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Abstract: Given the limited frequency band resources and increasing volume of data traffic in
modern multiservice networks, finding new and more efficient radio resource management (RRM)
mechanisms is becoming indispensable. One of the implemented technologies to solve this problem
is the licensed shared access (LSA) technology. LSA allows the spectrum that has been licensed to
an owner, who has absolute priority on its utilization, to be used by other participants (i.e., tenants).
Owner priority impacts negatively on the quality of service (QoS) by reducing the data bit rate and
interrupting user services. In this paper, we propose a wireless multiservice network scheme model
described as a queuing system with unreliable servers and a finite buffer within the LSA framework.
The aim of this work is to analyze main system performance measures: blocking probability, average
number of requests in queue, and average queue length depending on LSA frequencies’ availability.

Keywords: LSA; queuing system; service interruption; radio resources; performance measures

1. Introduction

According to Cisco’s latest data, the volume of mobile wireless traffic is expected to increase
by almost sixty percent in the next five years, leading to a ten-fold growth of generated traffic in
multiservice wireless networks [1]. In connection with that, fourth-generation (4G) wireless networks
are facing a problem with the lack of radio resources necessary in the operation of multiservice network
technologies such as machine-to-machine (M2M) and device-to-device (D2D) communications [2],
the numbers of which are hugely increasing as the smart city vision is taking shape [3]. We remark
that all communications are becoming more and more machine-oriented than humans [4].

In this context, the transition to the next fifth-generation (5G) wireless networks, the capacities
of which will be higher in comparison with the current 4G wireless networks, seems to be the best
solution to this problem. For increasing networks’ capacities, researchers are investigating possible
ways to extend the radio frequency range with the utilization of high radio frequency spectrum bands
(i.e., over 10 GHz) [5] and traditional ones (i.e., under 6 GHz) in more efficient ways. Note that,
since radio frequency spectrum bands are all allocated today, there is an urgent need to search for new
RRM mechanisms.
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For this purpose, different shared access technologies to the radio frequency spectrum bands
are being developed [6–9]. We will consider only one of them, namely licensed shared access (LSA)
technology, which was developed by ETSI. LSA allows controlled access to spectrum shared between
an owner and multiple LSA licensees (i.e., mobile operators) [10]. The owner or incumbent of the
LSA band (i.e., multi-tenant band) has absolute priority over its utilization. LSA licensees can access
spectrum only when the incumbent’s quality of service (QoS) level is not violated. The rules governing
the usage of the LSA spectrum are spelled out in a reciprocal agreement that takes into account the
necessary QoS requirements. The implementation of these rules is possible through various scenarios
that have a different impact on the QoS level of users served on the sharing band.

1.1. Related Works

According to the research conducted, restriction of interference, which is created by users of
the LSA licensees in the sharing zone, is usually carried out through two main scenarios (so-called
policies of interference coordination). The first is the base station (BS) power limiting (limit power
policy) [11–15], and the second is the users’ service interruption (shutdown policy) [16–18]. Note that
the LSA licensees could have their frequency range, the so-called single-tenant band.

At the moment, the introduction of the LSA framework in wireless multiservice networks is at
the development stage. Therefore, this subject is expected to attract the attention of a large number
of researchers.

A review of the literature showed that the number of papers devoted to the LSA system simulation
is quite large [7,19–24]. For example, in [19], theoretical considerations about various scenarios of
network resource management were proposed, but analytical models were not provided. The works
in [23,24] offered a mechanism for distributing the LSA frequency spectrum between several LSA
band tenants by using a joint auction. This scheme allowed providing unhindered access to the shared
spectrum to various LSA licensees that were not related to each other. The BS of the LSA licensees was
coordinated by the management organization. However, an analytical model was also not proposed.

