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Abstract: We study the global asymptotic stability problem with respect to the fractional-order
quaternion-valued bidirectional associative memory neural network (FQVBAMNN) models in this paper.
Whether the real and imaginary parts of quaternion-valued activation functions are expressed implicitly or
explicitly, they are considered to meet the global Lipschitz condition in the quaternion field. New sufficient
conditions are derived by applying the principle of homeomorphism, Lyapunov fractional-order method
and linear matrix inequality (LMI) approach for the two cases of activation functions. The results
confirm the existence, uniqueness and global asymptotic stability of the system’s equilibrium point.
Finally, two numerical examples with their simulation results are provided to show the effectiveness of
the obtained results.

Keywords: global asymptotic stability; fractional-order; quaternion-valued; bidirectional associative memory;
linear matrix inequality

1. Introduction

Recently, many analyses pertaining to the dynamical behaviors of different classes of neural network
(NN) models have been reported in the literature. The results of NNs have been successfully applied
to a variety of domains, which include pattern recognition, artificial intelligence, optimal control,
signal processing, and other engineering problems [1–6]. In all these applications, the investigation on the
stability of the NN models is of paramount importance. Among different NN models, the bidirectional
associative memory (BAM) model is another kind of recurrent NNs [7]. The BAM NN model is a two-layer,
nonlinear feedback network model, and it has formulated that the neurons in one layer are always
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interconnected to neurons in another layer, which has been widely used because of their mathematical
modeling capabilities. As a result, BAM NN models have received significant research attention in both
areas of the field of both mathematical and practical analysis [8–15].

On the other hand, due to their extensive applications of NNs in science and engineering disciplines,
real-valued neural networks (RVNNs) and complex-valued neural networks (CVNNs) have been
successfully analyzed by many researchers [10,11,16–25]. In recent years, various NNs have been studied
in multi-dimensional space with much interest. While both RVNNs and CVNNs are helpless when
implementing 3D and 4D data into NNs directly. As such, quaternion-valued neural networks (QVNNs)
has been developed by implementing quaternion algebra into NNs in order to generalize both CVNNs and
RVNNs [26–28]. Recent research shows that QVNNs can effectively deal with 3D and 4D data and have
found their successful application in color image processing, 3D and 4D wind forecasting, body motion
tracking, computer graphics, optimization, polarized signal classification, molecular modeling [29–34].
The main advantage of the QVNN model is its capability of reducing computational complexity in
multi-dimensional problems. Recently, several studies on various dynamics of QVNN models have been
studied [35–44]. By the use of Halanay inequality and matrix measure methods, sufficient conditions
for the global exponential stability of the unique equilibrium state have been obtained in Reference [35].
Based on new Lyapunov functional and some inequality techniques, global synchronization conditions
were derived for fractional-order QVNNs in Reference [36]. The issue of global µ-stability of QVNNs
was studied in Reference [38]. In Reference [40], the problem of global Mittag-Leffler stability and
stabilization has been investigated for fractional-order quaternion-valued memristive NNs by using the
real-imaginary separate method. The fractional-order QVNN model was analyzed in Reference [41],
in which issues related to synchronization and global Mittag-Leffler stability were tackled. Based on
the geometric properties of the activation functions, the multistability issue for delayed QVNNs was
studied in Reference [43]. In References [44,45], by employing the direct quaternion method, the problem
of stability and stabilization analysis for QVNNs has been studied. Many similar outcomes can be found
in the literature, for example, References [13,37,39,40,42].

It is known that fractional calculus mainly deals with derivatives and integrals of arbitrary non-integer
order. Recently, fractional calculus has been shown as a powerful methodology for modeling many
physical and engineering processes include mechanics, chemistry, biology, and image processing.
The main topics include vibration and control, continuous-time random walk, Levy statistics, power law,
Riesz potential, nonlocal phenomena, biomedical engineering, and so on [46–48]. In comparison
with the integer-order model, the primary benefit of fractional-order model is two aspects; one is
its infinite memory, the other is the parameter of the fractional-order enriching systems output by
increasing a degree of freedom. Comparing with integer order calculus, fractional-order derivatives
offer a variety of merits to represent properties with respect to real-world memory and hereditary. As such,
the Caputo, Riemann-Liouville as well as Atangana-Baleanu fractional derivatives have attracted much
attention [47–49]. Recently, fractional-order NN models have received substantial research attention in both
mathematical and practical analysis [12–14,50–53]. As an example, by use of new fractional-order inequality
as well as the Lyapunov fractional-order method, the global Mittag-Leffler synchronization problem
pertaining to FQVBAMNN models was studied in Reference [13]. In Reference [14], the quasi-pinning
synchronization of BAM fractional-order NN models was analyzed with discontinuous neuron activations.
To reduce the complexity in calculations of fractional-order QVNNs, the decomposition method was used
to the problem of finite-time Mittag-Leffler stability in Reference [52]. On the other hand, only a few works
are reported in the dynamical analysis of FQVBAMNNs. According to our survey, the FQVBAMNNs
are new to the study on the global asymptotic stability analysis and our article contributes to this area
of research.
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Inspired by the above discussions, our analysis focuses on the global asymptotic stability problem
for the FQVBAMNN models. Throughout this study, whether the real and imaginary parts of
quaternion-valued activation functions are expressed implicitly or explicitly, they are considered to
meet the global Lipschitz condition in the quaternion field. By using the homeomorphism principle,
Lyapunov fractional-order method and LMI approach, new sufficient conditions for the two types of
activation functions are derived. The results confirm the existence, uniqueness, and global asymptotic
stability of the system’s equilibrium point. We use two examples to illustrate the feasibility and benefits of
the obtained results. The main contributions of this paper can be listed as follows: (1) results regarding
the stability of FQVBAMNN is limited. This paper contributes to analyzing this research area, and global
asymptotic stability also investigated. (2) quaternion-valued LMI is equivalently translated into real-valued
LMI, which can easily be checked by the LMI toolbox in Matlab. (3) the obtained main results are more
concise and new compared to the previous results.

Notations: The sets of quaternion, complex, and real numbers are denoted by Q, C, and R, respectively.
Their n× n matrices are denoted by Qn×n, Cn×n,Rn×n while their and n dimensional vectors are denoted
by Qn, Cn, Rn, respectively. In addition, the diagonal of a block diagonal matrix is denoted as diag{·};
a positive (negative) definite matrix of P is denoted as P > 0 (P < 0); while the identity matrix is denoted
as I. The matrix transposition and conjugate transpose and matrix transposition are denoted as superscript
T and ∗, respectively. Finally, given the block of a quaternion matrix, its conjugate transpose is denoted as
?, while z indicates the symmetric terms in a matrix.

2. Formulation of the Problem and Fundamentals

2.1. Quaternion Algebra

Firstly, we address the quaternion and its operating rules. Quaternion is generally represented in the
form as

z = zR + izI + jzJ + kzK ∈ Q,

where zR, zI , zJ , zK ∈ R; the imaginary roots i, j, k satisfy the following Hamilton multiplication rules:{
ijk = i2 = j2 = k2 = −1

ij = k = −ji, jk = i = −kj, ki = j = −ik.
(1)

The operations between quaternions x = xR + ixI + jx J + kxK and y = yR + iyI + jyJ + kyK are
defined as follows. The addition and subtraction of quaternions are defined as

x± y = (xR ± yR) + i(xI ± yI) + j(x J ± yJ) + k(xK ± yK).

According to Hamilton multiplication rules (1), the product of x and y is defined as

xy =
(

xRyR − xIyI − x JyJ − xKyK)+ i
(
xRyI + xIyR + x JyK − xKyJ)

+ j
(

xRyJ + x JyR − xIyK + xKyI)+ k
(
xRyK + xKyR + xIyJ − x JyI).

The module for a quaternion z = zR + izI + jzJ + kzK ∈ Q, denoted by |z|, is defined as

|z| =
√

z∗z =
√
(zR)2 + (zI)2 + (zJ)2 + (zK)2,
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where z∗ = zR(t) − izI(t) − jzJ(t) − kzK(t) represents the conjugate transpose of z. The norm of z is

defined as ‖z‖ =
√

n
∑

x=1
(zR)2 +

n
∑

x=1
(zI)2 +

n
∑

x=1
(zJ)2 +

n
∑

x=1
(zK)2.

2.2. Caputo Fractional-Order Derivative

We give the definition of Euler’s gamma function Γ(s) as

Γ(s) =
∫ +∞

0
tr−1exp(−t)dt.

Definition 1 ([47]). The fractional-order of Caputo derivative of order ς > 0 for a function w(t) is defined as

CDς
t0,tw(t) =

1
Γ(n− ς)

∫ t

t0

(t− `)n−ς−1w(n)(`)d`, t ≥ t0,

where t0 is the initial time and n is the positive integer such that n− 1 < ς < n, and n ∈ Z+. Γ(·) is gamma
function.

Definition 2 ([47]). The Riemann-Liouville fractional integral of w(t) is defined as

D−ς
t0,tw(t) =

1
Γ(ς)

∫ t

t0

(t− `)ς−1w(`)d`, t ≥ t0, ς > 0.

