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Abstract: This paper examines the behavior of the interest rate risk management measures for bonds
with embedded options and studies factors it depends on. The contingent option exercise implies
that both the pricing and the risk management of bonds requires modelling future interest rates.
We use the Ho and Lee (HL) and Black, Derman, and Toy (BDT) consistent interest rate models.
In addition, specific interest rate measures that consider the contingent cash-flow structure of these
coupon-bearing bonds must be computed. In our empirical analysis, we obtained evidence that
effective duration and effective convexity depend primarily on the level of the forward interest rate
and volatility. In addition, the higher the interest rate change and the lower the volatility, the greater
the differences in pricing of these bonds when using the HL or BDT models.

Keywords: bonds with embedded options; nonarbitrage interest rates models; effective duration;
effective convexity

1. Introduction

The aim of this paper is to analyze and interpret interest rate risk management measures
for option-embedded bonds under different specifications of interest rate dynamics. In addition,
we studied the factors, on which they depend, based on the assumption that the choice of the consistent
interest rate model used to price these securities can have a significant impact on the calculation of
those measures. The cash flows from a callable (putable) bond depend on the possible exercise of the
call (put) option, i.e., early redemption in favor of the issuer (bondholder). Therefore, the pricing of
these bonds requires modelling of future interest rates from the actual term structure of interest rates
and the actual term structure of volatility. We used two consistent term structures of interest rates
models, the Ho and Lee (HL) [1] and Black, Derman, and Toy (BDT) [2] models. We estimated different
measures of interest risk management and examine the main factors that determine their behavior,
such as the interest rate volatility, the shape of the yield curve, and the changes in the yield curve.
To illustrate the process, we examined the daily price behaviors of two annual coupon corporate bonds
with embedded options throughout their lifetimes. These bonds were selected, because they were
actively traded in a sample period that was particularly interesting for our analysis, given the dramatic
changes in both the level and the slope of the term structure of interest rates.

Managing these option-embedded bonds, of which the cash flow structure depends on future
interest rates, requires two additional challenges over any plain vanilla bond. On the one hand,
the bond’s price in an interest rate model is needed to apply to the bond’s price. There are two
different approaches to modelling the dynamics of interest rates: equilibrium models and nonarbitrage
models. Both of them start from a stochastic differential equation for a short interest rate but differ in
the procedure used to implement the models. Thus, equilibrium models are based on the estimation of
parameters from historical data, assuming that they are constant for a given period. On the other hand,
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consistent models or nonarbitrage models replicate exactly the term structure corresponding to the
calibration date. The latter is preferred by the financial industry over the former. Some of the most
popular models among practitioners are those proposed by HL and BDT.

On the other hand, traditional bond sensitivity measures that do not incorporate options, i.e.,
duration and convexity, are no longer appropriate, and instead, the effective or option-adjusted
duration and convexity are used. In addition, there is the concept of option-adjusted spread (OAS),
which takes into account the fact that the securities contain early redemption provisions although
similar to the concept of yield spread applied to the pricing of straight bonds.

In our paper, we applied the HL and BDT models in the analyses of two coupon-bearing bonds
with embedded options, a callable bond and a putable bond. Both were actively traded in the Spanish
corporate debt market during a broad sample period 1993–2003 and were chosen for its dramatic
changes in both the level and the slope of the time structure of interest rates. This interest rate behavior
makes it easier to draw conclusions from our analysis.

The main contributions of our paper are the following. Firstly, we carried out a daily analysis
of the relationship between traditional interest rate risk management measures and option-adjusted
measures based on the expected future evolution of interest rates at any given time, showing the
attractiveness of the option to the investor. Secondly, the main factors determining the behaviors of
these measures were analyzed. Finally, the implications of the choice of a model for the dynamics
of interest rates and the extent of rate changes used in the calculation of effective duration (ED) and
convexity were studied.

2. Bonds with Embedded Options

The two most common types of embedded options are call provisions and put provisions, so we
can distinguish two main types of bonds with embedded options—callable bonds and putable bonds.
A callable bond is a bond that can be redeemed by the issuer before its maturity date, and a putable
bond can be sold by the bondholder before its maturity date. A callable bond allows its issuer to
repurchase its debt at par value before maturity in the event that interest rates fall below the issue’s
coupon rate or its credit rating improves. In both cases, the issuer has the opportunity to issue a new
bond at a lower coupon rate. This is a disadvantage for the investor. In the event of early redemption,
the investor will be paid the price at par, far below the price of an equivalent straight bond, and will
have to reinvest in another bond at a time when interest rates are lower than the coupon rate of
the original issue. Hence, buying a callable bond comes down to buying an option-free or plain
vanilla bond and selling a call option to the issuer of the bond. The value of a callable bond can be
estimated from the price of an identical straight bond minus the value or premium of the embedded
call option sold.