The analytical side of this question has been poorly studied [25–28]. In [25], to obtain a model
solution, cognitive radio technology was used. This technology allowed providing dynamic access
to the spectrum. The evaluation of the model was carried out by analytical and simulation methods.
It should be noted that the performance measures of the analytical models were investigated for
stationary mode. Non-stationary mode was considered for the simulation models [29]. However,
the models considered in non-stationary mode did not take into account the dependence on the
periods of LSA band functioning and non-functioning on time. The methods of non-stationary mode
could analyze the dependability on time and its impact on performance metrics. The first papers that
examined and studied non-stationary queuing models appeared in the 1970s [30]. In recent years,
such models have also been actively studied [31,32]. The research methods that we used in this work
were developed in our previous studies [33,34]. This method consists of a complete study of the
process X(t) associated with the system and involves: (a) the construction of upper bounds for the
rate of convergence to the limit regime, i.e., finding a particular moment, say t∗, starting with which,
the probability characteristics of the process X(t) are independent of the initial conditions (with an
absolute error); (b) similar lower ratings, which are also very important and guarantee that the moment
t∗ cannot be taken too small; (c) in the case of an ample state space, the construction of approximations
by truncation by similar processes with fewer states and the structure of corresponding error estimates.
Finally, applying the results to the system in the case of one-periodic intensities and solving the forward
Kolmogorov system with the simplest initial condition corresponding to X(0) = 0 for the truncated
process on the interval [t∗, t∗ + 1], as a result, we obtain all the main probabilistic characteristics of
the process X(t). We also note that only the construction of limiting characteristics, as well as only
the determination of the probabilities of the process X(t) are uninformative since they do not provide
exhaustive information about when the initial conditions can be ignored and what happens.
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1.2. Our Contribution

Let us turn to the task of our paper. The combination of the LSA licensee’s frequency ranges
(single and multi-tenant bands) using the policies of interference coordination described above makes
possible the implementation of various RRM schemes, the analysis of which allows choosing the most
effective ones. In this paper, we propose a mathematical model for a radio resources access scheme in
a wireless multiservice network within the LSA framework. We consider only the shared frequency
spectrum (LSA or multi-tenant band). The RRM mechanism is implemented in such a way that if
the incumbent needs his/her frequencies, the band becomes unavailable to the LSA license usage,
while the service of tenant users is not interrupted, but goes into standby mode until the LSA band
again becomes available.The missed interruptions and the usage of the buffer to serve tenant users,
who are in the standby mode of LSA band recovery, are the main features and differences between
the considered model and all those previously studied. The model is presented as a queuing system
with unreliable servers [35] and a finite buffer and is described by the birth and death process with
catastrophes [36]. In contrast to [35], adding a buffer and saving due to this current number of tenant
users greatly complicate the task of studying the model. All system parameters are considered as a
function of time. In accordance with the above, the main contribution in this paper is an analysis of
the mobile network’s model within the LSA framework, which is described as a queueing system
with unreliable servers and a finite buffer operating in non-stationary mode. To research the model,
the queueing theory approach was implemented [37,38].

The paper is organized as follows. In Section 2, the corresponding mathematical model is
constructed and the policies for efficient interference coordination are described in terms of queuing
theory. Section 3 analyzes the main performance characteristics of the system—blocking probability,
the average number of requests in the queue depending on the availability of the LSA band, and the
bounds on the rates of convergence to the limiting characteristics of the queue. An analysis of the
system transition time to stationary mode is also given. Section 4 concludes the paper by numerical
examples aimed at modeling one of the LSA framework application scenarios.

2. Mathematical Model

Let us consider a single cell of the mobile network with an overlaid LSA framework. As a tenant
of the shared frequency spectrum, we consider a mobile operator. Let the multi-tenant band have C
physical resource blocks (RB) and a buffer with size r (i.e., r > C). We assume that requests arrive
according to the Poissonprocess with rate λ(t). For the model tractability and in order not to use
approximations, we assume that service time is exponentially distributed with mean µ−1(t) [39].

The radio access control (RAC) is defined in such a way that, when the user’s request arrives in
the system, the following outcomes are possible:

• the request always waits first in a buffer when the current number of requests in the buffer is less
than r;

• the request’s service then starts when the current number of occupied resource blocks is less
than C;

• the request is blocked otherwise.

The incumbent, who has absolute priority over multi-tenant band utilization, uses its shared
frequencies with rate β(t) and abandons them with rate α(t). In relation to that, the multi-tenant
band can be available or not for mobile operators. Note that, when the multi-tenant band goes into
unavailable mode, servicing requests are not interrupted and return to the buffer, where they wait for
the band to be operational. WE remark that all above-described rates are time-dependent.