2.3. Problem Formulation

We consider a class of FQVBAMNN models in this section, as follows:
Dς

0,txs(t) = −dsxs(t) +
n
∑

r=1
asrgr(yr(t)) + us, s = 1, ..., n,

Dς
0,tys(t) = −csys(t) +

n
∑

r=1
bsr fr(xr(t)) + vs, s = 1, ..., n,

(2)

or an equivalent vector form: {
Dς

0,tx(t) = −Dx(t) +Ag(y(t)) + u,

Dς
0,ty(t) = −Cy(t) +B f (x(t)) + v,

(3)

where the external input vectors are denoted as u = [u1, ..., un]T ∈ Qn, v = [v1, ..., vn]T ∈ Qn;
the vector-valued activation functions are denoted as f (x(·)) = [ f1(x1(·)), ..., fn(xn(·))]T ∈ Qn, g(y(·)) =
[g1(y1(·)), ..., gn(yn(·))]T ∈ Qn; the state vectors are denoted as x(t) = [x1(t), ...., xn(t)]T ∈ Qn and
y(t) = [y1(t), ..., yn(t)]T ∈ Qn. While D = diag{d1, ..., dn} ∈ Rn with ds > 0, C = diag{c1, ..., cn} ∈ Rn

with cs > 0, (s = 1, ..., n) are the self-feedback connection weight matrices; A = (aij)n×n ∈ Qn×n, B =

(bij)n×n ∈ Qn×n are the connection weight matrices.
The initial condition of (3) is as follows:{

x(0) = x0 ∈ Qn,

y(0) = y0 ∈ Qn,
(4)
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where {
x0 = xR(0) + ixI(0) + jx J(0) + kxK(0),

y0 = yR(0) + iyI(0) + jyJ(0) + kyK(0).
(5)

Remark 1. Recently, several approaches have been taken into consideration to study complex-valued type of
activation functions [13,15,18,19,40,44,45,54]. The two main approaches are—either to express the activation
function into two parts (real and imaginary) parts [13,15,40,54], or keep the activation function intact without
separation into real and imaginary parts [18,19,44,45]. Accordingly, the following assumptions are established.

Assumption 1. The neuron activation functions of fs(·) ∈ Qn and gs(·) ∈ Qn (s = 1, ..., n), satisfy the following
Lipschitz condition: {

| fs(x1)− fs(x2)| ≤ ms|x1 − x2|, s = 1, .., n, ∀x1, x2 ∈ Q
|gs(y1)− gs(y2)| ≤ ns|y1 − y2|, s = 1, ..., n, ∀y1, y2 ∈ Q

where ms and ns (s = 1, ..., n) are positive constants.

Based on Assumption 1, we have{
( f (x1)− f (x2))

∗( f (x1)− f (x2)) ≤ (x1 − x2)
∗MTM(x1 − x2),

(g(y1)− g(y2))
∗(g(y1)− g(y2)) ≤ (y1 − y2)

∗NTN(y1 − y2),
(6)

where M = diag{m1, ..., mn} and N = diag{n1, ..., nn}.

Assumption 2. For x = xR + ixI + jx J + kxK ∈ Qn and y = yR + iyI + jyJ + kyK ∈ Qn with xR, xI , x J , xK,
yR, yI , yJ , yK ∈ R. The neuron activation functions fs(x) and gs(y) can be separated into real and imaginary
parts as{

fs(x) = f R
s (xR, xI , x J , xK) + i f I

s (xR, xI , x J , xK) + j f J
s (xR, xI , x J , xK) + k f K

s (xR, xI , x J , xK),

gs(y) = gR
s (yR, yI , yJ , yK) + igI

s(yR, yI , yJ , yK) + jgJ
s(yR, yI , yJ , yK) + kgK

s (yR, yI , yJ , yK),

where s = 1, ..., n. In addition, the following conditions are satisfied by both the real and imaginary parts:
(1) Given variables xR, xI , x J , xK, yR, yI , yJ , yK, the partial derivatives of fs(., ., ., .) and gs(., ., ., .) exist, and they
are continuous.
(2) All the partial derivatives are bounded, that is, there exist positive constant numbers λRR

