 12.30 −11.27 2.05

44 M B M 1206 −1247.78 −1.03 −1387.62 49.17 50.83 12.90 −14.52 −1.76

45 M B B 567 440.79 0.78 −441.16 53.62 46.38 14.78 −15.41 0.87

46 B S S 577 38.78 0.07 −548.94 53.73 46.27 11.30 −12.97 0.09

47 B S M 998 69.38 0.07 −529.02 54.46 45.54 11.86 −14.00 0.11

48 B S B 715 −107.02 −0.15 −456.95 49.93 50.07 13.53 −13.79 −0.21

49 B M S 723 1170.67 1.62 −265.01 58.09 41.91 12.40 −13.32 2.40

50 B M M 1092 −241.49 −0.22 −789.93 55.40 44.60 12.60 −16.15 −0.35

51 B M B 641 −965.07 −1.51 −1018.63 50.55 49.45 13.52 −16.87 −1.69

52 B B S 328 181.36 0.55 −296.95 53.05 46.95 15.53 −16.37 0.45

53 B B M 414 329.50 0.80 −382.83 58.45 41.55 13.60 −17.23 0.77

54 B B B 317 −28.83 −0.09 −398.57 50.16 49.84 16.92 −17.21 −0.07

Best Performing Strategies for In-Sample Periods

Choosing the best performing strategies in-sample for each timeframe yields the results shown in
Table 4. It is interesting pointing out how stable appears to be the best candlestick pattern along the
lower timeframes. In fact, it does not change any time for the 60-min timeframe, while changing just
once for the 30-min timeframe. We understand this is due to the adaptive candlestick capability of
describing different regime conditions with similar adaptive candlestick patterns. We can see very low
number of trades for the highest timeframe, what may be guiding us to non-statistically significant
information due to the selection criteria (best SQN strategy), which seems to work best for lower
timeframes, as the number of trades increases. We can see how the average profit per trade increases
for higher timeframes (as the number of trades decreases), at the same time the statistical significance
of the data gets lower.
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Table 4. In-sample strategy results considering all different timeframes and all five in-sample periods.
Each in-sample period comprises approximately eight years of data. The column ID says which
candlestick performs best for that period of historical data, while the Direction columns tells us
whether we should go short-only or long-only to obtain the results shown.

IS
Fold TF ID Trades Return AppT Drawdown % W % L Winners Losers SQN Direction

1 30 11 3050 3040.34 1.00 −3139.11 57.28 42.72 6.15 −6.33 5.89 Short
2 30 11 3013 2807.62 0.93 −2880.30 56.95 43.05 6.51 −6.56 5.09 Short
3 30 40 2800 2700.37 0.96 −314.93 58.04 41.96 6.37 −6.51 4.81 Long
4 30 11 3000 2300.82 0.77 −2324.61 56.80 43.20 6.36 −6.19 4.25 Short
5 30 11 3059 2169.24 0.71 −2180.44 57.14 42.86 5.31 −5.23 4.69 Short
1 60 40 1455 2717.64 1.87 −249.93 59.24 40.76 9.24 −8.86 5.34 Long
2 60 40 1465 2677.83 1.83 −249.93 58.57 41.43 9.68 −9.27 4.93 Long
3 60 40 1452 2393.14 1.65 −249.93 58.95 41.05 9.00 −8.90 4.57 Long
4 60 40 1501 2001.11 1.33 −249.93 56.70 43.30 8.81 −8.46 3.84 Long
5 60 40 1555 1874.17 1.21 −156.41 57.43 42.57 7.50 −7.28 4.22 Long
1 240 22 295 1359.39 4.61 −1409.79 53.56 46.44 22.81 −28.38 2.06 Short
2 240 46 136 923.87 6.79 −305.02 63.97 36.03 22.62 −21.30 2.4 Long
3 240 3 105 793.52 7.56 −158.21 57.14 42.86 27.95 −19.64 2.26 Long
4 240 3 95 866.14 9.12 −158.21 61.05 38.95 29.09 −22.19 2.48 Long
5 240 24 126 925.59 7.35 −168.14 54.76 45.24 27.26 −16.76 2.68 Long
1 1440 46 36 1064.47 29.57 −1118.44 52.78 47.22 42.19 −93.78 1.93 Short
2 1440 46 41 1525.09 37.20 −1547.60 56.10 43.90 41.16 −98.52 2.46 Short
3 1440 12 39 1364.62 34.99 −1407.49 71.79 28.21 52.85 −69.50 2.42 Short
4 1440 9 34 1349.11 39.68 −1562.74 73.53 26.47 74.85 −80.91 2.5 Short
5 1440 22 57 1555.81 27.29 −1839.28 70.18 29.82 49.52 −59.94 2.76 Short

Out of Sample Performance for the Best In-Sample Strategies

Now that we have which are the best performing strategies in-sample, we can run them in
their respective out-of-sample periods for each timeframe, which produces the results shown in
Table 5. Those results can be seen in the form of the equity curve for the out-of-sample period for each
timeframe, which is shown in Figure 11, whose performance metrics are shown in Table 6.