Hereby, we simulate the model of the wireless network cell with the LSA framework as a queuing
system with C unreliable servers and a buffer with size r. Unreliable servers are characterized
by ON- and OFF-period durations, which are exponentially distributed with rates α(t) and β(t),
respectively. All C servers can go into unavailable mode (fail) only simultaneously, and conversely,
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the servers go into operational mode also simultaneously. Requests arrive according to a Poisson
process with rate λ(t), and if there are free servers, each of them occupies one server for the
exponentially distributed time with parameter µ(t), while keeping its place in the queue. If all
the buffer is busy upon the arrival of a request, it is blocked. Upon servers’ failure, requests in service
are not lost; they return to their places in the queue.

According to the above considerations, we can describe the operation of our queuing model by a
Markov process X(t) on the state space (Figure 1):

X = {0, 1, . . . , n, . . . , 2r + 1} , (1)

where n = 0, 2, . . . , 2k, . . . , 2r are the states in which devices are OFF, n = 1, 3, . . . , 2k + 1, . . . , 2r + 1 are
the states in which devices are ON, and k = 0, 1, . . . , r is the number of requests in the system.

Figure 1. State transition diagram of the queuing model with catastrophes and repairs (red—devices
are OFF, green—devices are ON).

Therefore, the elements a(n, n′) of the transposed infinitesimal generator A(t) are defined as follows:

α(t), n′ = n− 1, n = 2k + 1, k = 0, . . . , r;

β(t), n′ = n + 1, n = 2k;

λ(t), n′ = n + 2, n < 2r;
n−1

2 µ(t), n′ = n− 2, n = 2k + 1, k = 1, . . . , C;

Cµ(t), n′ = n− 2, n = 2k + 1, k = C + 1, . . . , r;

∗, n′ = n;

0, otherwise;

(2)

where ∗ = −( n−1
2 µ(t) · I(n = 2k + 1, k = 1, . . . , C) + Cµ(t) · I(n = 2k + 1, k = C + 1, . . . , r) + α(t) ·

I(n = 2k + 1) + β(t) · I(n = 2k) + λ(t) · I(n < 2r)).
The corresponding matrix A(t) has a block tridiagonal form:

A(t) =


N0(t) Λ0(t) · · · 0 0
M1(t) N1(t) · · · 0 0

...
...

. . .
...

...
0 0 · · · Nr−1(t) Λr−1(t)
0 0 · · · Mr(t) Nr(t)

 , (3)

where:
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Λn(t) =

[
λ(t) 0

0 λ(t)

]
, n = 0, r− 1, (4)

Mn(t) =

[
0 0
0 nµ(t)

]
, n = 1, C, (5)

Mn(t) =

[
0 0
0 Cµ(t)

]
, n = C + 1, r, (6)

Nn(t) =

[
−(β(t) + λ(t)) β(t)

α(t) −(nµ(t) + α(t) + λ(t))

]
, n = 0, C, (7)

Nn(t) =

[
−(β(t) + λ(t)) β(t)

α(t) −(Cµ(t) + α(t) + λ(t))

]
, n = C + 1, r− 1, (8)

Nn(t) =

[
−β(t) β(t)
α(t) −(Cµ(t) + α(t))

]
, n = r. (9)

Let us denotethe probability that there are n requests in the system (where some of them are in
service, and others are waiting for a service to start or resume) pn(t) = P{X(t) = n}, 0 ≤ n ≤ 2r + 1.
It will be the probability that the continuous-time Markov chain X(t) is in state n at time t, and denote
by p(t) = (p0(t), p1(t), p2(t), . . . , p2r+1(t))

T the probability distribution vector at time t.
Then, the corresponding Kolmogorov forward equations could be written as follows:

p′n(t) = λ(t) · I(n > 1)pn−2(t) + β(t) · I(n = 2k + 1)pn−1(t)
+α(t) · I(n = 2k)pn+1(t) + Cµ(t) · I(n = 2k + 1, k = C, . . . , r− 1) · pn+2(t)
+ n+1

2 µ(t) · I(n = 2k + 1, k = 0, . . . , C− 1)pn+2(t)− [λ(t) · I(n < 2r)
+α(t) · I(n = 2k + 1) + β(t) · I(n = 2k)
+ n−1

2 µ(t) · I(n = 2k + 1, k = 1, . . . , C)
+Cµ(t) · I(n = 2k + 1, k = C + 1, . . . , r)] · pn(t),

(10)

where n ∈ X, k = 0, . . . , r.
Further, we proceed to estimate the boundaries of the rates of convergence to the limiting

probability distribution.