A putable bond allows its holder to sell the bond at a face value before maturity, in case that
interest rates exceed the issue coupon rate. This gives you the opportunity to buy a new bond with
a higher coupon rate. The purchase of a putable bond comes down to buying an option-free bond
as well as a put option. The price of the putable bond is the price of an identical straight bond plus
an embedded put option purchased. The embedded option can be exercised from a specific date on
(American option) or on a specific date (European option), depending on the bond, at the strike price.

Unlike an option-free straight bond, an embedded option bond is a contingent claim, i.e., its future
cash flows are uncertain, because they depend on the future value of interest rates. To price such
a bond, it is necessary to use a model that explains the fact that future interest rates are uncertain.
This uncertainty is described by the term structure of the volatilities of the relative changes in interest
rates. The most commonly used method for pricing these bonds is the binomial interest tree model.

3. Consistent Interest Rate Models

The HL model is the first consistent term structure of an interest rates model and is presented as
an alternative to equilibrium models [3,4]. It proposes a general methodology to price a wide range
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of interest rates contingent claims. The model is presented in the form of a binomial bond price tree
with two parameters—the volatility of the short interest rate and the market price of the short rate risk.
The inputs of the model are the yield curve and the short rate volatility. The main limitation is that
interest rates are normally distributed, so we can get negative values.

The short-interest-rate dynamic dr in the continuous time version can be represented by Equation (1):

dr = θ(t)dt + σdz, (1)

where σ is the instantaneous standard deviation of the short rate, r is a constant, θ(t) is the drift of the
process, and z is a standard Wiener process.

The drift θ(t) is chosen so as to exactly fit the term structure of interest rates being currently
observed in the market. It depends on the time t, on the slope of the instantaneous forward curve in 0,
f (0, t), and on the constant short rate volatility, σ. The drift θ(t) can be written as:

θ(t) =
∂ f (0, t)
∂t

+ σ2t. (2)

The BDT model assumes that interest rates follow a lognormal distribution. This model has the
advantage over the HL model, i.e., the interest rate cannot become negative. The equivalent stochastic
process corresponding to the model is described as:

d ln r =
[
θ(t) +

σ′(t)
σ(t)

ln r
]
dt + σ(t)dz, (3)

where θ(t) and σ(t) are two independent functions of time chosen so that the model fits the term
structure of spot interest rates and the term structure of spot rate volatilities.

Both models are implemented using their original discrete version through binomial trees.
These trees are calibrated from the previously estimated zero-coupon yield curve and the historical
term structure of interest rate volatility for each maturity. The calibration process requires the joint
adjustment of several binomial trees. We followed the method proposed by [5]. The main output of the
process is the short-term interest rate at each time, t, and interest state, i. State prices can be obtained
from the trees. State-contingent claims are securities that pay off in some interest rate states, but not in
others. Thus, each state price is the current value of $1 received at a given interest rate state and a
given time in the future. If the option has been exercised in this node, state security pays nothing.

For the sake of brevity, the calibration process is not described. By way of illustration, here are
some basic ideas about the procedure in the case of the BDT model. We followed the forward process
developed by [6] that proves that the level of the short rate in t can be estimated from Equation (4):

r(t) = U(t)exp(σ(t)z(t)), (4)

where U(t) is the median of the log short rate distribution in t, σ(t) is the short rate volatility, and z(t)
represents a Brownian motion.

Although most practitioners make extensive use of a simplification of the BDT model assuming
constant interest rate volatility, we used the original version. The term structure of the volatility was
calibrated from Equation (5):

σ(i)
√

∆t =
1
2

ln
rU(i)
rD(i)

, (5)

where ∆t is the width of each of the time steps, into which the bond’s term to maturity is divided,
σ(i) is the interest rate volatility at the interest state i with i being each of the possible interest rate nodes
for term t, rU(i) and rD(i) are the short interest rates as seen from the nodes U and D, respectively.
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PU(i) and PD(i) are the corresponding discount functions, i.e., the prices of zero-coupon bonds,
when interest rates rise and fall, respectively, which can be written as:

PD(i) = PU(i)
exp(−2σ(i)

√
∆t). (6)

The calibration process is carried out for each of the dates [7], on which each of the two
coupon-bearing bonds analyzed is traded throughout its life cycle. We used daily estimates of the
zero-coupon yield curve as inputs in the calibration process, which we previously estimated via a
weighted version of the Nelson and Siegel model [8] (see [9,10]). We assumed a heteroskedastic price
error scheme, and a generalized least square (GLS) method was employed. The data in the previous
analysis were the Spanish Treasury bill and bond prices of all actual transactions from the sample
period. These daily term structures of interest rates and the historic term structures of volatilities were
used to calibrate the binomial trees for the short rate with monthly time steps.

4. Interest Rate Risk Measures

The behaviors of callable and putable bonds were analyzed by taking into account their risk arising
from changes in the underlying variables, such as volatility or yield curve changes. Traditional interest
rate risk measures, modified duration (MD) and convexity, are not suitable for option-embedded
bonds, because they do not consider the possibility of option exercise. Instead, ED is defined as a rough
measure of the sensitivity of the bond’s price to changes in interest rates. More specifically, it is the
percentage change in the bond’s price to a parallel shift in the yield curve by a certain number of basis
points (∆y). Effective convexity (EC) approximates the second derivative of the bond price function
with respect to the yield curve. This concept is useful, when a portfolio manager expects a potentially
large shift in the term structure. The calculation of these measure requires the estimation from the
current price P0 of prices in the case of declining (PD) and increasing (PU) interest rates. ED can be
calculated as follow:

ED =
PD − PU

2P0(∆y)
. (7)

EC was given by Equation (8):

EC =
PD + PU − 2P0

2P0(∆y)2 . (8)

To estimate these interest risk management measures, we followed the procedure described in [8,9].
We recalibrate the HL and BDT models after shifting the Treasury yield curve by ±25 and ±100 bp.
In addition, we calculated the OAS for each date. The OAS is the constant spread, which equalizes
the theoretical price of a bond at its market price when added to all the short-term interest rates on the
binomial tree.

5. Sample Description and Estimation Procedure

In order to meet our objectives, we chose a sample period with strong changes in the term
structure of interest rates, in which default risk hardly changed. The Spanish fixed-income market,
both corporate and government, during the period 1993 to 2004 was particularly suitable. The first
part of the sample was characterized by strong monetary tensions, including currency devaluations,
and sharp and severe interest rate swings. The slope of the yield curve went from rising to falling.
Subsequently, there were sharp reductions in levels to meet the convergence criteria to ensure entry
into the single currency. The final part of the sample was characterized by a surge in interest rates in
2001. We examined the two most actively traded corporate bond issues with embedded options in the
Spanish corporate fixed-income market AIAF during the period. One issue contained a call option,
and the other included a put option. Both were European options. Table 1 describes the main features
of the issues.



Mathematics 2020, 8, 790 5 of 12

Table 1. Main features of the issues, i.e., Banco de Crédito Local (BCL) and Túnel del Cadí (TC).

Bond Characteristics BCL TC

Issuance date 14 December 1993 31 May 1994
Maturity date 1 July 2003 31 May 2004

Annual coupon rate (%) 8.4 9.85
Outstanding amount €178 million €48 million

Rating Aa3 No rated
Percentage of traded days (%) 9.5% 5.1%

Daily trading volume €6.5 million €1.0 million
Type of option Call (European) Put (European)

Option exercise price (%) 100 100
Option exercise date 1 July 1998 31 May 2000

# Observations up to exercise date 106 101
# Observations 106 128

As mentioned, we calibrated the HL and BDT models to the Spanish Treasury yield curve.
Estimates of the term structure of interest rates were made from the daily trading of Spanish Treasury
debt securities using the Nelson and Siegel duration-weighted model.

To calculate sensitivity measures for bonds with embedded options, we applied the following
steps [11,12]. First, we calculated the theoretical price of the bonds from the HL and BDT yield curve
models. Second, we obtained the OAS for all days, of which issues were traded during the period
1993–2004. Third, we shifted the on-the-run yield curve up and down by ±25 and ±100 bp and
constructed new binomial interest rate trees. Fourth, we added a constant OAS to each node of the
new interest rates trees. Fifth, we used the adjusted trees to determine the value of bonds, from which
we calculated ED using Equation (7) and EC using Equation (8).