Table 5. Results are better for those strategies with more trades. Each out of sample period runs for a
period of over two years.

OOS
Fold TF ID Trades Return APpT Drawdown % W % L Winners Losers SQN Direction

1 30 11 599 497.16 0.83 −144.66 56.09 43.91 6.76 −6.75 1.87 Short
2 30 11 600 231.56 0.39 −58.79 57.83 42.17 3.85 −4.37 1.56 Short
3 30 40 639 171.42 0.27 −86.73 56.34 43.66 3.68 −4.13 1.22 Long
4 30 11 623 367.27 0.59 −80.85 55.38 44.62 4.24 −3.94 2.55 Short
5 30 11 618 330.67 0.54 −66.07 57.28 42.72 3.73 −3.75 2.52 Short
1 60 40 279 519.40 1.86 −122.35 54.12 45.88 11.57 −9.59 1.90 Long
2 60 40 288 270.09 0.94 −47.51 61.11 38.89 4.85 −5.21 2.18 Long
3 60 40 365 191.63 0.53 −136.47 54.25 45.75 5.59 −5.48 1.21 Long
4 60 40 320 327.87 1.02 −58.71 59.69 40.31 5.87 −6.15 2.28 Long
5 60 40 349 225.55 0.65 −76.52 57.59 42.41 5.56 −6.02 1.45 Long
1 240 22 46 376.48 8.18 −117.59 54.35 45.65 29.97 −17.75 1.76 Short
2 240 46 23 −33.74 −1.47 −94.31 43.48 56.52 13.43 −12.92 −0.44 Long
3 240 3 13 39.78 3.06 −47.50 61.54 38.46 15.64 −17.06 0.49 Long
4 240 3 20 77.67 3.88 −69.42 60 40 18.46 −17.99 0.72 Long
5 240 24 39 177.53 4.55 −155.82 64.10 35.90 18.80 −20.89 0.98 Long
1 1440 46 11 559.81 50.89 −104.92 63.64 36.36 113.61 −58.87 1.44 Short
2 1440 46 8 −253.84 −31.73 −393.19 25 75 83.98 −70.30 −1.09 Short
3 1440 12 6 36.60 6.10 −89.53 50 50 42.58 −30.38 0.30 Short
4 1440 9 5 13.61 2.722 −78.75 40 60 46.18 −26.25 0.15 Short
5 1440 22 11 −333.19 −30.29 −403.24 36.36 63.64 19.21 −58.57 −1.97 Short
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Figure 11. Vertical lines are coloured for the beginning of each of the out of sample periods. It can be
seen how the first half of the historical data coincides with the first in-sample period, while the second
half coincides with the whole out-of-sample ensembled data.

Table 6. The highest timeframe is not profitable out of sample. SQN values are better for lower
timeframes, where we have more trades. However, the APpT is smaller in these cases. The APpT
shown here is the weighted average of the APpT, whose weights are the number of trades at each out
of sample period.

TF Trades Return APpT Drawdown % W % L Winners Losers SQN WFA Eff.

30 3066 1618.59 0.52 −144.66 56.62 43.38 4.42 −4.56 4.20 0.53
60 1595 1444.14 0.96 −136.47 57.24 42.76 6.39 −6.44 3.69 0.53
240 138 597.91 4.52 −155.82 55.80 44.20 21.56 −17.42 1.90 0.44

1440 41 22.99 0.56 −587.69 43.90 56.10 70.01 −53.79 0.05 0.02

For analysing the predictive power of these best performing strategies, we proceed with the
statistical analysis explained in Section 2.2. We see the results summarised in Table 7 and Figure 12.
It is clear from this analysis that the best strategy selected as the combination of best-performing
one-single candlestick pattern strategies for each in-sample period, do not give good results for the
out-of sample period in the daily timeframe. However, the rest of the timeframes analysed show that
the average return of the best strategies in the out of sample period is far enough from zero to become
statistically significant at a 95% confidence level, since the values for their average returns fall above
the threshold of the 95% quantile. This fact permits us to reject the null hypothesis that the strategies
lack predictive power, thus we can conclude, up to a 95% confidence level, that the strategies selected
do have predictive power. Once we predict certain predictive power for some strategies, we wonder
how big the average return of the strategy in out of sample period could be. To answer this question,
we should do an estimation for the average return of the strategies. This can be done subtracting
to the average return found, the value for the threshold defined by the 95% quantile (which can be
understood as the luck component) and the transactional costs. At the time of writing this paper, the
average transaction costs of trading the EURUSD pair in different broker platforms is a bit below
one pip, depending on the broker. Here, we consider a fixed amount of 0.5 pips for the roundtrip
commission, and a variable spread that falls around 0.1∼0.4 pips. These transaction costs do not reflect
the price offer of any specific broker, but, instead, an approximation the transaction costs for trading at
FOREX the EURUSD pair. However, this has not been always the case. If we consider that the spread
has been possibly wider in a big part of the time of the historical data considered, we may be left with
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an average value for the transactional costs that is close to one pip (a bit below or above). No swap
has been considered. Market slippage is the mispricing error produced by the delay produced when
placing an order to the market. This error is random as far as price movements in the range of this time
delay are mostly noisy, and can be neglected since they are supposed to cancel each other in the long
run. The calculations for the actual average return values due to predictive power, after considering
transaction costs are summarised also in Table 7 where we can see that, although there appears to be
some predictive power in some timeframes, the average return of those predictive strategies does not
survive the transaction costs, thus they cannot be profitably traded.