3. Bounds on the Rates of Convergence

3.1. Bounds’ Defining

Let us consider the forward Kolmogorov system (10) for the process describing the number of
requests in the system.

Recall that a Markov chain X(t) is called weakly ergodic, if ‖p∗(t)− p∗∗(t)‖ → 0 as t → ∞ for
any initial conditions p∗(0), p∗∗(0), where p∗(t) and p∗∗(t) are the corresponding solutions of (10),
where ‖ • ‖ denotes the l1-norm (or distance in total variation).

The fact of the weak ergodicity of the chain X(t) follows from our previous results; see the
references in [40,41]. It is important to note that to calculate the main limiting characteristics of the
process and the possibility of their practical use, we need not the fact of weak ergodicity, but the
bounds of the rate of convergence. Unfortunately, the structure of the intensity matrix of the model
under consideration is such that the application of the logarithmic norm cannot give us explicit
estimates in the same way as in [40–42]. Therefore, it is necessary to apply less obvious research
paths. Firstly, consider the logarithmic norm γ of transposed intensity matrix A(t); we have γ(A(t)) =
maxj

(
ajj(t) + ∑i 6=j aij(t) = 0

)
for any t ≥ 0; hence, ‖p∗(t)− p∗∗(t)‖ → 0 in total variance distance

decreases. Therefore, if this norm is less than ε for some t0, then it is less than ε for any t ≥ t0.
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Secondly, since the state space (from zero to S = 2r + 1) is finite and not too large, we can find the
exact (at least with any practically necessary accuracy) solution of the forward Kolmogorov system
with any initial condition X(0) = i (which corresponds to p(0) = ei) on an arbitrary finite interval [0, l].
Now, having found the norms of the difference between all pairs of such solutions and then choosing
in the set of all solutions those for which the “extreme” initial conditions X(0) = 0 and X(0) = S,
we come to a value l such that for t ≥ l, the norms of the corresponding differences will be sufficiently
small. Then, the solution with initial condition X(0) = 0 gives us the periodic limiting behavior with
the required accuracy on the interval [l; l + T] (and all characteristics in which one is interested).

3.2. Performance Measures

Let us consider the main performance measures of the system from the LSA licensee’s, i.e.,
mobile operator’s, point of view. The most interesting queuing system limiting characteristics are
listed below.

• The blocking probability B(t), i.e., the probability that a new user’s request will be dropped:

B(t) =
1

∑
i=0

p2r+i(t) = p2r(t) + p2r+1(t). (11)

• The average number of requests in the queue Q(t), i.e., the number of requests awaiting in the
buffer when the service will be started:

Q(t) =
r

∑
k=1

kp2k(t) +
r

∑
k=C+1

(k− C)p2k+1(t). (12)

• The average queue length, when the LSA band is operational Qon(t), i.e., the number of requests
waiting when the current number of occupied resource blocks will be less than C:

Qon(t) =
r

∑
k=C+1

(k− C)p2k+1(t). (13)

• The average queue length, when the LSA band is unavailable Qo f f (t), i.e., the number of requests
waiting when devices will be ON and the current number of occupied resource blocks will be less
than C:

Qo f f (t) =
r

∑
k=1

kp2k(t). (14)

• The resource utilization factor, UTIL(t), is given by:

UTIL(t) · C =
r

∑
k=1

kp2k(t) +
r

∑
k=1

kp2k+1(t). (15)

4. Numerical Analysis

We remark that, with the increase of the number of M2M communications due principally to
smart city technology development, data traffic in modern wireless networks will grow dramatically.
This technology is an example of the M2M communication paradigm in 5G networks. Due to the
fact that most smart city applications are machine-oriented [4,40], the interconnected sensors may
become an integral part of this environment, especially in the vehicle-to-everything (V2X) scenario [41],
which we consider in this section.