In addition, we computed for the entire sample period of the MD and convexity assuming
two possibilities. In the first case, the option was not exercised, so we had the MD- and
convexity-to-maturity. In the second one, we supposed that the option was exercised, so we had the
MD- and convexity-to-call/put. We compared these new measures with ED and EC.

6. Results

Figure 1 shows graphically the estimates of ED calculated from each of the two consistent models,
HL and BDT. In the calculation of ED, we used a parallel variation of ±100 bp along the entire yield
curve. The top line shows the MD-to-maturity, i.e., assuming an option-free bond. The lower line
represents the MD to the date of the option exercise and was calculated assuming that the option
was exercised for certain (MD-to-call or MD-to-put). On dates, when the bond was not traded and
there was no market price, we obtained a theoretical price, based on which the MD was estimated.
We assumed that the bond’s yield-to-maturity (YTM) was the spot interest rate provided by the yield
curve for the term to maturity (top line) or to the exercise date (bottom line) on that date plus the
average OAS of the issue over its life (55 bp for the Banco de Crédito Local (BCL) and 126 bp for the
Túnel del Cadí (TC)). This YTM made it possible to obtain the theoretical price of the bond for each
date and the MD for each interest rate model.



Mathematics 2020, 8, 790 6 of 12
Mathematics 2020, 8, x FOR PEER REVIEW 6 of 13 

 

(a)  

(b)  

Figure 1. Evolution of the effective duration (ED) estimated from the Ho and Lee (HL) model and the 
Black, Derman, and Toy (BDT) model. Upper and lower black lines are the modified duration (MD)-
to-maturity and the MD-to-option. Both lines limit the possible values of the ED according to the 
expectation of exercising the option. (a) shows the results for the Callable bond (BCL) and (b) for the 
Putable bond (TC). 

The price of bonds with embedded options depends on investors’ expectations about the 
possible future exercise of the option. If future interest rates that are deducted from the current yield 
curve, i.e., forward rates, indicate that they will remain above the bond’s coupon rate, the possibility 
of call exercise will be remote and the price of the callable bond will be slightly lower than a similar 

Figure 1. Evolution of the effective duration (ED) estimated from the Ho and Lee (HL) model and
the Black, Derman, and Toy (BDT) model. Upper and lower black lines are the modified duration
(MD)-to-maturity and the MD-to-option. Both lines limit the possible values of the ED according to the
expectation of exercising the option. (a) shows the results for the Callable bond (BCL) and (b) for the
Putable bond (TC).

The price of bonds with embedded options depends on investors’ expectations about the possible
future exercise of the option. If future interest rates that are deducted from the current yield curve,
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i.e., forward rates, indicate that they will remain above the bond’s coupon rate, the possibility of call
exercise will be remote and the price of the callable bond will be slightly lower than a similar nonoption
bond. In contrast, the price of a putable bond should be well above that of a similar straight bond.
Expectations of future interest rate behavior are key in pricing these bonds. This is how we proposed
the variable, option attractiveness (OA), for the bondholder. It was calculated from Equation (9):

Option attractiveness = Forward (t, T) + OAS − Coupon rate, (9)

where Forward (t, T) is the prediction, assuming the expectative theory is true, of future interest rates
for the period between the strike date t and the maturity date T. Hence, for callable bonds, the option
is attractive when the OA gets negative values, while for putable bonds the option is attractive when
the OA is positive.

Figure 2 shows the time evolution of the OA from the point of view of the bondholder. It can be seen
that the OA of the callable issue, BCL, was positive for a large part of the sample, which indicated a few
possibilities of exercise that were corroborated by an ED, which was very close to the MD-to-maturity
(top line in Panel (a) of Figure 1). As of mid-1996, the OA became negative, at which point the exercise
of the call became probable. At the dates, when the bond was traded in 1998, the market took the call
exercise for granted. In that period, the ED practically coincided with the MD-to-call (bottom line
in Panel (a) of Figure 1). The behavior of the putable bond, TC, was completely different (Panel (b)
of Figure 2). From the beginning of the sample, the evolution of interest rates pointed to a probable
exercise of the put option, as they were above the coupon rate. The ED in that period was between the
two MD limits, i.e., the MD-to-maturity (upper line) and the MD-to-put (lower line). However, as a
result of persistent rate falls, from the third quarter of 1996, interest rates were well below the coupon
rate and the ED was virtually the same as the MD-to-maturity, so that the early repayment clause was
worthless. The put option expired without being exercised, and the bond was redeemed at maturity.
In view of the above results, the OA measure and the ED’s position with regard to the MD thresholds
clearly showed the possibilities to exercise the options embedded in the bonds.
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We represent the EC in Figure 3, and we can see a similar pattern for the results. As in the ED
analysis, we estimated two thresholds, between which the EC had to be situated, the convexity until
maturity and the convexity until the date of the exercise of the option. However, the phenomenon
known as “price compression” made it possible for the EC to occasionally be outside these thresholds.
Figure 3a,b shows that in the first few days of trading there was great instability in estimates as a result
of the extreme movements in the level and slope of the yield curve. The call option put a ceiling on the
price of callable bonds, and the put option put a floor on putable bonds. This ceiling/floor pushed
the EC outside the thresholds of convexity calculated for an option-free bond. Another aspect to be
highlighted in this analysis was the large differences observed in the estimated EC according to the
interest rate model used in its estimation. Logically, these differences had significant implications for
risk management of these issues.