Table 7. The highest timeframe is the only one exhibiting no predictive power at all. However, taking
into account transaction costs of one pip per trade (taken as an average for the whole period ranging
from 2003 to 2018), we see the net predictive power component of all four strategies is below 0, which
makes them all unprofitable to trade.

TF 95% Quantile Avg. Return p-Value PP Component Net PP Component

30 0.27 0.52 0.00104 0.25 −0.75
60 0.53 0.96 0.00199 0.43 −0.57
240 3.80 4.52 0.02615 0.72 −0.28

1440 10.96 0.56 0.44465 −10.4 −11.4

Figure 12. Normalised histograms are shown for 3000 Monte Carlo distributions of average returns for
each timeframe for the period considered (second half of the whole historical data, which is the total
out of sample period). The y-axis represents the probability density function. A vertical line has been
drawn for the 95% quantile, to show which is the threshold above which a mean return is a reflection
of predictive power. The mean return of each out-of-sample equity curves are marked in the figure
with an arrow (r̄30 = 0.52 pips, r̄60 = 0.96 pips, r̄240 = 4.52 pips, r̄1440 = 0.56 pips).

3.1.2. Fixed Levels for TP and SL

In this case, we consider fixed levels for the exit conditions of the trades, that is, TP and SL levels.
However, since we deal with adaptive candlestick patterns, it does not make any sense to set the same
level for the TP and/or SL for the whole period of the historical data. Instead, we set SL and TP levels
that are a multiple of the volatility average for each timeframe for the last n candlesticks, being n the
period defined in Section 2.1.1, so that we are left with TP = SL = L, being L the value calculated in
Equation (2) from Section 2.4. An example of the evolution of L parameter along the whole historical
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data can be seen in Figure 13a, and an example of how it looks like the setup for a specific trade in the
1-min timeframe in Figure 13b. Trades are closed when high and/or low prices touches TP or SL levels
correspondingly.

Since we add a degree of freedom to our analysis, the value of the parameter c in Equation
(2) that defines the SL and TP levels, it is necessary to run simulations for different values of this
parameter to find out if the strategies being considered in this section yields any predictive power
for any value of c. We consider c = {0.1.0.2, . . . 3} for all four timeframes being analysed, and
perform simulations where the best-performing single-candlestick pattern in-sample is run over
each corresponding out-of-sample period, producing walk-forward equity curves, such as the ones
produced in Section 3.1, but considering fixed levels for SL and TP this time. As stated in Section 2.4,
the way we check the exit conditions is not using tick data but 1-min candlestick data instead, because
of computational resources limitations. This introduces a threshold, the 95% quantile of the 1-min
volatility data, below which we can not be sure of any trade result, since it may be possible that the
price hits the level in the intra-minute period data, which we are not taking into account. This is why
we should not give credit to the results arising from strategies whose average amount of pips for its
winning trades is close to this threshold.

(a) (b)

Figure 13. (a) Average volatility for the 60-min timeframe experiences different periods during
2003–2018. Vertical lines have been drawn at the beginning of each out of sample period. This
is the reason that, even though TP = SL, the average amount of pips for the winning trades are not the
same as the average amount of pips for the losing trades. (b) Example of a specific trade evolution in
1-min timeframe: it corresponds to candlestick ID 44, first out of sample period, timeframe of 60 min,
operation number 1112, opened at the open price on 2010-07-14 at 09:00, and closed at 09:36, just when
the high value of the price touched the TP level.

We show in Figure 14 the relation existing between the p-values corresponding to the average
return of each optimal strategy (for each c value) and the size of the average winning pips, measured
by the quotient q = r̄/ ¯vth, being r̄ the average amount of pips for the winning trades of the strategy
being analysed and vth = 7.3 the threshold (in pips) defined in Section 2.4. This figure shows how
it appears to be certain predictive power, specially in the hourly timeframe, corresponding to those
p-values below 0.05. Specifically for the hourly timeframe, strategies where the fixed levels for SL and
TP are defined by coefficients of c = 0.5, 0.6, 0.7, 2.3 show p-values under 0.05 and average amount of
pips for winning trades above the threshold vth = 7.3. Other strategies with p-values lower than 0.05
have average winning pips below the threshold, so they are not considered since it is probably due to
an illusory predictive power which is just due to the inefficiency of the 1-min candlestick data we are
using to define the exit conditions (although they all are highlighted in green in Tables 8 and 9).