For the numerical analysis, we considered the case when the LSA spectrum incumbent in an
urban area requires its frequency resources only occasionally, namely every 20 or 30 min, in small and
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localized portions. In this way, we assumed that the LSA band goes into unavailable mode every 20 or
30 min, i.e., α−1 = 1200 or 1800 s. The network operator can request an underused spectrum each
20 s, i.e., β−1 = 20 s. Let us note that these rates do not depend on the time of the day. Furthermore,
we assume that one cell of the wireless network can simultaneously serve 30 sensors, and the average
duration of service is equal to 0.1 s.

To get the values of the arrival rate λ(t), let us consider the the source [42] (Figure 2).

Figure 2. Application traffic daily profile in Central and Eastern Europe (TB) [42].

The data presented in Figure 2 allow us to describe the number of sensor requests for data
transmission by a function of t. For this purpose, based on Figure 2, we can form Table 1, which shows
the application traffic daily profile as a percentage.

Table 1. Application traffic daily profile in Central and Eastern Europe (%).

Hours Application Traffic (%)

Streaming Computing Storage Gaming Communicating

12:00 a.m. 58.15217 54.97835 57.86164 57.73381 57.54098
01:00 a.m. 34.78261 33.11688 38.57442 36.33094 36.06557
02:00 a.m. 21.19565 20.12987 27.67296 25.35971 24.7541
03:00 a.m. 15.48913 15.15152 24.73795 22.30216 21.31148
04:00 a.m. 12.22826 12.55411 23.68973 21.22302 20
05:00 a.m. 12.5 14.06926 25.78616 23.20144 21.63934
06:00 a.m. 19.29348 23.80952 35.63941 32.73381 30.32787
07:00 a.m. 41.57609 48.2684 59.32914 57.19424 52.62295
08:00 a.m. 55.16304 64.50216 74.00419 74.10072 68.68852
09:00 a.m. 57.06522 68.61472 76.72956 75.35971 71.63934
10:00 a.m. 61.95652 74.24242 80.92243 76.61871 75.2459
11:00 a.m. 63.58696 76.40693 82.18029 75.89928 76.22951
12:00 p.m. 63.8587 76.83983 81.97065 74.82014 75.7377
01:00 p.m. 65.21739 77.92208 82.38994 75.17986 75.57377
02:00 p.m. 66.57609 79.43723 83.43816 76.07914 76.22951
03:00 p.m. 67.3913 80.95238 84.48637 76.97842 76.55738
04:00 p.m. 67.66304 81.38528 84.90566 77.69784 76.55738
05:00 p.m. 72.01087 84.19913 87.21174 80.7554 79.5082
06:00 p.m. 75.54348 85.28139 88.05031 82.3741 81.14754
07:00 p.m. 82.06522 88.52814 90.56604 85.61151 84.09836
08:00 p.m. 90.21739 93.72294 94.54927 90.64748 90.16393
09:00 p.m. 100 100 100 100 100
10:00 p.m. 98.36957 95.88745 95.59748 99.64029 99.01639
11:00 p.m. 83.42391 79.22078 79.87421 83.63309 82.29508
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The Fourier 2 transform can approximate the dependencies obtained in Table 1 into the function
λ(t) = a0 + a1 cos(w · t) + b1sin(w · t) + a2 cos(2w · t) + b2 sin(2w · t). Table 2 summarizes the initial
data for the considered example. Table 3 contains the coefficients that are necessary for calculating the
arrival rate λ(t).

Table 2. Main framework notations.

Notation Value

C 30
r 50

α−1 1200, 1800 s
β−1 20 s
λ(t) a0 + a1 cos(w · t) + b1 sin(w · t) + a2 cos(2w · t) + b2 sin(2w · t)
µ−1 0.1 s

Table 3. Arrival rate λ(t) by using traffic daily profile approximation (Fourier 2).

a0 a1 b1 a2 b2 w

Streaming traffic

57.78 −5.188 −29.19 3.973 −20.11 0.2601

Computing traffic

63.72 −13.39 −30.77 3.483 −19.45 0.2605

Storage traffic

69.18 −14.16 −25.95 1.884 −18.02 0.2605

Gaming traffic
v 65.92 −11.25 −24.58 1.679 −20.26 0.2601

Communicating traffic

64.71 −11.1 −25.62 2.983 −19.66 0.26

We further focused on the following set of metrics of interest: the blocking probability B(t) and
the average number of requests in the queue Q(t), based on the arrival rate λ(t).