s , λRI
s , λRJ

s , λRK
s , λIR

s ,
λI I

s , λI J
s , λIK

s , λJR
s , λJ I

s , λJ J
s , λJK

s , λKR
s , λKI

s , λKJ
s , λKK

s , λ̄RR
s , λ̄RI

s , λ̄RJ
s , λ̄RK

s , λ̄IR
s , λ̄I I

s , λ̄I J
s , λ̄IK

s , λ̄JR
s , λ̄J I

s , λ̄J J
s , λ̄JK

s ,
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λ̄KR
s , λ̄KI

s , λ̄KJ
s , λ̄KK

s such that



∣∣∣∣ ∂ f R
s

∂xR

∣∣∣∣ ≤ λRR
s ,

∣∣∣∣ ∂ f R
s

∂xI

∣∣∣∣ ≤ λRI
s ,

∣∣∣∣ ∂ f R
s

∂x J

∣∣∣∣ ≤ λRJ
s ,

∣∣∣∣ ∂ f R
s

∂xK

∣∣∣∣ ≤ λRK
s ,

∣∣∣∣ ∂ f I
s

∂xR

∣∣∣∣ ≤ λIR
s ,

∣∣∣∣ ∂ f I
s

∂xI

∣∣∣∣ ≤ λI I
s ,
∣∣∣∣ ∂ f I

s
∂x J

∣∣∣∣ ≤ λI J
s ,
∣∣∣∣ ∂ f I

s
∂xK

∣∣∣∣ ≤ λIK
s ,

∣∣∣∣ ∂ f J
s

∂xR

∣∣∣∣ ≤ λJR
s ,

∣∣∣∣ ∂ f J
s

∂xI

∣∣∣∣ ≤ λJ I
s ,
∣∣∣∣ ∂ f J

s
∂x J

∣∣∣∣ ≤ λJ J
s ,
∣∣∣∣ ∂ f J

s
∂xK

∣∣∣∣ ≤ λJK
s ,

∣∣∣∣ ∂ f K
s

∂xR

∣∣∣∣ ≤ λKR
s ,

∣∣∣∣ ∂ f K
s

∂xI

∣∣∣∣ ≤ λKI
s ,

∣∣∣∣ ∂ f K
s

∂x J

∣∣∣∣ ≤ λKJ
s ,

∣∣∣∣ ∂ f K
s

∂xK

∣∣∣∣ ≤ λKK
s ,



∣∣∣∣ ∂gR
s

∂yR

∣∣∣∣ ≤ λ̄RR
s ,

∣∣∣∣ ∂gR
s

∂yI

∣∣∣∣ ≤ λ̄RI
s ,

∣∣∣∣ ∂gR
s

∂yJ

∣∣∣∣ ≤ λ̄RJ
s ,

∣∣∣∣ ∂gR
s

∂yK

∣∣∣∣ ≤ λ̄RK
s ,

∣∣∣∣ ∂gI
s

∂yR

∣∣∣∣ ≤ λ̄IR
s ,

∣∣∣∣ ∂gI
s

∂yI

∣∣∣∣ ≤ λ̄I I
s ,
∣∣∣∣ ∂gI

s
∂yJ

∣∣∣∣ ≤ λ̄I J
s ,
∣∣∣∣ ∂gI

s
∂yK

∣∣∣∣ ≤ λ̄IK
s ,

∣∣∣∣ ∂gJ
s

∂yR

∣∣∣∣ ≤ λ̄JR
s ,

∣∣∣∣ ∂gJ
s

∂yI

∣∣∣∣ ≤ λ̄J I
s ,
∣∣∣∣ ∂gJ

s
∂yJ

∣∣∣∣ ≤ λ̄J J
s ,
∣∣∣∣ ∂gJ

s
∂yK

∣∣∣∣ ≤ λ̄JK
s ,

∣∣∣∣ ∂gK
s

∂yR

∣∣∣∣ ≤ λ̄KR
s ,

∣∣∣∣ ∂gK
s

∂yI

∣∣∣∣ ≤ λ̄KI
s ,

∣∣∣∣ ∂gK
s

∂yJ

∣∣∣∣ ≤ λ̄KJ
s ,

∣∣∣∣ ∂gK
s

∂yK

∣∣∣∣ ≤ λ̄KK
s ,

As a result, we have the following inequalities

∣∣ f R
s (xR

1 , xI
1, x J

1, xK
1 )− f R

s (xR
2 , xI

2, x J
2, xK

2 )
∣∣ ≤ λRR

s
∣∣xR

1 − xR
2

∣∣+ λRI
s
∣∣xI

1 − xI
2

∣∣+ λRJ
s
∣∣x J

1 − x J
2

∣∣+ λRK
s
∣∣xK

1 − xK
2

∣∣,∣∣ f I
s (xR

1 , xI
1, x J

1, xK
1 )− f I

s (xR
2 , xI

2, x J
2, xK

2 )
∣∣ ≤ λIR

s
∣∣xR

1 − xR
2

∣∣+ λI I
s
∣∣xI

1 − xI
2

∣∣+ λI J
s
∣∣x J

1 − x J
2

∣∣+ λIK
s
∣∣xK

1 − xK
2

∣∣,∣∣ f J
s (xR

1 , xI
1, x J

1, xK
1 )− f J

s (xR
2 , xI

2, x J
2, xK

2 )
∣∣ ≤ λJR

s
∣∣xR

1 − xR
2

∣∣+ λJ I
s
∣∣xI

1 − xI
2

∣∣+ λJ J
s
∣∣x J

1 − x J
2

∣∣+ λJK
s
∣∣xK

1 − xK
2

∣∣,∣∣ f K
s (xR

1 , xI
1, x J

1, xK
1 )− f K

s (xR
2 , xI

2, x J
2, xK

2 )
∣∣ ≤ λKR

s
∣∣xR

1 − xR
2

∣∣+ λKI
s
∣∣xI

1 − xI
2

∣∣+ λKJ
s
∣∣x J

1 − x J
2

∣∣+ λKK
s
∣∣xK

1 − xK
2

∣∣,

∣∣gR
s (yR

1 , yI
1, yJ

1, yK
1 )− gR

s (yR
2 , yI

2, yJ
2, yK

2 )
∣∣ ≤ λ̄RR

s
∣∣yR

1 − yR
2

∣∣+ λ̄RI
s
∣∣yI

1 − yI
2

∣∣+ λ̄RJ
s
∣∣yJ

1 − yJ
2

∣∣+ λ̄RK
s
∣∣yK

1 − yK
2

∣∣,∣∣gI
s(yR

1 , yI
1, yJ

1, yK
1 )− gI

s(yR
2 , yI

2, yJ
2, yK

2 )
∣∣ ≤ λ̄IR

s
∣∣yR

1 − yR
2

∣∣+ λ̄I I
s
∣∣yI

1 − yI
2

∣∣+ λ̄I J
s
∣∣yJ

1 − yJ
2

∣∣+ λ̄IK
s
∣∣yK

1 − yK
2

∣∣,∣∣gJ
s(yR

1 , yI
1, yJ

1, yK
1 )− gJ

s(yR
2 , yI

2, yJ
2, yK

2 )
∣∣ ≤ λ̄JR

s
∣∣yR

1 − yR
2

∣∣+ λ̄J I
s
∣∣yI

1 − yI
2

∣∣+ λ̄J J
s
∣∣yJ

1 − yJ
2

∣∣+ λ̄JK
s
∣∣yK

1 − yK
2

∣∣,∣∣gK
s (yR

1 , yI
1, yJ

1, yK
1 )− gK

s (yR
2 , yI

2, yJ
2, yK

2 )
∣∣ ≤ λ̄KR

s
∣∣yR

1 − yR
2

∣∣+ λ̄KI
s
∣∣yI

1 − yI
2

∣∣+ λ̄KJ
s
∣∣yJ

1 − yJ
2

∣∣+ λ̄KK
s
∣∣yK

1 − yK
2

∣∣,
holds for any xR

1 , xI
1, x J

1, xK
1 , xR

2 , xI
2, x J

2, xK
2 , yR

1 , yI
1, yJ

1, yK
1 , yR

2 , yI
2, yJ

2, yK
2 ∈ R. Moreover fs(0) = 0, gs(0) = 0 for

all s = 1, ..., n.

2.4. Fundamentals

For the analysis of the main results, the following lemmas are required.
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Lemma 1 ([53]). Let any w(t) ∈ Rn be continuous and differentiable, it implies that for any matrix 0 < P ∈ Rn×n,

Dς
0,tw

T(t)Pw(t) ≤ 2wT(t)P Dς
0,tw(t), ς ∈ (0, 1).

Lemma 2 ([54]). For any vectors p, q ∈ Rn, and ε > 0, the following condition is true: pTq + qT p ≤ ε−1 pT p +

εqTq.

Lemma 3 ([45]). For any vectors p, q ∈ Qn, and ε > 0, the following condition is true: p∗q + q∗p ≤ ε−1 p∗p +

εq∗q.

Lemma 4 ([15]). A continuous map is denoted as H(x, y) : R2(n+m) → R2(n+m), and it satisfies
(i) H(x, y) is injective on R2(n+m),
(ii) ‖H(x, y)‖ → ∞ as ‖(x, y)‖ → ∞, then H is homeomorphism of R2(n+m) onto itself.

Lemma 5 ([55]). A continuous map is denoted as H(x, y) : C(n+m) → C(n+m), and it satisfies
(i) H(x, y) is injective on C(n+m),
(ii) ‖H(x, y)‖ → ∞ as ‖(x, y)‖ → ∞, then H is homeomorphism of C(n+m) onto itself.

Lemma 6 ([45]). A continuous map is denoted as H(x, y) : Q(n+m) → Q(n+m), and it satisfies
(i) H(x, y) is injective on Q(n+m),
(ii) ‖H(x, y)‖ → ∞ as ‖(x, y)‖ → ∞, then H is homeomorphism of Q(n+m) onto itself.

Lemma 7 ([3]). Given W =

[
W11 W12

WT
12 W22

]
∈ R2n×2n, where W11 = WT

11, W22 = WT
22. As such, W < 0 is

equivalent to one of the following conditions

(i) W22 < 0, W11 −W12W
−1
22 WT

12 < 0,

(ii) W11 < 0, W22 −WT
12W

−1
11 W12 < 0.

Lemma 8 ([45]). Gien W =

[
W11 W12

W∗12 W22

]
∈ Q2n×2n, where W11 = W∗11, W22 = W∗22. As such, W < 0 is

equivalent to one of the following conditions

(i) W22 < 0, W11 −W12W
−1
22 W∗12 < 0,

(ii) W11 < 0, W22 −W∗12W
−1
11 W12 < 0.

Lemma 9 ([45]). Let W = WR + iWI + jWJ + kWK ∈ Qn×n be a Hermitian matrix. As such, W < 0 is
equivalent to 

WR −WJ −WI WK

WJ WR WK WI

WI −WK WR −WJ

−WK −WI WJ WR

 < 0.

Remark 2. Unlike real and complex numbers, the commutative principle is not satisfied by quaternion multiplication.
Therefore, methods and techniques for analysis of CVNN or RVNN models cannot be directly applied to QVNN
models. A straightforward way to perform analysis on the QVNN model is to exploit the Hamilton rules with respect
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to the non-commutative quaternion multiplication, that is, separating a QVNN model into either (i) four RVNN
models; or (ii) two CVNN models, for further analysis.

3. Main Results

In this section, subject to Assumption 1, we will derive new sufficient conditions with respect to the
existence, uniqueness, and global asymptotic stability pertaining to the equilibrium point for the NN
model in (3).

3.1. Real-Imaginary Separate-Type Activation Functions

Based on properties (1) and (3), we have


Dς

0,tx(t) = −Dx(t) +Ag(y(t)) + u,

= Dς
0,tx

R(t) + iDς
0,tx

I(t) + jDς
0,tx

J(t) + kDς
0,tx

K(t),

= −D(xR(t) + ixI(t) + jx J(t) + kxK(t)) + (AR + iAI + jAJ + kAK)

×(gR(yR(t)) + igI(yI(t)) + jgJ(yJ(t)) + kgK(yK(t))) + (uR + iuI + juJ + kuK),
Dς

0,ty(t) = −Cy(t) +B f (x(t)) + u,

= Dς
0,ty

R(t) + iDς
0,ty

I(t) + jDς
0,ty

J(t) + kDς
0,ty

K(t),

= −C(yR(t) + iyI(t) + jyJ(t) + kyK(t)) + (BR + iBI + jBJ + kBK)

×( f R(xR(t)) + i f I(xI(t)) + j f J(x J(t)) + k f K(xK(t))) + (vR + ivI + jvJ + kvK).

(7)

By applying the quaternion multiplication, (7) can be expressed as:


Dς

0,tx
R(t) = −DxR(t) +ARgR(yR(t))−AI gI(yI(t))−AJ gJ(yJ(t))−AKgK(yK(t)) + uR

Dς
0,tx

I(t) = −DxI(t) +ARgI(yI(t)) +AI gR(yR(t)) +AJ gK(yK(t))−AKgJ(yJ(t)) + uI

Dς
0,tx

J(t) = −Dx J(t) +ARgJ(yJ(t))−AI gK(yK(t)) +AJ gR(yR(t)) +AKgI(yI(t)) + uJ

Dς
0,tx

K(t) = −DxK(t) +ARgK(yK(t)) +AI gJ(yJ(t))−AJ gI(yI(t)) +AKgR(yR(t)) + uK
Dς

0,ty
R(t) = −CyR(t) +BR f R(xR(t))−BI f I(xI(t))−BJ f J(x J(t))−BK f K(xK(t)) + vR

Dς
0,ty

I(t) = −CyI(t) +BR f I(xI(t)) +BI f R(xR(t)) +BJ f K(xK(t))−BK f J(x J(t)) + vI

Dς
0,ty

J(t) = −CyJ(t) +BR f J(x J(t))−BI f K(xK(t)) +BJ f R(xR(t)) +BK f I(xI(t)) + vJ

Dς
0,ty

K(t) = −CyK(t) +BR f K(xK(t)) +BI f J(x J(t))−BJ f I(xI(t)) +BK f R(xR(t)) + vK.

