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Abstract: Multistep integration methods are widespread in the simulation of high-dimensional
dynamical systems due to their low computational costs. However, the stability of these methods
decreases with the increase of the accuracy order, so there is a known room for improvement.
One of the possible ways to increase stability is implicit integration, but it consequently leads to
sufficient growth in computational costs. Recently, the development of semi-implicit techniques
achieved great success in the construction of highly efficient single-step ordinary differential
equations (ODE) solvers. Thus, the development of multistep semi-implicit integration methods
is of interest. In this paper, we propose the simple solution to increase the numerical efficiency of
Adams-Bashforth-Moulton predictor-corrector methods using semi-implicit integration. We present
a general description of the proposed methods and explicitly show the superiority of ODE solvers
based on semi-implicit predictor-corrector methods over their explicit and implicit counterparts.
To validate this, performance plots are given for simulation of the van der Pol oscillator and the
Rossler chaotic system with fixed and variable stepsize. The obtained results can be applied in the
development of advanced simulation software.

Keywords: semi-implicit integration; ordinary differential equations; multistep methods;
predictor-corrector; ODE solver

1. Introduction

Multistep integration is among the prospective approaches for solving ordinary differential
equations (ODE). Due to a single call to the right-hand side function per integration step,
such algorithms can be efficient in real-time and long-term simulations. However, the well-known
problem of such methods is a decrease in numerical stability with an increase in the accuracy order
of the applied scheme. This property restricts the application of high-order multistep methods
for solving stiff ODE systems, excluding implicit methods, for example, backward differentiation
formulas [1–3]. Another promising class of numerical integration methods is semi-explicit and
semi-implicit integrators [4–6]. Initially developed among so-called symplectic methods [7] for solving
Hamiltonian problems they were later extended on a broader class of dynamical systems [8–13].
Currently, many symplectic Runge-Kutta methods were developed [7] as well as the exactly symplectic
methods of higher order [8]. These algorithms were initially designed to preserve the geometric
properties of the simulated continuous system in the discrete model. However, later it was discovered
that even in the case of non-Hamiltonian systems, extrapolation [14] and composition [15] ODE solvers
based on symmetric and semi-implicit methods possess lower solution error and computational
costs than their explicit and implicit counterparts [16–19]. The hypothesis of this study is that
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introducing semi-implicit integration can improve the performance of multistep ODE solvers because
the semi-implicit Euler method possesses better precision and stability than an explicit Euler
integrator. Therefore, it is of interest to develop new multistep methods that involve semi-implicit and
semi-explicit integration techniques with increased stability and precision.

2. Semi-Explicit and Semi-Implicit Multistep Methods

In this study, we propose and investigate semi-explicit and semi-implicit modifications of the
integration scheme called the Adams-Bashforth-Moulton formula (ABM) that is one of the well-known
predictor-corrector multistep methods. These methods possess relatively good stability and convergence
properties [20]. The proposed integration techniques exist for ODE systems of order two and higher,
degenerating to traditional ABM method for a system of order one. Let us consider the following
two-dimensional initial value problem (IVP){

ẋ = f (x, y, t)

ẏ = g (x, y, t) ,
(1)

where f and g are known right-hand side functions. The system (1) is to be solved with the initial
condition x(0) = x0 and y(0) = y0.

Let us denote two values of state variables obtained by the explicit Adams-Bashforth method as
xp

n+1 and yp
n+1. Then, for the two-dimensional system (1) the corrector method is as follows

xn+1 = xn + hb0 f
(

xp
n+1, yp

n+1, tn+1

)
+ h

k−1

∑
i=0

bi+1 f (xn−i, yn−i, tn−i) (2)

yn+1 = yn + hb0g
(

xp
n+1, yp

n+1, tn+1

)
+ h

k−1

∑
i=0

bi+1g (xn−i, yn−i, tn−i) , (3)

where h is the integration step, bi are coefficients of the implicit Adams-Moulton method and k is the
number of stages.