We cannot clearly state that all four strategies selected are statistically significant because a
confidence level of 95% permits up to 5% of results being classified as significant while they are not.
All data points plot in Figure 14 can be seen in Tables 8 and 9.
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Table 8. Coefficient c and respective p-values for timeframes of 30 and 60 min. Those strategies which
present p-values lower than 0.05 have been highlighted.

TF c Avg. Winners q p-Value
30 0.1 1.45 0.20 0.0161
30 0.2 2.58 0.35 0.0192
30 0.3 3.53 0.48 0.0974
30 0.4 4.62 0.63 0.0572
30 0.5 5.89 0.81 0.1244
30 0.6 7.07 0.97 0.0909
30 0.7 8.27 1.13 0.1983
30 0.8 9.28 1.27 0.1936
30 0.9 10.72 1.47 0.1718
30 1.0 11.86 1.62 0.3113
30 1.1 13.08 1.79 0.4994
30 1.2 14.04 1.92 0.4241
30 1.3 15.13 2.07 0.5660
30 1.4 16.57 2.27 0.6212
30 1.5 17.84 2.44 0.6977
30 1.6 18.97 2.60 0.5822
30 1.7 20.11 2.75 0.7112
30 1.8 21.49 2.94 0.8171
30 1.9 26.93 3.69 0.3816
30 2.0 25.38 3.48 0.6070
30 2.1 24.92 3.41 0.6747
30 2.2 31.03 4.25 0.4991
30 2.3 28.68 3.93 0.6425
30 2.4 30.35 4.16 0.5080
30 2.5 32.26 4.42 0.6830
30 2.6 33.46 4.58 0.7002
30 2.7 34.58 4.74 0.8786
30 2.8 34.39 4.71 0.3523
30 2.9 35.63 4.88 0.3642
30 3.0 36.86 5.05 0.3431
60 0.1 1.75 0.24 0.0152
60 0.2 3.48 0.48 0.0861
60 0.3 5.11 0.70 0.0661
60 0.4 7.17 0.98 0.0062
60 0.5 8.52 1.17 0.0041
60 0.6 10.83 1.48 0.0180
60 0.7 12.68 1.74 0.0139
60 0.8 13.76 1.88 0.3473
60 0.9 16.03 2.20 0.8804
60 1.0 18.27 2.50 0.6650
60 1.1 19.83 2.72 0.1612
60 1.2 22.26 3.05 0.2385
60 1.3 24.98 3.42 0.8589
60 1.4 21.00 2.88 0.5970
60 1.5 23.64 3.24 0.2192
60 1.6 33.46 4.58 0.5500
60 1.7 31.50 4.32 0.8700
60 1.8 34.67 4.75 0.0935
60 1.9 40.79 5.59 0.2081
60 2.0 39.14 5.36 0.1011
60 2.1 41.11 5.63 0.1385
60 2.2 43.61 5.97 0.1480
60 2.3 46.53 6.37 0.0438
60 2.4 46.22 6.33 0.1293
60 2.5 51.43 7.05 0.1044
60 2.6 54.75 7.50 0.0759
60 2.7 65.82 9.02 0.4392
60 2.8 42.60 5.84 0.7518
60 2.9 70.84 9.70 0.6184
60 3.0 73.49 10.07 0.5522
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Table 9. Coefficient c and respective p-values for timeframes of 240 and 1440 min.