(8)
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Let

x̄(t) =
(
(xR(t))T , (xI(t))T , (x J(t))T , (xK(t))T)T ,

ȳ(t) =
(
(yR(t))T , (yI(t))T , (yJ(t))T , (yK(t))T)T ,

f̄ (x̄(t)) =
(
( f R(xR(t)))T , ( f I(xI(t)))T , ( f J(x J(t)))T , ( f K(xK(t)))T)T ,

ḡ(ȳ(t)) =
(
(gR(yR(t)))T , (gI(yI(t)))T , (gJ(yJ(t)))T , (gK(yK(t)))T)T ,

ū =
(
(uR)T , (uI)T , (uJ)T , (uK)T)T , v̄ =

(
(vR)T , (vI)T , (vJ)T , (vK)T)T ,

D̄ = diag{D,D,D,D}, C̄ = diag{C,C,C,C},

Ā =


AR −AI −AJ −AK

AI AR −AK AJ

AJ AK AR −AI

AK −AJ AI AR

 , B̄ =


BR −BI −BJ −BK

BI BR −BK BJ

BJ BK BR −BI

BK −BJ BI BR

 .

The equivalent form of the model in (8) is{
Dς

0,t x̄(t) = −D̄x̄(t) + Āḡ(ȳ(t)) + ū,

Dς
0,tȳ(t) = −C̄ȳ(t) + B̄ f̄ (x̄(t)) + v̄,

(9)

Let the initial condition of (9) be: {
x̄(0) = x̄0 ∈ Rn,

ȳ(0) = ȳ0 ∈ Rn,
(10)

where {
x̄0 =

(
(xR(0))T , (xI(0))T , (x J(0))T , (xK(0))T)T ,

ȳ0 =
(
(yR(0))T , (yI(0))T , (yJ(0))T , (yK(0))T)T .

(11)

With respect to Assumption 1, we have{
( f̄ (x̄1)− f̄ (x̄2))

T( f̄ (x̄1)− f̄ (x̄2)) ≤ (x̄1 − x̄2)
TM̄(x̄1 − x̄2),

(ḡ(ȳ1)− ḡ(ȳ2))
T(ḡ(ȳ1)− ḡ(ȳ2)) ≤ (ȳ1 − ȳ2)

TN̄(ȳ1 − ȳ2),
(12)

where M̄ =


MTM 0 0 0

0 MTM 0 0
0 0 MTM 0
0 0 0 MTM

, N̄ =


NTN 0 0 0

0 NTN 0 0
0 0 NTN 0
0 0 0 NTN

.

Note that the NN models in (3) and (9) have the same equilibrium point, indicating that both models
have the same stability condition. Therefore, based on the inequality (12), the existence, uniqueness,
and global asymptotic stability of its equilibrium point are analyzed for the NN model (9).
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Theorem 1. Consider the real-imaginary separate-type activation functions, which satisfy Assumption 1. Given the
NN model in (9), its equilibrium point is globally asymptotically stable subject to the existence of scalars
ε1 > 0, ε2 > 0 and matrices P1 > 0,P2 > 0 in such a way that the following LMI is met:

Ω1 =

[
−P1D̄− D̄TP1 + ε2N̄ P1Ā

z −ε1I

]
< 0,

Ω2 =

[
−P2C̄− C̄TP2 + ε1M̄ P2B̄

z −ε2I

]
< 0,

(13)

Proof. First, we show the existence and uniqueness of the equilibrium point for NN (9). A map associated
with the model in (9) is defined as follows.

H(x̄, ȳ) = −
[
D̄ 0
0 C̄

] [
x̄
ȳ

]
+

[
Ā 0
0 B̄

] [
ḡ(ȳ)
f̄ (x̄)

]
+

[
ū
v̄

]
. (14)

Next, it is possible to prove that the map H(x̄, ȳ) is injective through contradiction. Suppose that
there exist (x̄, ȳ) 6= (x̄′, ȳ′) whereby H(x̄, ȳ) = H(x̄′, ȳ′).

According to (13), we have

−
[
D̄ 0
0 C̄

] [
x̄− x̄′

ȳ− ȳ′

]
+

[
Ā 0
0 B̄

] [
ḡ(ȳ)− ḡ(ȳ′)
f̄ (x̄)− f̄ (x̄′)

]
= 0. (15)

By multiplying both sides of (15) 2[(x̄− x̄′) (ȳ− ȳ′)]T
[
P̄1 0
0 P̄2

]
, we have

2[(x̄− x̄′) (ȳ− ȳ′)]T
[
P̄1 0
0 P̄2

](
−
[
D̄ 0
0 C̄

] [
x̄− x̄′

ȳ− ȳ′

]
+

[
Ā 0
0 B̄

] [
ḡ(ȳ)− ḡ(ȳ′)
f̄ (x̄)− f̄ (x̄′)

])
= 0. (16)

which implies the following{
0 = (x̄− x̄′)T(−P1D̄− D̄TP1)(x̄− x̄′) + (ȳ− ȳ′)T(−P2C̄− C̄TP2)(ȳ− ȳ′)

+2(x̄− x̄′)TP1Ā(ḡ(ȳ)− ḡ(ȳ′)) + 2(ȳ− ȳ′)TP2B̄( f̄ (x̄)− f̄ (x̄′)).
(17)

By Lemma 2, (12) and (17) for scalars ε1 > 0, ε2 > 0, we have

2(x̄− x̄′)TP1Ā(ḡ(ȳ)− ḡ(ȳ′)) ≤ ε−1
1 (x̄− x̄′)TP1ĀĀTP1(x̄− x̄′) + ε1(ȳ− ȳ′)TM̄(ȳ− ȳ′), (18)

2(ȳ− ȳ′)TP2B̄( f̄ (x̄)− f̄ (x̄′)) ≤ ε−1
2 (ȳ− ȳ′)TP2B̄B̄TP2(ȳ− ȳ′) + ε2(x̄− x̄′)TN̄(x̄− x̄′). (19)

When the right-hand side of (17) is bounded, we have

(x̄− x̄′)T(−P1D̄− D̄TP1)(x̄− x̄′) + (ȳ− ȳ′)T(−P2C̄− C̄TP2)(ȳ− ȳ′)

+2(x̄− x̄′)TP1Ā(ḡ(ȳ)− ḡ(ȳ′)) + 2(ȳ− ȳ′)TP2B̄( f̄ (x̄)− f̄ (x̄′))

≤ (x̄− x̄′)T(−P1D̄− D̄TP1)(x̄− x̄′) + (ȳ− ȳ′)T(−P2C̄− C̄TP2)(ȳ− ȳ′)

+ε−1
1 (x̄− x̄′)TP1ĀĀTP1(x̄− x̄′) + ε1(ȳ− ȳ′)TM̄(ȳ− ȳ′)

+ε−1
2 (ȳ− ȳ′)TP2B̄B̄TP2(ȳ− ȳ′) + ε2(x̄− x̄′)TN̄(x̄− x̄′),
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(x̄− x̄′)T(−P1D̄− D̄TP1)(x̄− x̄′) + (ȳ− ȳ′)T(−P2C̄− C̄TP2)(ȳ− ȳ′)

+2(x̄− x̄′)TP1Ā(ḡ(ȳ)− ḡ(ȳ′)) + 2(ȳ− ȳ′)TP2B̄( f̄ (x̄)− f̄ (x̄′))

≤ (x̄− x̄′)T(−P1D̄− D̄TP1 + ε−1
1 P1ĀĀTP1 + ε2N̄)(x̄− x̄′)

+(ȳ− ȳ′)T(−P2C̄− C̄TP2 + ε−1
2 P2B̄B̄TP2 + ε1M̄)(ȳ− ȳ′).

(20)

If (13) holds, by Schur complement, we have{
−P1D̄− D̄TP1 + ε2N̄+ ε−1

1 P1ĀĀTP1 < 0,

−P2C̄− C̄TP2 + ε1M̄+ ε−1
2 P2B̄B̄TP2 < 0

(21)

As such, the right-hand side of (21) is negative, and this presents a contradiction. As a result, the map
H(x̄, ȳ) is injective.