Table 2 shows some statistics of the differences in risk management measures calculated using
the HL model or from the BDT model. For the callable bond, the HL model provided values of the
ED around 0.04 years (about two weeks in terms of working days) higher than those of the BDT
model. This difference in ED by using these two models was very similar, regardless of whether it was
calculated from variations of ±25 or ±100 bp. The median differences in terms of EC were around 0.24,
but the high standard deviations by using the HL and BDT models (i.e., 3.90 and 3.40, respectively)
and the high mean values (i.e., 1.49 and 1.67, respectively) indicated that the differences between the
two models were significant. In any case, the HL model provided estimates of ED and EC that were
always higher than those of the BDT model. For the callable bond, the differences in ED and EC were
significantly lower than for the callable bond, and sometimes the EC of the BDT model was slightly
higher than that of the HL model. The high volatility of EC estimates was noteworthy.
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for the Callable bond (BCL) and (b) for the Putable bond (TC).
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Table 2. Differences between the HL and BDT models in terms of ED, EC, and option price. These
differences were calculated as the value of the variable obtained using the HL model minus the value
of the variable obtained using the BDT model.

Type of Bond

Differences in ED (the
Value Obtained by the
HL Model—the Value
Obtained by the BDT
Model) for a ±25 bp

Change in the
Yield Curve

Differences in ED (the
Value Obtained by the
HL Model—the Value
Obtained by the BDT
Model) for a ±100 bp

Change in the
Yield Curve

Differences in EC (the
Value Obtained by the
HL Model—the Value
Obtained by the BDT
Model) for a ±25 bp

Change in the
Yield Curve

Differences in EC (the
Value Obtained by the
HL Model—the Value
Obtained by the BDT
Model) for a ±100 bp

Change in the
Yield Curve

Differences in Option
Price (the Value

Obtained by the HL
Model—the Value
Obtained by the

BDT Model)

Callable bond
- Average 0.0388 0.0490 1.4863 1.6681 −0.1288
- Median 0.0373 0.0433 0.2307 0.2423 −0.1227

SD 0.0258 0.0362 3.8977 3.3989 0.1274
Putable bond

- Average 0.0062 0.0268 −0.8147 0.6357 −0.0649
- Median 0.0215 0.0284 0.0906 0.1368 −0.0535

SD 0.0736 0.0511 20.0785 5.0451 0.0463

These results gave rise to different values of the price of the implicit options for both models.
In the last column of Table 2, it can be seen how, in median, the BDT model provided prices 12 bp
higher than those of the HL model for the call and 5 bp for the put. The price of the option by the BDT
model was never below that provided by the HL model.

Finally, the determinants of the differences in the estimation of risk management measures caused
by the use of two alternative interest rate models, HL and BDT, when applied to option-embedded
bonds were further analyzed. We regressed these differences between models on a number of the
proposed determinants related to the shape and time behavior of the term structure of interest rates.
Table 3 shows the results.

Table 3. Determinants of the differences between the HL and BDT models in terms of ED and EC
obtained for the parallel shift of the yield curve of ±100 bp.