2.1. Semi-Explicit Adams-Bashforth-Moulton Method

The proposed semi-explicit technique is based on the idea of the symplectic Euler method [7].
The semi-explicit technique supposes using of already calculated values of state variables to more
accurately approximate remaining values at the current integration step. We apply this approach to
multistep integration as follows. Replacing xp

n+1 in (3) by xn+1 we get

xn+1 = xn + hb0 f
(

xp
n+1, yp

n+1, tn+1

)
+ h

k−1

∑
i=0

bi+1 f (xn−i, yn−i, tn−i)

yn+1 = yn + hb0g
(

xn+1, yp
n+1, tn+1

)
+ h

k−1

∑
i=0

bi+1g (xn−i, yn−i, tn−i) .

(4)

We will call formulae (4) the semi-explicit Adams-Bashforth-Moulton method. One can see, that if
the one-dimensional system is under consideration, then the proposed technique reduces to the
conventional Adams-Bashforth-Moulton method.

2.2. Semi-Implicit Adams-Bashforth-Moulton Method

In our previous studies [14,17,18], the generalized semi-implicit modification of the Euler
method for non-Hamiltonian systems, called the D-method, was considered. Each equation of the
finite-difference scheme obtained using the D-method contains one implicit calculation of the variable
that corresponds to the equation being solved. Thus, if we write a matrix of size N × N (N is the
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number of state variables) and mark the implicit calculation of 1, and 0 is explicit, then in the D-method
ones will fill the main diagonal of the matrix. Moreover, each obtained value of the state variable
is used in the same step to calculate the remaining values as in the case of the semi-explicit Euler
method. Using this approach in the multistep interpretation, for system (1) we obtain the semi-implicit
Adams-Bashforth-Moulton scheme

xn+1 = xn + hb0 f
(

xn+1, yp
n+1, tn+1

)
+ h

k−1

∑
i=0

bi+1 f (xn−i, yn−i, tn−i) (5a)

yn+1 = yn + hb0g (xn+1, yn+1, tn+1) + h
k−1

∑
i=0

bi+1g (xn−i, yn−i, tn−i) , (5b)

where xn+1 in (5a) and yn+1 in (5b) can be calculated using the Newton method or even the simple
iterations method, which converges to the implicit solution in 2–4 iterations [16]. In simple cases the
analytical solution of algebraic equations with respect to the values of state variables at (n + 1) point
is possible. This simple method is applicable to the chosen test systems and we used it in our study.

Both considered algorithms were applied to the two-dimensional system for easy understanding.
However, the proposed approaches can be used to solve ODE systems of arbitrary order. Moreover,
changing the order of lines in the calculation algorithm for both considered methods, one can
obtain a family of semi-implicit and semi-implicit multistep algorithms with similar properties.
Such methods can be used to create new tools for dynamical systems analysis, numerical stability
control, local truncation error estimation and more accurate simulation of orbits using the interval
approach [21].

It is expected that, as in the case of single-step ODE solvers [14,17,18], the introduction
of semi-explicit and semi-implicit calculations will increase the accuracy of the obtained
numerical solution and the computational costs will not change in comparison with the original
Adams-Bashforth-Moulton method. Let us consider some results of experimental studies of
the proposed techniques in comparison with well-known multistep ODE solvers with fixed and
adaptive stepsize.

3. Experimental Results

In the experimental part of our study, we compared semi-explicit (SEABM) and
semi-implicit (SIABM) techniques with the Adams-Bashforth (AB), Adams-Moulton (AM),
Adams-Bashforth-Moulton (ABM) methods and the Backward Differentiation Formula (BDF). We
examined four-stage methods with the fixed integration step and fifth-stage methods with variable
stepsize. Recurrence formulas were applied for the step control and the method for estimating the
local error described in Reference [1]. As a reference, we used the numerical solution obtained by the
Dormand-Prince method of order 8. We studied two sample ODE systems.