TF c Avg. Winners q p-Value

240 0.1 3.78 0.52 0.0575
240 0.2 7.36 1.01 0.1607
240 0.3 11.65 1.60 0.1346
240 0.4 15.96 2.19 0.7167
240 0.5 21.01 2.88 0.5670
240 0.6 24.09 3.30 0.8562
240 0.7 27.89 3.82 0.2424
240 0.8 31.00 4.25 0.7848
240 0.9 35.12 4.81 0.9021
240 1.0 39.65 5.43 0.7098
240 1.1 45.86 6.28 0.9286
240 1.2 50.13 6.87 0.9409
240 1.3 53.55 7.34 0.8391
240 1.4 61.50 8.42 0.5173
240 1.5 59.74 8.18 0.8813
240 1.6 61.50 8.42 0.2253
240 1.7 67.59 9.26 0.2198
240 1.8 71.14 9.74 0.2185
240 1.9 79.78 10.93 0.6953
240 2.0 79.35 10.87 0.4967
240 2.1 83.15 11.39 0.4953
240 2.2 84.54 11.58 0.1189
240 2.3 84.87 11.63 0.4004
240 2.4 84.53 11.58 0.6516
240 2.5 89.38 12.24 0.4776
240 2.6 99.29 13.60 0.3688
240 2.7 94.68 12.97 0.1558
240 2.8 101.20 13.86 0.7767
240 2.9 105.36 14.43 0.8629
240 3.0 110.91 15.19 0.6926
1440 0.1 10.86 1.49 0.8065
1440 0.2 18.08 2.48 0.3485
1440 0.3 20.80 2.85 0.5669
1440 0.4 31.00 4.25 0.8112
1440 0.5 43.90 6.01 0.7293
1440 0.6 34.17 4.68 0.5168
1440 0.7 54.25 7.43 0.8019
1440 0.8 64.97 8.90 0.1563
1440 0.9 78.36 10.73 0.8100
1440 1.0 112.78 15.45 0.7266
1440 1.1 110.98 15.20 0.3174
1440 1.2 122.24 16.75 0.4344
1440 1.3 138.03 18.91 0.3059
1440 1.4 137.56 18.84 0.9115
1440 1.5 161.46 22.12 0.4516
1440 1.6 189.48 25.96 0.6051
1440 1.7 192.25 26.34 0.1127
1440 1.8 193.18 26.46 0.3974
1440 1.9 211.36 28.95 0.5791
1440 2.0 315.89 43.27 0.6448
1440 2.1 241.24 33.05 0.7302
1440 2.2 303.94 41.64 0.3843
1440 2.3 264.22 36.19 0.7464
1440 2.4 275.70 37.77 0.7394
1440 2.5 249.27 34.15 0.9230
1440 2.6 246.00 33.70 0.9654
1440 2.7 260.96 35.75 0.9023
1440 2.8 270.62 37.07 0.9004
1440 2.9 33.53 4.59 0.9694
1440 3.0 34.69 4.75 0.9703
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Figure 14. A horizontal blue line is set at 0.05 level, which defines the threshold for the p-values to be
considered as statistically significant enough to reject the null hypothesis that the rule has no predictive
power. The x-axis represents the average relative size of the winning trades, calculated as r̄

vth
, being

r̄ the mean return of the strategy analysed and vth the 95% quantile for the volatility in the 1-min
timeframe (which is equal to 7.3 pips). Values of this quotient close to 1 produces unreliable results.

Performance metrics of the four selected strategies in the 60-min timeframe are shown in Figure 15
and Table 10. Summary of the equity curve resulting for the out-of-sample period for these four
strategies is shown in Table 11.

Table 10. It can be seen that the vector comprising the optimum sequence of candlestick patterns is
very similar for coefficient values which are very close.

c OOS
Fold ID Trades Return AppT DD % W % L Winners Losers SQN Direction

0.5 1 19 99 257.88 2.6 −41.74 59.6 40.4 12.83 −12.47 2.03 Short
0.5 2 40 285 469.07 1.65 −70.47 59.65 40.35 8.45 −8.41 3.32 Long
0.5 3 40 358 271.33 0.76 −108.6 54.75 45.25 8.44 −8.54 1.57 Long
0.5 4 40 313 766.4 2.45 −62.69 63.26 36.74 8.72 −8.34 5.06 Long
0.5 5 40 341 333.44 0.98 −58.58 57.18 42.82 7.21 −7.34 2.48 Long
0.6 1 40 277 371.4 1.34 −137.08 54.15 45.85 15.51 −15.4 1.41 Long
0.6 2 40 285 303.56 1.07 −182.34 55.44 44.56 10.08 −10.15 1.77 Long
0.6 3 40 358 472.73 1.32 −159.05 55.87 44.13 10.29 −10.04 2.3 Long
0.6 4 40 313 685.48 2.19 −86.92 59.74 40.26 10.45 −10.07 3.7 Long
0.6 5 40 341 238.46 0.7 −88.5 54.84 45.16 8.59 −8.88 1.47 Long
0.7 1 40 277 505.22 1.82 −157.26 54.87 45.13 18.1 −17.96 1.64 Long
0.7 2 40 285 304.07 1.07 −172.46 54.74 45.26 11.75 −11.86 1.51 Long
0.7 3 40 358 455.07 1.27 −268.3 53.91 46.09 12.19 −11.5 1.89 Long
0.7 4 40 313 853.25 2.73 −104.73 60.38 39.62 12.2 −11.72 3.96 Long
0.7 5 40 341 218.28 0.64 −158.26 53.96 46.04 10.02 −10.35 1.15 Long
2.3 1 38 399 1482.19 3.71 −1230.44 51.13 48.87 62.61 −57.9 1.2 Long
2.3 2 38 439 1918.11 4.37 −1145.19 56.26 43.74 38.76 −39.87 2.32 Long
2.3 3 4 146 −194.24 −1.33 −430.41 47.26 52.74 41.32 −39.55 −0.37 Long
2.3 4 23 251 212.11 0.85 −558.16 51 49 38.62 −38.46 0.34 Short
2.3 5 1 21 152.01 7.24 −96.85 61.9 38.1 34.43 −36.95 0.94 Short
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Table 11. Columns Return, APpT, % W, % L, Winners, Losers, SQN are calculated as a weighted
average of the corresponding values shown in Table 10, being the column Trades the weights employed.

c Trades Return AppT Drawdown % W % L Winners Losers SQN

0.5 1396 2098.12 1.50 −108.60 58.60 41.40 8.52 −8.45 2.96
0.6 1574 2071.63 1.32 −182.34 56.04 43.96 10.83 −10.76 2.15
0.7 1574 2335.89 1.48 −268.30 55.53 44.47 12.68 −12.50 2.03
2.3 1256 3570.18 2.84 −1.230.44 52.63 47.37 46.53 −45.23 1.23

Figure 15. The difference between the average winning pips per trade is clear, although they all follow
similar curves due to similar choices of optimum candlestick patterns.