Then, it is possible to prove that ‖H(x̄, ȳ)‖ → ∞ as ‖(x̄, ȳ)‖ → ∞. Based on (21), we obtain{
−P1D̄− D̄TP1 + ε2N̄+ ε−1

1 P1ĀĀTP1 < −ϑI,

−P2C̄− C̄TP2 + ε1M̄+ ε−1
2 P2B̄B̄TP2 < −ϑI

(22)

subject to a sufficiently small ϑ > 0; as such, we have

2[x̄ ȳ]T
[
P̄1 0
0 P̄2

]
(H(x̄, ȳ)−H(0, 0))

≤ x̄T(−P1D̄− ĀTP1 + ε−1
1 P1ĀĀTP1 + ε2N̄)x̄

+ ȳT(−P2C̄− C̄TP2 + ε−1
2 P2B̄B̄TP2 + ε1M̄)ȳ, (23)

≤ − ϑ(‖x̄‖2 + ‖ȳ‖2). (24)

One can infer from (24) that

ϑ(‖x̄‖2 + ‖ȳ‖2) ≤ 2‖(x̄, ȳ)‖‖P1‖‖P2‖(‖H(x̄, ȳ)‖ − ‖H(0, 0)‖). (25)

Therefore, ‖H(x̄, ȳ)‖ → ∞ as ‖(x̄, ȳ)‖ → ∞. Based on Lemma 4, we can see that the map H(x̄, ȳ) is
homeomorphic on R2n+2m. As a result, a unique point ( ´̄x, ´̄y) exists whereby H( ´̄x, ´̄y) = 0. In other words,
a unique equilibrium point exists for the model in (9).

By transformation of ˜̄x = x̄− ´̄x, ˜̄y = ȳ− ´̄y, we can shift the equilibrium point pertaining to the model
in (9) to the origin. We then have {

Dς
0,t ˜̄x(t) = −D̄ ˜̄x(t) + Ā ˜̄g( ˜̄y(t)),

Dς
0,t ˜̄y(t) = −C̄ ˜̄y(t) + B̄ ˜̄f ( ˜̄x(t)),

(26)

where ˜̄f ( ˜̄x(t) = f̄ (x̄(t) + ´̄x)− f̄ ( ´̄x), and ˜̄g( ˜̄y(t) = ḡ(ȳ(t) + ´̄y)− ḡ( ´̄y).
We use the following Lyapunov functional to ascertain the global asymptotic stability with respect to

the equilibrium point pertaining to the model in (26),

V( ˜̄x(t), ˜̄y(t)) = ˜̄xT(t)P1 ˜̄x(t) + ˜̄yT(t)P2 ˜̄y(t), (27)
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where P1 > 0 and P2 > 0. As such, we obtain the following from the time derivative of V( ˜̄x(t), ˜̄y(t)) with
respect to the solution of (26)

Dς
0,tV( ˜̄x(t), ˜̄y(t))≤ 2 ˜̄xT(t)P1Dς

0,t ˜̄x(t) + 2 ˜̄yT(t)P2Dς
0,t ˜̄y(t)

= 2 ˜̄xT(t)P1[−D̄ ˜̄x(t) + Ā ˜̄g( ˜̄y(t))] + 2 ˜̄yT(t)P2[−C̄ ˜̄y(t) + B̄ ˜̄f ( ˜̄x(t))]

= ˜̄xT(t)(−P1D̄− D̄TP1) ˜̄x(t) + 2 ˜̄xT(t)(P1Ā) ˜̄g( ˜̄y(t))

+ ˜̄yT(t)(−P2C̄− C̄TP2) ˜̄y(t) + 2 ˜̄yT(t)(P2B̄)
˜̄f ( ˜̄x(t)). (28)

By Lemma 2, (12) and (28), for scalars ε1 > 0, ε2 > 0, we have

2 ˜̄xT(t)P1Ā ˜̄g( ˜̄y(t)) ≤ ε−1
1

˜̄xT(t)(P1ĀĀTP1) ˜̄x(t) + ε1 ˜̄yT(t)M̄ ˜̄y(t), (29)

2 ˜̄yT(t)P2B̄
˜̄f ( ˜̄x(t)) ≤ ε−1

2
˜̄yT(t)(P2B̄B̄TP2) ˜̄y(t) + ε2 ˜̄xT(t)N̄ ˜̄x(t). (30)

Then, combining with (28)–(30), we have

Dς
0,tV( ˜̄x(t), ˜̄y(t)) ≤ ˜̄xT(t)(−P1D̄− D̄TP1) ˜̄x(t) + ε−1

1
˜̄xT(t)(P1ĀĀTP1) ˜̄x(t) + ε1 ˜̄yT(t)M̄ ˜̄y(t)

+ ˜̄yT(t)(−P2C̄− C̄TP2) ˜̄y(t) + ε−1
2

˜̄yT(t)(P2B̄B̄TP2) ˜̄y(t) + ε2 ˜̄xT(t)N̄ ˜̄x(t),

≤ ˜̄xT(t)(−P1D̄− D̄TP1 + ε2N̄+ ε−1
1 P1ĀĀTP1) ˜̄x(t)

+ ˜̄yT(t)(−P2C̄− C̄TP2 + ε1M̄+ ε−1
2 P2B̄B̄TP2) ˜̄y(t),

Dς
0,tV( ˜̄x(t), ˜̄y(t)) ≤ ˜̄xT(t)Ω̄1 ˜̄x(t) + ˜̄yT(t)Ω̄2 ˜̄y(t). (31)

where {
Ω̄1 = −P1D̄− D̄TP1 + ε2N̄+ ε−1

1 P1ĀĀTP1,

Ω̄2 = −P2C̄− C̄TP2 + ε1M̄+ ε−1
2 P2B̄B̄TP2.

(32)

By the Shcur complement lemma, it is obvious that (32) is equivalent to that of (13). Therefore,
Dς

0,tV( ˜̄x(t), ˜̄y(t)) < 0 if the condition (13) holds, which implies the global asymptotical stability of the
equilibrium point pertaining to the NN model in (9). The proof is completed.

Remark 3. Theorem 1 provides sufficient conditions for the existence, uniqueness and global asymptotic stability
of the NN model by splitting the real-imaginary separate type activation function. If it is not possible to split the
activation function into real-imaginary parts, the results obtained in Theorem 1 are invalid. Next, we analyze the NN
model in (3) under the condition that the activation functions cannot be divided into real-imaginary separate types.

3.2. The Activation Functions Cannot Be Expressed through Separation of the Real and Imaginary Parts

Theorem 2. With respect to Assumption 1, consider the scenario that it is unable to separate the activation functions
into real and imaginary parts. As such, the model in (3) has an equilibrium point that is globally asymptotically
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stable, subject to the existence of scalars 0 < ε1, 0 < ε2 and Hermitian matrices 0 < P1 = PR
1 + iPI

1 + jPJ
1 + kPK

1 ,
0 < P2 = PR

2 + iPI
2 + jPJ

2 + kPK
2 whereby the following LMI is satisfied:

˜̄Ξ1 =


˜̄ΞR

1 − ˜̄ΞJ
1 − ˜̄ΞI

1
˜̄ΞK

1
˜̄ΞJ

1
˜̄ΞR

1
˜̄ΞK

1
˜̄ΞI

1
˜̄ΞI

1 − ˜̄ΞK
1

˜̄ΞR
1 − ˜̄ΞJ

1

− ˜̄ΞK
1 − ˜̄ΞI

1
˜̄ΞJ

1
˜̄ΞR

1

 < 0,

˜̄Ξ2 =


˜̄ΞR

2 − ˜̄ΞJ
2 − ˜̄ΞI

2
˜̄ΞK

2
˜̄ΞJ

2
˜̄ΞR

2
˜̄ΞK

2
˜̄ΞI

2
˜̄ΞI

2 − ˜̄ΞK
2

˜̄ΞR
2 − ˜̄ΞJ

2

− ˜̄ΞK
2 − ˜̄ΞI

2
˜̄ΞJ

2
˜̄ΞR

2

 < 0,

(33)

where

˜̄ΞR
1 =

[
−PR

1 D−DTPR
1 + ε2N PR

1 A
R − PI

1A
I − P

J
1A

J − PK
1 A

K

z −ε1I

]

˜̄ΞI
1 =

[
−PI

1D−DTPI
1 PR

1 A
I + PI

1A
R + P

J
1A

K − PK
1 A

J

(AJ)TPK
1 − (AK)TP

J
1 − (AR)TPI

1 − (AI)TPR
1 0

]
,

˜̄ΞJ
1 =

[
−PJ

1D−DTP
J
1 PR

1 A
J − PI

1A
K + P

J
1A

R + PK
1 A

I

−(AI)TPK
1 − (AR)TP

J
1 + (AK)TPI

1 − (AJ)TPR
1 0

]
,

˜̄ΞK
1 =

[
−PK

1 D−DTPK
1 PR

1 A
K + PI

1A
J − P

J
1A

I + PK
1 A

R

−(AR)TPK
1 + (AI)TP

J
1 − (AJ)TPI

1 − (AK)TPR
1 0

]
,



˜̄ΞR
2 =

[
−PR

2 C− CTPR
2 + ε1M PR

2 B
R − PI

2B
I − P

J
2B

J − PK
2 B

K

z −ε2I

]
,

˜̄ΞI
2 =

[
−PI

2C− CTPI
2 PR

2 B
I + PI

2B
R + P

J
2B

K − PK
2 B

J

(BJ)TPK
2 − (BK)TP

J
2 − (BR)TPI

2 − (BI)TPR
2 0

]
,

˜̄ΞJ
2 =

[
−PJ

2C− CTP
J
2 PR

2 B
J − PI

2B
K + P

J
2B

R + PK
2 B

I

−(BI)TPK
2 − (BR)TP

J
2 + (BK)TPI

2 − (BJ)TPR
2 0

]
,

˜̄ΞK
2 =

[
−PK

2 C− CTPK
2 PR

2 B
K + PI

2B
J − P

J
2B

I + PK
2 B

R

−(BR)TPK
2 + (BI)TP

J
2 − (BJ)TPI

2 − (BK)TPR
2 0

]
.
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Proof. Given the NN model in (3), we show the existence and uniqueness of its equilibrium point. A map
associated with the model in (3) is defined as follows