3.1. Van der Pol System

In our first experiment, the well-known benchmark nonlinear model—the van der Pol
oscillator—was considered. In the IVP form its equations are as follows{

ẋ = y

ẏ = µ
(
1 − x2) y − x,

(6)

where µ is the stiffness parameter. We simulated system (6) with µ = 1.
We estimated time costs needed for obtaining numerical solutions by ODE solvers under

investigation as well as the maximal global truncation error. We simulated system (6) T = 50 s from
the initial conditions x0 = 0.1, y0 = 0 using fixed and variable integration step. In experiments
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with the fixed step, we simulated system (6) by the semi-explicit method using the following
finite-difference scheme

xp
n+1 = xn + h

(
55
24

fn −
59
24

fn−1 +
37
24

fn−1 −
3
8

fn−2

)
yp

n+1 = yn + h
(

55
24

gn −
59
24

gn−1 +
37
24

gn−1 −
3
8

gn−2

)
gn+1 = µ

(
1 − xp

n+1xp
n+1

)
yp

n+1 − xp
n+1

yn+1 = yn + h
(

3
8

gn+1 +
19
24

gn −
5

24
gn−1 +

1
24

gn−2

)
fn+1 = yn+1

xn+1 = xn + h
(

3
8

fn+1 +
19
24

fn −
5

24
fn−1 +

1
24

fn−2

)
,

where f and g are the values of the right-hand side functions of system (6) at a certain point in time.
For simulation using semi-implicit integration, we applied the same predictor scheme and the

corrector algorithm was

gn+1 = µ
(

1 − xp
n+1xp

n+1

)
yp

n+1 − xp
n+1

yn+1 =
xn + h

(
− 3

8 xp
n+1 +

19
24 gn − 5

24 gn−1 +
1

24 gn−2

)
1 − 3

8 hµ
(

1 − xp
n+1xp

n+1

)
fn+1 = yn+1

xn+1 = xn + h
(

3
8

fn+1 +
19
24

fn −
5

24
fn−1 +

1
24

fn−2

)
.

The obtained performance plots for system (6) are shown in Figures 1 and 2. One can see, that
in the case of fixed step integration (Figure 1) solvers based on the ABM method and its SE and
SI modifications are the most efficient. However, the proposed SEABM method demonstrates the
best results.

10
-12

10
-10

10
-8

10
-6

Truncation Error

10
-2

10
-1

E
la

p
s
e
d

 t
im

e
, 

s

AB

AM

BDF

ABM

SIABM

SEABM

Figure 1. Performance plots for compared multistep ordinary differential equation (ODE) solvers while
simulating system (6) with fixed step.
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Figure 2 represents the results of performance analysis for studied solvers with the variable
stepsize. It is known that for multistep integration methods step-size control supposes more
computational costs than for single-step solvers. In our study, we implemented methods with an
uneven grid, for which the recursive calculation of the method coefficients is required when the
integration step value is changed [1]. As one can see, this leads to a reduction of the difference in the
computational costs between explicit and implicit algorithms (Figure 2). The proposed SIABM and
SEABM solvers possess a higher speed of computation with similar accuracy being compared with the
known ABM technique.
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Figure 2. Performance plots for compared multistep ODE solvers when simulating system (6) with
variable step.

3.2. Rossler Chaotic System

As the second sample system, the Rossler oscillator [22] was chosen. This system is described by
the following ODEs 

ẋ = −y − z

ẏ = x + ay

ẋ = b + z(x − c),

(7)

where a, b, c are free parameters. We investigated system (7) with a = 0.2, b = 0.2, c = 0.7,
which correspond to the case of chaotic oscillations [22].

System (7) was simulated with variable and fixed integration step for time T = 50 s from initial
conditions x0 = 0.1, y0 = 0, z0 = −0.1 by all compared methods. Figures 3 and 4 represent the results
of this experiment. As one can see, in the case of the three-dimensional system, superiority in the
performance of fixed-step solvers based on the proposed methods over the conventional ABM scheme is
more noticeable. The accuracy of the solutions calculated by semi-explicit and semi-implicit techniques
is comparable with the results obtained for the implicit AM method. All of the predictor-corrector
methods appear to be the most efficient among the considered integration schemes.
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Figure 3. Performance plots for investigated multistep ODE solvers simulating system (7) with
fixed step.