The results of the MC analysis for each of the four strategies selected for the fixed-level SL and TP
case are summarised in Table 12. Again, certain predictive power can be inferred, sometimes even
beating the transaction costs.

Table 12. None of the strategies selected show positive net predictive power after considering one pip
per trade as an approximation for transaction costs.

c 95% Quantile APpT p-Value PP Component Net PP Component

0.5 0.95 1.50 0.00413 0.55 −0.45
0.6 0.99 1.32 0.01812 0.33 −0.67
0.7 1.1 1.48 0.01391 0.38 −0.62
2.3 2.76 2.84 0.04379 0.08 −0.92

We now show the results arising from the use of supervised learning algorithms, those already
explained in Section 3.1, to try to find complex candlesticks patterns when considering how past
candlesticks parameters inform to the learning algorithm for it to learn the profitability of the trades.
We present this in Section 3.2. Special emphasis is given to the use of fractional difference prices when
used as features feeding each Machine Learning (ML) algorithm.

3.2. Complex Candlestick Patterns

Number of Past Candlesticks to be Considered by the Classification Models

It is first necessary to define the amount of candlesticks that we consider to give extra information
to our classification algorithms. Since we focus on the 60-min candlestick bars, it makes sense to define
a major period which, somehow, retains what we may consider relevant information of the evolution
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of the price. One possible criterion to define this parameter is based on the daily periodicity of the
volume traded at the exchange so we could think of a 24-h window as the base for our predictions in
the 60-min timeframe. Of course other choices are perfectly possible. This period gives us a maximum
total amount of 24× 4 features to be considered by our classification algorithms, since each candlestick
bar is defined by the size of its body and shadows, as well as its integer (or fractional) difference of two
consecutive close prices. We make two input sets of features, Features Set A and Features Set B, where
integer difference and fractional difference of two consecutive close prices are chosen, respectively.
This way we can check the different predictive power of both calculations.

Number of Classification Models Employed

We run 24 simulations per feature set (a total number of 48 per model) where the first simulation
considers the information of just one candlestick bar (the previous to that considered as the trigger
signal), the second considering two candlesticks bars and so on, up to a total of 24 candlestick bars.

Figure 16 summarises the process of generating different subsets of features (up to 24 different
subsets) for feeding each different model. These 24 subsets are doubled when considering that
integer or fractional difference of the close prices can be taken, yielding Feature Set A and Feature
Set B, respectively. These subsets of features feed each of the three different classification models
(decision tree, random forest and AdaBoost) explained in Section 2.5, producing a total amount of
24× 2× 3 = 144 model runs. These 144 model runs are done for a specific value of the parameter c
defining the size of the level L explained in Section 2.4. We consider a set of values for this parameter
c = {0.1.0.2, . . . 5.0}, which makes 50 different values. That makes a total amount of simulations of
144× 50 = 7200 simulation runs. Table 13 shows a detailed explanation for defining each one of the
simulations performed.

Figure 16. Set of 24 feature subsets per feature set (A or B) per model (six models) per value of
coefficient c.
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Table 13. Predictors Sets 1–24 use integer difference close price as the last feature for each candlestick,
while Predictors Sets 25–48 use fractional difference close prices instead.

Model ID Model Name c Predictors Set
1 Decision Tree 0.1 1
2 2
...

...
48 48
49 0.2 1
50 2
...

...
96 48

...
...

2353 5 1
2354 2

...
2400 48
2401 Random Forest 0.1 1
2402 2

...
...

2448 48
2449 0.2 1
2450 2

...
...

2496 48
...

...

4753 5 1
4754 2

...
4800 48
4801 AdaBoost 0.1 1
4802 2

...
...

4848 48
4849 0.2 1
4850 2

...
...

4896 48
...

...

7153 5 1
7154 2

...
7200 48
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Metric Employed to Measure the Learning Capability of a Model

Our classification models try to predict whether a trade will be profitable or not as function of
the predictors. In this sense, measuring the percentage of winning trades will let us know whether
the model results show any advantage from the percentage of winning trades for that same period
of the reference equity curve. The reference equity curve is the single candlestick pattern equity
for the corresponding value of parameter c. Thus, the parameter we use for comparing purposes is
LC = %Wmodel −%Wre f erence, which gives us the learning ability of the model in percentage points.
We can say the model improves the performance of the equity performance used as reference whenever
this value of LC is higher than zero. Although %W, SQN and net final profit are strongly correlated,
having only a bigger %W does not necessarily means that the model would produce higher net benefits
or higher SQN values, since it also depends on the number of trades.