H(x, y) = −
[
D 0
0 C

] [
x
y

]
+

[
A 0
0 B

] [
g(y)
f (x)

]
+

[
u
v

]
. (34)

Similarly, it is possible to prove that the map H(x, y) is injective through contradiction. Suppose that
there exist (x, y) 6= (x′, y′) whereby H(x, y) = H(x′, y′). According to (33), we have

−
[
D 0
0 C

] [
x− x′

y− y′

]
+

[
A 0
0 B

] [
g(y)− g(y′)
f (x)− f (x′)

]
= 0, (35)

We multiply both sides of (35) 2[(x− x′) (y− y′)]∗
[
P1 0
0 P2

]
, we have

2[(x− x′) (y− y′)]∗
[
P1 0
0 P2

](
−
[
D 0
0 C

] [
x− x′

y− y′

]
+

[
A 0
0 B

] [
g(y)− g(y′)
f (x)− f (x′)

])
= 0, (36)

which implies that

0 = (x− x′)∗(−P1D−D∗P1)(x− x′) + (y− y′)∗(−P2C− C∗P2)(y− y′)

+2(x− x′)∗P1A(g(y)− g(y′)) + 2(y− y′)∗P2B( f (x)− f (x′)). (37)

By Lemma 3, (6) and (37), for scalars ε1 > 0, ε2 > 0, we have

2(x− x′)∗P1A(g(y)− g(y′)) ≤ ε−1
1 (x− x′)∗P1AA∗P1(x− x′) + ε1(y− y′)∗M(y− y′), (38)

2(y− y′)∗P2B( f (x)− f (x′)) ≤ ε−1
2 (y− y′)∗P2BB∗P2(y− y′) + ε2(x− x′)∗N(x− x′). (39)

So, it is possible for the right-hand side of (37) to be bounded, as follows

(x− x′)∗(−P1D−D∗P1)(x− x′) + (y− y′)∗(−P2C− C∗P2)(y− y′)

+2(x− x′)∗P1A(g(y)− g(y′)) + 2(y− y′)∗P2B( f (x)− f (x′))

≤ (x− x′)∗(−P1D−D∗P1)(x− x′) + (y− y′)∗(−P2C− C∗P2)(y− y′)

+ε−1
1 (x− x′)∗P1AA∗P1(x− x′) + ε1(y− y′)∗M(y− y′)

+ε−1
2 (y− y′)∗P2BB∗P2(y− y′) + ε2(x− x′)∗N(x− x′).


(x− x′)∗(−P1D−D∗P1)(x− x′) + (y− y′)∗(−P2C− C∗P2)(y− y′)

+2(x− x′)∗P1A(g(y)− g(y′)) + 2(y− y′)∗P2B( f (x)− f (x′))

≤ (x− x′)∗(−P1D−D∗P1 + ε−1
1 P1AA∗P1 + ε2N)(x− x′)

+(y− y′)∗(−P2C− C∗P2 + ε−1
2 P2BB∗P2 + ε1M)(y− y′).

(40)

If (33) holds, by Schur complement, we have{
−P1D−D∗P1 + ε2N+ ε−1

1 P1AA∗P1 < 0,

−P2C− C∗P2 + ε1M+ ε−1
2 P2BB∗P2 < 0.

(41)
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As such, the right-hand side of (41) is negative, and this presents a contradiction. As a result, the map
H(x, y) is injective.

Then, it is possible to prove that ‖H(x, y)‖ → ∞ as ‖(x, y)‖ → ∞. Based on (41), we obtain{
−P1D−D∗P1 + ε2N+ ε−1

1 P1AA∗P1 < −ϑI,

−P2C− C∗P2 + ε1M+ ε−1
2 P2BB∗P2 < −ϑI.

(42)

Subject to a sufficiently small ϑ > 0; as such, we have

2[x y]∗
[
P1 0
0 P2

]
(H(x, y)−H(0, 0))

≤ x∗(−P1D−D∗P1 + ε−1
1 P1AA∗P1 + ε2N)x

+ y∗(−P2C− C∗P2 + ε−1
2 P2BB∗P2 + ε1M)y, (43)

≤ − ϑ(‖x‖2 + ‖y‖2). (44)

One can infer from (44) that

ϑ(‖x‖2 + ‖y‖2) ≤ 2‖(x, y)‖‖P1‖‖P2‖(‖H(x, y)‖ − ‖H(0, 0)‖). (45)

Therefore, ‖H(x, y)‖ → ∞ as ‖(x, y)‖ → ∞. Based on Lemma 6, we can see that the map H(x, y) is
homeomorphic on Q2n+2m. As a result, a unique point (x́, ý) exists whereby H(x́, ý) = 0. In other words,
a unique equilibrium point exists for the model in (3).

By transformation of x̂ = x− x́, ŷ = y− ý, we can shift the equilibrium point pertaining to the NN
model in (3) to the origin. Then, we have{

Dς
0,t x̂(t) = −Dx̂(t) +Aĝ(ŷ(t)),

Dς
0,tŷ(t) = −Cŷ(t) +B f̂ (x̂(t)).

(46)

where f̂ (x̂(t) = f (x(t) + x́)− f (x́), and ĝ(ŷ(t) = g(y(t) + ý)− g(ý).

We use the following Lyapunov functional to ascertain the global asymptotic stability with respect to
the equilibrium point pertaining to the model in (46),

V(x̂(t), ŷ(t)) = x̂∗(t)P1 x̂(t) + ŷ∗(t)P2ŷ(t), (47)

where P1 > 0 and P2 > 0. As such, we obtain the following from the time derivative of V(x̂(t), ŷ(t)) with
respect to the solution of (46)

Dς
0,tV(x̂(t), ŷ(t))≤ 2x̂∗(t)P1Dς

0,t x̂(t) + 2ŷ∗(t)P2Dς
0,tŷ(t),

= 2x̂∗(t)P1[−Dx̂(t) +Aĝ(ŷ(t))] + 2ŷ∗(t)P2[−Cŷ(t) +B f̂ (x̂(t))],

= x̂∗(t)(−P1D−D∗P1)x̂(t) + 2x̂∗(t)(P1A)ĝ(ŷ(t))

+ ŷ∗(t)(−P2C− C∗P2)ŷ(t) + 2ŷ∗(t)(P2B) f̂ (x̂(t)). (48)
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By Lemma 3, (6) and (48), for scalars ε1 > 0, ε2 > 0, we have

2x̂∗(t)P1Aĝ(ŷ(t)) ≤ ε−1
1 x̂∗(t)(P1AA∗P1)x̂(t) + ε1ŷ∗(t)Mŷ(t), (49)

2ŷ∗(t)P2B f̂ (x̂(t)) ≤ ε−1
2 ŷ∗(t)(P2BB∗P2)ŷ(t) + ε2 x̂∗(t)Nx̂(t). (50)

Then, combining with (48)–(50), we have

Dς
0,tV(x̂(t), ŷ(t)) ≤ x̂∗(t)(−P1D−D∗P1)x̂(t) + ε−1

1 x̂∗(t)(P1AA∗P1)x̂(t) + ε1ŷ∗(t)Mŷ(t)

+ ŷ∗(t)(−P2C− C∗P2)ŷ(t) + ε−1
2 ŷ∗(t)(P2BB∗P2)ŷ(t) + ε2 x̂∗(t)N̂̄x(t),

≤ x̂∗(t)(−P1D−D∗P1 + ε2N+ ε−1
1 P1AA∗P1)x̂(t)

+ ŷ∗(t)(−P2C− C∗P2 + ε1M+ ε−1
2 P2BB∗P2)ŷ(t),

Dς
0,tV(x̂(t), ŷ(t)) ≤ x̂∗(t)Ξ̄1 x̂(t) + ŷ∗(t)Ξ̄2ŷ(t). (51)

where {
Ξ̄1 = −P1D−D∗P1 + ε2N+ ε−1

1 P1AA∗P1,

Ξ̄2 = −P2C− C∗P2 + ε1M+ ε−1
2 P2BB∗P2.

(52)

By using the Shcur complement lemma, we have
˜̄Ξ1 =

[
−P1D−D∗P1 + ε2N P1A

? ε1I

]
,

˜̄Ξ2 =

[
−P2D−D∗P2 + ε1M P2B

? ε2I

]
.