Step-size control reinforces the difference in the performance of ODE solvers based on
predictor-corrector schemes in comparison with the explicit AB method (Figure 4). Moreover,
the explicit AB algorithm shows a significant decrease in accuracy when the system with chaotic
behavior is simulated. The most effective method is the semi-explicit technique, as was in the case of
the van der Pol oscillator.

10
-10

10
-8

10
-6

Truncation Error

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

E
la

p
s

e
d

 t
im

e
, 

s

AB

AM

BDF

ABM

SIABM

SEABM

Figure 4. Performance plots for investigated multistep ODE solvers simulating system (7) with
variable step.

Thus, we can conclude that semi-implicit and semi-implicit multistep integration for both
considered systems are more efficient when implemented with the variable step.

4. Discussion

The computational costs of the proposed semi-implicit solver can increase significantly if
Newton’s iterations will be required for approximation of diagonally implicit variable. Figure 5
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shows the simulation results for the Rossler system using proposed four-stage ODE solvers with
various approximation techniques for diagonal implicitness. We compared the SEAM algorithm with
methods which involve Newton’s iterations (SIABMN) and simple iterations (SIABMSI) as well as
the SIABM method with the analytical solution of diagonally implicit algebraic equations. To clarify
the comparison and increase the understandability we provide listings of the used algorithms in
Appendix A, excluding code for the (SIABMN) method due to its massiveness. As one can see from
Figure 5, the semi-implicit ABM modification with the Newton method is the most computationally
expensive solver. This method should be applied only if it is impossible to resolve a system of
diagonally implicit algebraic equations. The examples of such systems can be the simple model of
spiking neurons [23] and the Hodgkin-Huxley system [24] which are broadly used in computational
neuroscience. An alternative to Newton’s method is the simple iterations algorithm (SIABMSI in
Figure 5), which is less computationally expensive and is proven to be convergent for arbitrary
right-hand side function [16].
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Figure 5. Performance plots for various semi-implicit and semi-explicit multistep ODE solvers
simulating system (7) with fixed step.

One can note that the semi-explicit integration is free from this limitation but potentially possesses
less stability and convergence, especially for high-dimensional systems.

5. Conclusions

In this study we proposed the simple technique to enhance the performance of predictor-corrector
multistep ODE solvers. We described two versions of the modified Adams-Bashforth-Moulton method
with semi-implicit and semi-explicit integration. The proposed numerical integration methods possess
high precision and low computational costs. In the experimental part of the study, we have explicitly
shown that the performance of semi-implicit and semi-explicit multistep integration methods is
superior to their explicit and implicit counterparts. To illustrate this, we simulated two nonlinear
systems: the van der Pol oscillator and the chaotic Rossler system. In both cases, the computational
efficiency of semi-explicit and semi-implicit Adams-Bashforth-Moulton methods was highest among
the tested algorithms. Implementation with adaptive stepsize confirmed this property of proposed
methods. In our further research, we will compare these algorithms with high-order single-step solvers,
including semi-explicit and semi-implicit extrapolation and composition methods, as well as the effects
arising in the long-term simulation of nonlinear systems.
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Appendix A. Pseudocodes of the Proposed Methods for the Simulation of Rossler System

List of used notations:

• state variables at the time moment i: xi, yi, zi

• parameter values: a, b, c
• coefficients of the four-stage Adams-Bashforth method: a1, a2, a3, a4

• coefficients of the four-stage Adams-Moulton method: b1, b2, b3, b4

• value of the right-hand side function for variable j at the time moment i obtained from the
previous iterations: Fj

i
• integration step: h

Listing A1. Single integration step for the semi-explicit Adams-Bashforth-Moulton method.