3.2.1. Vanishing Learning Capability with Increasing Size of c

The parameter c accounted for the size of the pre-fixed levels given by L as explained in Section 2.4.
The bigger c, the bigger the amount of averaged pips won or lost in our trades. Thus, we can say it
establishes kind of prediction window forward, since it will take more bars to reach a bigger amount
of pips.

Taking into account the results of all 7200 models listed in Table 13, we first want to know whether
the learning capability given by LC depends on the value of c, no matter which is the model employed.
We can see in Figure 17a 50 different boxplots, each one showing the values of the distribution of LC
values for each value of parameter c. That means that each boxplot is showing the results arising from
24× 6 = 144 models: one per feature subset per model. If we set our attention to the evolution of the
median, the 50% quantile of each distribution, we can see that it is below zero from c = 2.6 onwards.
This can be better appreciated in Figure 17b where the median is explicitly plotted for each value of
the parameter c. This means that the learning capability of all models vanishes with the parameter c so
it has no meaning to include all these model results in our analyses from now on, since we already
know those sets of parameters do not offer any improvement in the performance metrics no matter
what the model or the feature sets are. Thus, from now on, we restrict our analyses to those models
whose c parameter falls in the window c ∈ [0.5.2.5]. First, the values of parameter c are not considered
as we know our reference equity curves (those from the single candlestick pattern) are not reliable
for that range of values of c, as already explained in Section 2.4. Thus, from now on, we are left with
24× 6× 21 = 3024 models.

(a) (b)

Figure 17. (a) Although the variance of each boxplot is different, the median appears to have certain
tendency, being below 0 for c = 2.6 on; and (b) only coefficients below c = 2.6 are considered.
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3.2.2. Integer or Fractional Differences

One of the four features characterising the behaviour of a specific candlestick is the difference
between the close prices of two consecutive bars, the rest being the categorical sizes of its body and
shadows. Regarding the way of calculating this difference, one can use integer difference or fractional
difference, as explained in Section 2.7. We want to find out which way of calculating this difference is
higher informative for the classification models, and that is why we use two different sets of features,
each one taking into account a different approach for this calculation.

Plotting the results of the variable LC accounting for the learning capability arising from the
application of all 3024 models we are left with, after limiting the possible values of c, produces
Figure 18a,b, where a direct comparison among models being fed with integer or fractional differences
is made. Figure 18a shows 24 pairs of boxplots, each pair accounting for the distribution of predictive
power values for each case (integer or fractional) separately. Each boxplot is showing the information
of 21× 3 = 63 models (one per c value per different model, DT, RF or AB). As far as we plot 48
boxplots, we are showing the information of all 3024 models. A summarised version of this figure can
be found in Figure 18b, where the evolution of the median value for each boxplot is shown. It can
be seen how the results for the models using fractional differences show more predictive power for
almost every value of the feature sets. Remember, the feature sets number represents the amount of
past bars whose parameters are being considered as predictors for the classification algorithms.

(a) (b)

Figure 18. (a) Learning capability boxplots show how those distributions where fractional differences
have been used, present, mostly, higher values of first, second and third quartiles. (b) Line plots
showing median values of learning capability offer a clearer representation where it can be easily seen
that 19 out of 24 feature sets using fractional differences outperform the corresponding cases that use
integer differences instead.

3.2.3. Best Predictive Model among DT, RF and AB

We show in Figure 19 the results of the models which make use of fractional differences among
all 3024 models that were analysed in Figure 18, making a total number of 1512 models. From all those
simulations, we have 504 runs which are fed differently for each different model (DT, RF or AB) raising
from the combination of 21 possible c values per 24 different feature sets. That means that each boxplot
in Figure 19a shows the information of 21 models, one per c value. It is again useful to summarise this
amount of information through the median values of each boxplot, which are shown in Figure 19b.
From this last figure, we can say that AdaBoost classifier is the method that yields the best results in
terms of predictive power for a big part of the feature sets. In fact, calculating the mean value of each
plot from Figure 19b, gives LCmedian−DT = 0.1254, LCmedian−RF = 0.1558 and LCmedian−AB = 0.3646.
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(a) (b)

Figure 19. (a) AdaBoost classifier performs better than RF and DT, possibly because it takes
advantage of the fractional differences informative power in a more efficient way than the rest of
the classifiers, since AdaBoost is based on one-predictor decision tree (the most informative one among
all predictors given). (b) Line plots showing median values of learning capability show how the use of
AB outperforms both DT and RF results in 13 out of 24 total feature sets.

4. Conclusions

In this study, a novel approach was conducted to define adaptive candlestick patterns. These
adaptive patterns take into account volatility changes of the market so that different volatility
regimes can be described with similar candlestick patterns. These adaptive candlestick patterns
have shown some adaptability when determining which pattern means the best entry condition for
trading strategies. All parameters defining the adaptive candlestick patterns were analysed to deeply
understand how they influence the performance of trading strategies.