For this purpose, first of all, we considered the data corresponding to the first type of traffic
(streaming traffic) presented in Table 3. Next, we define a time interval (Figure 3) on which the system
ceases to depend on the selected initial conditions, the first of which X(0) = 0 corresponds to the fact
that the system is empty and the second X(0) = 101 to the fact that the system is filled.

According to Figure 3, the system ceases to depend on the selected initial conditions, starting
with the value of 150 s. From this point onwards, a complete coincidence of the curves is observed.
A similar situation occurs for the case of α−1 = 1800 s. Note that the obtained interval is suitable
for estimating the other considering the queuing system’s limiting characteristics. Let us pass to an
estimation of their limiting values.

Figure 4 shows that frequent LSA band transitions into unavailable mode lead to the blocking
probability B(t) (Figure 4a) and the average queue length Q(t) (Figure 4b) increasing. In particular,
with α−1 = 1200 s, the performance measures of the system are almost one and a half times worse than
for α−1 = 1800 s, namely the limiting values of the blocking probability and the average queue length
for α−1 = 1200 approximately equal 0.016 and 0.82, and for α−1 = 1800, they approximately equal
0.011 and 0.55, respectively.

Furthermore, Figure 4 allows selecting a more accurate interval, suitable for analyzing the system
performance measures, namely the time interval from 270 to 300 s, at which the system goes to
steady-state. We used this interval to perform a comparative analysis of the system performance
measures, which worked with different types of traffic. Namely, consider the dependence of the
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blocking probability (Figure 5a) and the average queue length (Figure 5b) on the types of traffic
generated in the system. Let us recall that the data for carrying out such an analysis are presented in
Table 3.

According to the obtained results, the maximum blocking probability and the queue length were
reached when traffic of type “storage” was transmitted. The minimal blocking probability and the
queue length were reached when traffic of type “streaming” was transmitted. Note that the numerical
analysis presented the results that allowed us to estimate only the average length of the queue Q(t),
which did not depend on the state of the LSA band. This was due to the fact that the value of Q(t)
practically coincided with the value of performance measure Qon(t) (average queue length, when the
LSA band was operational) and was slightly larger than the value of Qo f f (t).

This allowed us to obtain an upper bound for these three characteristics.

Figure 3. Estimating the time interval for blocking probability B(t) analysis.

(a) (b)

Figure 4. Estimating of limiting values for blocking probability (a) and average queue length (b).
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(a) (b)

Figure 5. Blocking probability (a) and average queue length (b) depending on traffic type.

5. Conclusions

In the conditions of the rapid growth of data traffic volume, which is generated in modern
multiservice networks, the LSA framework becomes one of the possible solutions to the frequency
range shortage problems, which arises in this case. In this paper, we described a characteristic urban
LSA use case, where the spectrum license owner in a smart city used its frequency resources only
occasionally. We analyzed the LSA usage for the V2X scenario, within the framework of the smart city
concept. For the analysis, we considered the case when the LSA licensee did not have its frequency
range and he/she had access only to the LSA band. This access was modeled as a queuing system
with the queue, catastrophes, and repairs. To assess the model performance measures, we analyzed
the bounds on the rates of convergence to limiting characteristics: the blocking probability, the average
number of requests in the queue, the average queue length, when the LSA band was operational
and unavailable based on the arrival rate, which depended on the time of the day and type of
generated traffic.

In this work, we considered a case of the non-stationarity of different types of rates (intensities).
The corresponding mathematical method could only be applied for specific types of one-dimensional
stochastic processes. For calculating delay metrics, we plan to use the apparatus of the embedded
Markov chain (EMC) (as Little’s law in the form λ(1− B(t))W(t) 6= Q(t) cannot be applied due to
the service unreliability). After, a novel approach for analyzing non-stationarity, EMC should be
developed. As the first step of further work, we plan to simulate the system to calculate the expected
waiting time for data in the queue and total queuing delay. Since in this paper, we considered a kind of
M/M/m/mqueueing model to describe the RAC scheme with exponentially distributed service times,
we further plan to consider a more complex type of queueing model, for example G/G/m, which will
make the model more realistic.
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