#Predictor
xn+1 = xn + h

(
a1Fx

n + a2Fx
n−1 + a3Fx

n−2 + a4Fx
n−3
)

yn+1 = yn + h
(

a1Fy
n + a2Fy

n−1 + a3Fy
n−2 + a4Fy

n−3

)
zn+1 = zn + h

(
a1Fz

n + a2Fz
n−1 + a3Fz

n−2 + a4Fz
n−3
)

#Corrector
Fx

n+1 = −yn+1 − zn+1
xn+1 = xn + h

(
b1Fx

n+1 + b2Fx
n + b3Fx

n−1 + b4Fx
n−2
)

Fy
n+1 = xn+1 + ayn+1

yn+1 = yn + h
(

b1Fy
n+1 + b2Fy

n + b3Fy
n−1 + b4Fy

n−2

)
Fz

n+1 = b + zn+1(xn+1 − c)
zn+1 = zn + h

(
b1Fz

n+1 + b2Fz
n + b3Fz

n−1 + b4Fz
n−2
)

Listing A2. Single integration step for the semi-implicit Adams-Bashforth-Moulton method. In this
case the analytic solution of the diagonally implicit algebraic equations is derived.

#Predictor
xn+1 = xn + h

(
a1Fx

n + a2Fx
n−1 + a3Fx

n−2 + a4Fx
n−3
)

yn+1 = yn + h
(

a1Fy
n + a2Fy

n−1 + a3Fy
n−2 + a4Fy

n−3

)
zn+1 = zn + h

(
a1Fz

n + a2Fz
n−1 + a3Fz

n−2 + a4Fz
n−3
)

#Corrector
Fx

n+1 = −yn+1 − zn+1
xn+1 = xn + h

(
b1Fx

n+1 + b2Fx
n + b3Fx

n−1 + b4Fx
n−2
)

Fy
n+1 = xn+1 + ayn+1

yn+1 =
yn+h(b1xn+1+b2Fy

n+b3Fy
n−1+b4Fy

n−2)
1−hb1a #Solving algebraic equation with respect to yn+1

Fz
n+1 = b + zn+1(xn+1 − c)

zn+1 =
zn+h(b1b+b2Fz

n+b3Fz
n−1+b4Fz

n−2)
1−hb1(xn+1−c) #Solving algebraic equation with respect to zn+1
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Listing A3. Single integration step for the semi-implicit Adams-Bashforth-Moulton method. Case with
the simple iterations.

#Predictor
xn+1 = xn + h

(
a1Fx

n + a2Fx
n−1 + a3Fx

n−2 + a4Fx
n−3
)

yn+1 = yn + h
(

a1Fy
n + a2Fy

n−1 + a3Fy
n−2 + a4Fy

n−3

)
zn+1 = zn + h

(
a1Fz

n + a2Fz
n−1 + a3Fz

n−2 + a4Fz
n−3
)

#Corrector
Fx

n+1 = −yn+1 − zn+1
xn+1 = xn + h

(
b1Fx

n+1 + b2Fx
n + b3Fx

n−1 + b4Fx
n−2
)

Fy
n+1 = xn+1 + ayn+1

yn+1 = yn + h
(

b1Fy
n+1 + b2Fy

n + b3Fy
n−1 + b4Fy

n−2

)
#First simple iteration for yn+1

yn+1 = yn + h
(

b1(xn+1 + ayn+1) + b2Fy
n + b3Fy

n−1 + b4Fy
n−2

)
#Second simple iteration for yn+1

Fz
n+1 = b + zn+1(xn+1 − c)

zn+1 = zn + h
(
b1Fz

n+1 + b2Fz
n + b3Fz

n−1 + b4Fz
n−2
)

#First simple iteration for zn+1
zn+1 = zn + h

(
b1(b + zn+1(xn+1 − c)) + b2Fz

n + b3Fz
n−1 + b4Fz

n−2
)

#Second simple iteration for zn+1
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