Hypothesis testing was employed to check whether trading strategies being analysed present
returns that are greater than or equal to zero. Monte Carlo was used to generate sampling distributions
of the average return of trading strategies for which entries are totally random. These results allow
us to define a threshold for the average return of a strategy, which must be understood as the luck
component of the returns of a trading strategy, above which we can understand there exists some
predictive power of the entry rules governing the respective trading strategy.

The predictive power analysis of trading strategies was done following a three-stage procedure:
first, trading strategies with all single candlestick patterns defining its entry condition and with
an event based exit condition were simulated to choose which the best entry condition was when
obtaining out-of-sample performance. Second, the same strategies as the first case were simulated
but only changing the exit condition, from event based to fixed level price. Although some trading
strategies were found to present certain degree of predictive power, none of them presented positive
average returns when transaction costs were taken into account. These results mean that EMH hold
on the EURUSD pair, in line with the conclusion of other papers (e.g., [18]). This does not necessarily
means that finding inefficiencies in this instrument is impossible, but it seems not possible with the
adaptive candlestick pattern approach used in this work, using 1-min resolution in close prices.

Finally, three different supervised learning methods were employed to widen the complexity of
candlestick patterns defining the entry condition of fixed-level price exit condition trading strategies.

It is the first time, to the author’s knowledge, that the predictive power of fractional differences
has been quantitatively calculated. For this purpose, a new parameter is introduced, the learning
capability of the classifier, allowing us to check whether the classification algorithm is able to improve
the percentage of winning trades of the same candlestick pattern fixed-level price trading strategy.
It was found that 19 out of 24 simulations showed higher median LC values (each median value
representing a distribution of 63 different models) when using fractional differences as input features
instead of typical integer differences. Thus, the use of fractional differences for the close prices shows
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better predictive power than integer differences, when feeding classification algorithms trying to
predict winning trades.

Which supervised learning method works better for classifying winner and loser trades, fed with
the parameters defining past candlesticks, was also quantified. An analysis on the same LC parameter
shows that AB classifier yield better performances when its prediction is used as signal generator for
the entry condition of trading strategies in out-of-sample data. In fact, a value of LCmedian−AB = 0.3646
was calculated, a bit higher than twice the value for other classifiers. This parameter represents the
mean value of all median values for LC parameter coming from 21 different simulations. We can then
conclude that supervised learning algorithms can be applied to the financial realm to improve the
performance metrics of trading strategies, thus allowing quantitative traders to go one step further in
their seek for alphas.

Main Limitations of the Methodology Employed

• Central limit theorem is based on the premise of independent and identically distributed samples
comprising its sample distribution, which is not exactly true in the financial realm.

• The p-values calculated are heavily dependent on the precision of the sampling distributions
calculated for each case. Since there are some approximations in the calculation of these sample
distributions, we may consider this is as an additional source of error in our model.

• We are assuming that the future will behave the same way as the past we have analysed.
• Embargo should be done when doing WFA to prevent overlapping trades between folds, which

yields erroneous results.

Future Work

We will consider several different lines of research for widening our knowledge of these strategies
performances:

• We will consider different values for the ratio SL/TP, since some increase in the EV of the strategy
is expected when the signal/noise ratio increases, as stated by de Prado [9].

• We will analyse systematically the effect of increasing the number of features on the success of
the supervised learning method.

• We will study the effect of changing the value minimum-samples-split for the case of decision trees
would be interesting since it is mostly responsible of the classifier overfitting to the training data.

• We will use a second supervised learning method on the output of the first one, which improves
the F1 score decreasing the amount of false positives of the first method. This approach is the
meta-labelling method described in [9]. For this purpose, we need informative features, otherwise
it is completely useless.

• We will use bootstrap forms on sampling distribution (of the close price returns) by resampling
the historical data with substitution randomly to obtain different realisations of the historical data
with similar statistical properties. Applying the trades to this new realisation of the returns gives
new equity curves, with which a sampling distribution can be formed.

• We will consider the effects a flag for those positions which do not close in a certain period of
time (the third label of the triple barrier method).

• The possibility for other values of the fractional difference order d for the close prices being more
predictive is something that should be explored deeply.

• This same analysis could be done over the tick data, instead 1-min data, which would yield more
accurate results.

• The calculation of the mean decrease accuracy of all the features (conveniently clustered to avoid
multicollinearity effects) should yield the response to the question of which of them are more
informative, which would be complementary and valuable analysis to this work.
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Abbreviations

The following abbreviations are used in this manuscript:

AB AdaBoost
APpT Average Profit per Trade
CDF Cumulative Distribution Function
DD DrawDown
DT Decision Tree
EMH Efficient Market Hypothesis
LC Learning Capability
PP Predictive Power
RF Random Forest
SL Stop Loss
SQN System Quality Number
TP Take Profit
WFA Walk Forward Analysis
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