(53)

Using Lemma 9, if ˜̄Ξ1 < 0, ˜̄Ξ2 < 0, such that

˜̄Ξ1 =


˜̄ΞR

1 − ˜̄ΞJ
1 − ˜̄ΞI

1
˜̄ΞK

1
˜̄ΞJ

1
˜̄ΞR

1
˜̄ΞK

1
˜̄ΞI

1
˜̄ΞI

1 − ˜̄ΞK
1

˜̄ΞR
1 − ˜̄ΞJ

1

− ˜̄ΞK
1 − ˜̄ΞI

1
˜̄ΞJ

1
˜̄ΞR

1

 < 0,

˜̄Ξ2 =


˜̄ΞR

2 − ˜̄ΞJ
2 − ˜̄ΞI

2
˜̄ΞK

2
˜̄ΞJ

2
˜̄ΞR

2
˜̄ΞK

2
˜̄ΞI

2
˜̄ΞI

2 − ˜̄ΞK
2

˜̄ΞR
2 − ˜̄ΞJ

2

− ˜̄ΞK
2 − ˜̄ΞI

2
˜̄ΞJ

2
˜̄ΞR

2

 < 0,

(54)

where ˜̄ΞR
1 , ˜̄ΞI

1, ˜̄ΞJ
1, ˜̄ΞK

1 , ˜̄ΞR
2 , ˜̄ΞI

2, ˜̄ΞJ
2, ˜̄ΞK

2 are defined in Theorem 2.
Therefore, Dς

0,tV(x̂(t), ŷ(t)) < 0 if the conditions (33) holds, which implies the global asymptotic
stability pertaining to the origin of the the model in (3). The proof is completed.

Remark 4. It is known that QVNN models are the generalization of CVNN and RVNN models. As such, the global
asymptotic stability criterion for both CVNN and RVNN models can be obtained by using the same methods as in
Theorems 1 and 2.
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Consider a CVNN model with the following form. We have{
Dς

0,tx(t) = −Dx(t) +Ag(y(t)) + u,

Dς
0,ty(t) = −Cy(t) +B f (x(t)) + v,

(55)

where the external input vectors are denoted as u = [u1, ..., un]T ∈ Cn, v = [v1, ..., vn]T ∈ Cn; the connection
weight matrix and delayed connection weight matrix are denoted as A = (ajk)n×n ∈ Cn×n and B =

(bjk)n×n ∈ Cn×n; the self-feedback connection weight positive diagonal matrices are denoted as D ∈ Rn

and C ∈ Rn; the vector-valued activation functions are denoted as f (x(·)) = [ f (x1(·)), ..., f (xn(·))]T ∈ Cn,
g(y(·)) = [g(y1(·)), ..., g(yn(·))]T ∈ Cn; the state vectors are denoted as x(t) = [x1(t), ...., xn(t)]T ∈ Cn and
y(t) = [y1(t), ..., yn(t)]T ∈ Cn; and t ≥ 0.

We can express he model in (55) in accordance with the definition of complex numbers as follows


Dς

0,tx(t) = −Dx(t) +Ag(y(t)) + u

= Dς
0,tx

R(t) + iDς
0,tx

I(t)

= −D(xR(t) + ixI(t)) + (AR + iAI)(gR(y(t)) + igI(y(t))) + (uR + iuI),
Dς

0,ty(t) = −Cy(t) +B f (x(t)) + v

= Dς
0,ty

R(t) + iDς
0,ty

I(t)

= −C(yR(t) + iyI(t)) + (BR + iBI)( f R(x(t)) + i f I(x(t))) + (vR + ivI).

(56)

By applying complex multiplication, we can express (55) as

{
Dς

0,tx
R(t) = −DxR(t) +ARgR(yR(t))−AI gI(yI(t)) + uR,

Dς
0,tx

I(t) = −DxI(t) +ARgI(yI(t)) +AI gR(yR(t)) + uI ,{
Dς

0,ty
R(t) = −CyR(t) +BR f R(xR(t))−BI f I(xI(t)) + vR,

Dς
0,ty

I(t) = −CyI(t) +BR f I(xI(t)) +BI f R(xR(t)) + vI .

(57)

Let

x̃(t) =
(
(xR(t))T , (xI(t))T)T , ỹ(t) =

(
(yR(t))T , (yI(t))T)T ,

f̃ (x̃(t)) =
(
( f R(xR(t)))T , ( f I(xI(t)))T)T , g̃(ỹ(t)) =

(
(gR(yR(t)))T , (gI(yI(t)))T)T ,

ũ =
(
(uR)T , (uI)T)T , ṽ =

(
(vR)T , (vI)T)T ,

D̃ = diag{D,D}, C̃ = diag{C,C},

Ã =

[
AR −AI

AI AR

]
, B̃ =

[
BR −BI

BI BR

]
.

As such, an equivalent form of the model in (57) is{
Dς

0,t x̃(t) = −D̃x̃(t) + Ãg̃(ỹ(t)) + ũ,

Dς
0,tỹ(t) = −C̃ỹ(t) + B̃ f̃ (x̃(t)) + ṽ.

(58)
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{
x̃(0) = x̃0 ∈ Rn,

ỹ(0) = ỹ0 ∈ Rn.
(59)

where {
x̃0 =

(
(xR(0))T , (xI(0))T)T ,

ỹ0 =
(
(yR(0))T , (yI(0))T)T .

(60)

Assumption 3. The functions fs(·) ∈ Cn and gs(·) ∈ Cn are continuous and satisfy the following
Lipschitz condition {

| fs(x1)− fs(x2)| ≤ ms|x1 − x2|, s = 1, 2, ..., n, ∀x1, x2 ∈ C
|gs(y1)− gs(y2)| ≤ ns|y1 − y2|, s = 1, 2, ..., n, ∀y1, y2 ∈ C

where ms and ns (s = 1, ..., n) are constants.

As such, the models in (58) and (55) have the same equilibrium point. Similarly, the stability of
models (58) and (55) is equivalent.

Corollary 1. Consider the activation functions which cannot be expressed through separation into the real-imaginary
parts, and which satisfy Assumption 1. Given the model in (55), its equilibrium point is globally asymptotically stable
subject to the existence of scalars ε1 > 0, ε2 > 0 and Hermitian matrices 0 < P1 = PR

1 + iPI
1, 0 < P2 = PR

2 + iPI
2

in such a way that the following LMI is met:
˜̄Ξ1 =

[
˜̄ΞR

1 − ˜̄ΞI
1

˜̄ΞI
1

˜̄ΞR
1

]
< 0,

˜̄Ξ2 =

[
˜̄ΞR

2 − ˜̄ΞI
2

˜̄ΞI
2

˜̄ΞR
2

]
< 0,

(61)

where

˜̄ΞR
1 =

[
−PR

1 D−DTPR
1 + ε2N PR

1 A
R − PI

1A
I

z −ε1I

]
,

˜̄ΞI
1 =

[
−PI

1D−DTPI
1 PR

1 A
I + PI

1A
R

−(AR)TPI
1 − (AI)TPR

1 0

]
,

˜̄ΞR
2 =

[
−PR

2 C− CTPR
2 + ε1M PR

2 B
R − PI

2B
I

z −ε2I

]
,

˜̄ΞI
2 =

[
−PI

2C− CTPI
2 PR

2 B
I + PI

2B
R

−(BR)TPI
2 − (BI)TPR

2 0

]
.

Remark 5. In QVNN analysis, the quaternion-valued LMI can not verify directly in Matlab LMI. In Theorem 16,
how the quaternion-valued LMI can be resolved easily is well stated. By the use fo proposed Lemma in [40,55],
the quaternion-valued LMI is equivalently translated into real-valued LMI, which can easily be checked by the LMI
toolbox in Matlab.
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4. Illustrative Examples

In this section, two numerical examples are given to illustrate the usefulness of the derived results.

Example 1. We consider an FQVBAMNN model with two neurons, as follows:

[
Dς

0,tx1(t)

Dς
0,tx2(t)

]
= −

[
1 0

0 1

] [
x1(t)

x2(t)

]
+

[
0.6− 0.8i + 0.16j− 0.24k −0.26 + 0.25i− 0.18j + 0.14k

0.12 + 0.28i− 0.25j− 0.35k 0.3− 0.35i + 0.28j + 0.21k

]

×
[

g1(y1(t))

g2(y2(t))

]
+

[
0

0

] [
u1

u2

]
[
Dς

0,ty1(t)

Dς
0,ty2(t)

]
= −

[
2 0

0 2

] [
y1(t)

y2(t)

]
+

[
0.4− 0.6i + 0.14j− 0.22k −0.24 + 0.23i− 0.16j + 0.12k

0.10 + 0.26i− 0.23j− 0.33k 0.1− 0.33i + 0.26j + 0.19k

]

×
[

f1(x1(t))

f2(x2(t))

]
+

[
0

0

] [
v1

v2

]
.