Model

Callable Bond: Difference in
ED (the Value Obtained by the

HL Model—the Value
Obtained by the BDT Model)

Putable Bond: Difference in ED
(the Value Obtained by the

HL—the Value Obtained by the
BDT Model)

Callable Bond: Difference in
EC (the Value Obtained by the

HL Model—the Value
Obtained by the BDT Model)

Putable Bond: Difference in EC
(the Value Obtained by the HL
Model—the Value Obtained by

the BDT Model)

Intercept −0.40 (−2.77) *** 0.14 (3.06) *** −1.50 (−0.73) 8.46 (2.76) ***
Level 3.23 (2.34) ** 1.67 (2.55) ** −411.91 (−2.08) ** −444.54 (−1.82) *
Slope 5.44 (1.24) −0.28 (−0.12) 3028.7 (1.92) * 5130.7 (2.32) **

Curvature −27.60 (−1.00) 22.72 (1.52) −0.16 (−0.82) 0.92 (0.98)
Forward −0.03 (−2.24) ** −0.02 (−1.06) 40.91 (0.74) −282.17 (−2.97) ***
Volatility −2.10 (−3.25) *** −4.78 (−5.23) *** 0.25 (2.48) ** −0.18 (−0.70)

MD 0.05 (4.38) *** −0.03 (−2.19) **
Adj. R2 0.3289 0.4536 0.4737 0.2474

# Observ 106 101 101 101

This table reports the results of the regressions of the differences between the estimates of ED and EC obtained by
the HL and BDT models. Level is the one-month interest rate. Slope is the difference between the one-year interest
rate and the three-month rate. Curvature is the difference between the two-year rate and the average of the one- and
three-year rates. Forward is the forward interest rate from the exercise date to the maturity date. Volatility is the SD
of the interest rate for the remaining term to maturity on each date. MD is the MD-to-maturity. The data set includes
actual transactions on these bonds while they are outstanding. The t statistics are based on the Newey–West’s
estimates of the covariance matrix and are represented in parentheses. *, **, and *** represent significance at the
levels of 10%, 5%, and 1%, respectively.

Differences in ED were directly related to the level of interest rates and inversely related to
volatility. Thus, the greatest differences between models were observed with high interest rates and
calm markets. The choice of one model or another to calculate sensitivity measures for option bonds
was particularly relevant in stable interest rate scenarios. The higher the forward, i.e., the interest
rate, at which the issuer of the callable bond must be financed if the option is exercised, the lower the
chances of exercising the call option and the smaller the differences between the models. In the case of
the EC differences, the slope and curvature coefficients were significant in several scenarios, with the
slope reducing the differences and the curvature widening them. Again, volatility reduced differences
between models, although it was only significant in the case of the putable bond.
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7. Discussion

In this paper, we applied two alternative interest rate dynamics models to the pricing of bonds
with embedded options and to the estimation of specific interest risk management measures for these
bonds with contingent cash flows. The calibration of the models and their use to obtain the ED and EC
in real cases throughout the life cycles of these bonds allowed us to perform analyses of their behaviors
and explanatory factors.

We obtained evidence that the differences between the measures proposed for option-embedded
bonds, ED and EC, and the traditional measures applied for option-free bonds were generated and
depended on the probability of exercising the call or put options at each moment. When the option
was in the money, the values of ED and EC were less than the duration- and convexity-to-maturity and
approximated the duration- and convexity-to-call/put.

The option price mainly depended on the interest rates volatility and the future rates, so we can
see that, when Forward (t, T) increased, the call premium decreased and the put premium increased.
This happened, because when interest rates were higher than the coupon rate, the put was in the money
(the bondholder would sell the bond and acquire another one with higher coupon rate), while the
issuer of a bond with a call option would not refinance if the interest rates were above the coupon rate.
Interest rate volatility was directly related to the premium of both types of options.

When comparing the interest rate models, the HL and BDT models, we can see that the HL model
generated higher values than the BDT model for ED and EC and smaller values than the BDT model
for the options. Thus, for the HL model, the DE estimates were the closest to the MD to maturity,
because HL option values were the smallest. On the other hand, the differences between models were
slightly smaller, when ED and EC were estimated from the shifts of the term structure of interest rates
with an amount of ±25 bp. However, the results were much more stable and consistent, when the risk
measures were estimated from the shifts of the yield curve of ±100 bp. We can see that the interest
rate volatility is the key factor in determining these differences between models. Thus, the higher
the volatility of interest rates, the closer the results we obtained with both models. This happened,
because the volatility we introduced as an input in the HL Model is the short rate volatility, which is
constant for all terms while the BDT model includes the entire term structure of volatilities as an input.
Therefore, the choice of the interest rate model for estimating ED and EC and for calculating option
prices on bonds with embedded options is especially relevant in stable scenarios of interest rates.
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