(62)

We can conclude that M = diag{ 1
16

1
16}, N = diag{ 1

4
1
4}. Under simple calculation, from (62) we

can obtain directly D̄, C̄, Ā and B̄. It is possible to verify the LMI conditions in (13) with the MATLAB
LMI software package. The following feasible solutions can be obtained by solving Theorem 1 with
tmin = −0.2100 and ε1 = 205.2683, ε2 = 127.2838 and

P1 =



97.5165 −0.6019 19.6418 13.3952 −7.6627 2.0564 −12.9514 17.3133
−0.6019 80.9169 −6.8449 −8.7722 −16.8148 −0.6146 7.7889 −14.5992
19.6418 −6.8449 157.6477 7.2951 −5.7751 3.7116 3.6310 −16.5017
13.3952 −8.7722 7.2951 86.9723 −8.0825 1.0117 15.8533 −8.7417
−7.6627 −16.8148 −5.7751 −8.0825 71.6011 −0.9605 3.1822 −10.2602
2.0564 −0.6146 3.7116 1.0117 −0.9605 6.1110 −1.1537 1.5493
−12.9514 7.7889 3.6310 15.8533 3.1822 −1.1537 75.3765 8.4314
17.3133 −14.5992 −16.5017 −8.7417 −10.2602 1.5493 8.4314 76.1780


,

P2 =



58.0124 0.2216 3.7846 3.6790 −0.0908 0.9454 −3.9166 5.4298
0.2216 52.6625 −2.6786 −3.4680 −5.8485 −0.3753 3.5378 −5.6361
3.7846 −2.6786 103.1746 0.2215 −2.5723 1.3032 2.4610 −6.7325
3.6790 −3.4680 0.2215 54.3586 −3.2440 0.3725 5.4310 −3.4115
−0.0908 −5.8485 −2.5723 −3.2440 51.8582 −0.4898 2.7090 −4.6256
0.9454 −0.3753 1.3032 0.3725 −0.4898 5.6708 −0.5043 0.6258
−3.9166 3.5378 2.4610 5.4310 2.7090 −0.5043 52.3902 3.8505
5.4298 −5.6361 −6.7325 −3.4115 −4.6256 0.6258 3.8505 50.1656


.

The activation functions are assumed to be fs(xs) = 0.5tanh(xR
s ) + 0.5tanh(xI

s)i + 0.5tanh(x J
s)j +

0.5tanh(xK
s )k, gs(ys) = 0.5tanh(yR

s ) + 0.5tanh(yI
s)i + 0.5tanh(yJ

s)j + 0.5tanh(yK
s )k, s = 1, 2. Figure 1

depicts the time responses with respect to states of the real and imaginary parts of xR
1 (t), xI

1(t),
x J

1(t), xK
1 (t), yR

1 (t), yI
1(t), yJ

1(t), yK
1 (t), subject to the initial states of x1(0) = 0.3 + 0.2i + 0.9j + 0.6k,

x2(0) = −0.6 + 0.2i + 0.2j− 0.4k, y1(0) = −0.4 + 0.6i− 0.8j + 0.4k and y2(0) = 0.7− 0.5i + 0.3j− 0.5k.
Figure 2 depicts the time responses with respect to the states of xR

2 (t), xI
2(t), x J

2(t), xK
2 (t), yR

2 (t), yI
2(t),

yJ
2(t), yK

2 (t), subject to the same initial conditions. From these Figures 1 and 2, we can see that the state
trajectories of the NN model (62) converge to the equilibrium point. According to Theorem 1, we can
conclude the FQVBAMNN model is globally asymptotically stable.
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Figure 1. An illustration of the time responses with respect to the real-imaginary parts pertaining to the
states of xR

1 (t), xI
1(t), x J
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1 (t), yR

1 (t), yI
1(t), yJ

1(t), yK
1 (t) in Example 1.
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Figure 2. An illustration of the time responses with respect to the real-imaginary parts pertaining to the
states of xR

2 (t), xI
2(t), x J

2(t), xK
2 (t), yR

2 (t), yI
2(t), yJ

2(t), yK
2 (t) in Example 1.

Example 2. We consider an FQVBAMNN model with two neurons, as follows:

[
Dς

0,tx1(t)

Dς
0,tx2(t)

]
= −

[
5 0

0 5

] [
x1(t)

x2(t)

]
+

[
−3− 2i + 2j− k 4 + i− 3j + 2k

2 + i− 0.5j + 2k 1− 2i− 1.5j− k

] [
g1(y1(t))

g2(y2(t))

]
+

[
0

0

] [
u1

u2

]
[
Dς

0,ty1(t)

Dς
0,ty2(t)

]
= −

[
6 0

0 6

] [
y1(t)

y2(t)

]
+

[
2 + i + 3j− k 4− 4i− 4j + k

1− 3i− 2j + k −3 + 2i− j− 3k

] [
f1(x1(t))

f2(x2(t))

]
+

[
0

0

] [
v1

v2

]
.

(63)
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We can conclude that M = diag{ 1
2

1
2}, N = diag{ 1

4
1
4}. The LMI condition in in (33) can be

verified with the MATLAB LMI software package. The following feasible solutions can be obtained with
tmin = −0.812 and ε1 = 7.2546, ε2 = 1.3860,

PR
1 =

[
0.4353 0.0430
0.0430 0.6162

]
,PI

1 =

[
0 0.0363

−0.0363 0

]
,

P
J
1 =

[
0 0.0286

−0.0286 0

]
,PK

1 =

[
0 0.0512

−0.0512 0

]
,

PR
2 =

[
0.3699 0.0876
0.0876 0.4596

]
,PI

2 =

[
0 0.0302

−0.0302 0

]
,

P
J
2 =

[
0 0.0440

−0.0440 0

]
,PK

2 =

[
0 0.0046

−0.0046 0

]
.

The activation functions are assumed to be fs(xs) = 0.5(|xs + 1| − |xs − 1|) s = 1, 2, gs(ys) =

0.5(|ys + 1| − |ys − 1|) s = 1, 2. Besides, the initial conditions are chosen to be x1(0) = 0.2 + 0.2i +
0.7j + 0.6k, x2(0) = −0.6 + 0.2i + 0.2j− 0.4k, y1(0) = −0.4 + 0.6i− 0.8j + 0.4k and y2(0) = 0.7− 0.5i−
0.3j + 0.5k. Figures 3–10 depict the time responses with respect to the real-imaginary parts pertaining
to the states of xR

1 (t), yR
I (t), xI

1(t), yI
1(t), x J

1(t), yJ
1(t), xK

1 (t), yK
1 (t), xR

2 (t), yR
2 (t), xI

2(t), yI
2(t), x J

2(t), yJ
2(t),

xK
2 (t), yK

2 (t). From these Figures 3–10, we can see that the state trajectories of the NN model (63) converge
to the equilibrium point. According to Theorem 2, we can conclude the FQVBAMNN model is globally
asymptotically stable.
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Figure 3. An illustration of the time responses with respect to the real part pertaining to the states of
xR

1 (t), yR
1 (t) in Example 2.
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Figure 4. An illustration of the time responses with respect to the imaginary part pertaining to the states of
xI

1(t), yI
1(t) in Example 2.
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Figure 5. An illustration of the time responses with respect to the imaginary part pertaining to the states of
x J

1(t), yJ
1(t) in Example 2.
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Figure 6. An illustration of the time responses with respect to the imaginary part pertaining to the states of
xK

1 (t), yK
1 (t) in Example 2.
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Figure 7. An illustration of the time responses with respect to the imaginary part pertaining to the states of
xR

2 (t), yR
2 (t) in Example 2.

0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time(Secs)

Sta
tes

 

 

x
2
I (t)

y
2
I (t)

Figure 8. An illustration of the time responses with respect to the imaginary part pertaining to the states of
xI

2(t), yI
2(t) in Example 2.

0 0.5 1 1.5 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time(Secs)

Sta
tes

 

 

x
2
J(t)

y
2
J(t)

Figure 9. An illustration of the time responses with respect to the imaginary part pertaining to the states of
x J

2(t), yJ
2(t) in Example 2.
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Figure 10. The time responses for the imaginary parts of the states xK
2 (t), yK

2 (t) in Example 2.

5. Conclusions

In this research, we have investigated the FQVBAMNN models with respect to its existence,
uniqueness and global asymptotic stability. Whether or not the quaternion-valued activation functions
are expressed directly by dividing real and imaginary parts, which always presumed to meet the globally
Lipschitz condition in the quaternion field. New sufficient conditions are derived by applying the principle
of homeomorphism, Lyapunov fractional-order method and LMI approach for the two cases of activation
functions, which ensure the existence, uniqueness, and globally asymptotic stability of the equilibrium
point of the considered system model. Finally, two numerical examples and their simulation results are
provided to show the effectiveness of the results.

Based on the results presented in this paper, it is possible to analyze different QVNN models.
The proposed methods can be extended to study uncertain, stochastic, as well as discrete-time QVNN
models. We also intend to examine the different types of stability analysis, which include robust stability
and finite-time stability, with respect to discrete-time QVNN models. The results will be useful for the
dynamical analysis of discrete-time QVNN models.
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