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Abstract: This paper presents an evolutionary algorithm that simulates simplified scenarios of
the diffusion of an infectious disease within a given population. The proposed evolutionary
epidemic diffusion (EED) computational model has a limited number of variables and parameters,
but is still able to simulate a variety of configurations that have a good adherence to real-world
cases. The use of two space distances and the calculation of spatial 2-dimensional entropy are
also examined. Several simulations demonstrate the feasibility of the EED for testing distinct
social, logistic and economy risks. The performance of the system dynamics is assessed by several
variables and indices. The global information is efficiently condensed and visualized by means of
multidimensional scaling.
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1. Introduction

The diffusion of a infectious disease within a given population during a short time period is
called an epidemic. If the infection spreads to a large number of countries and to other continents it
may be classified as a pandemic. Recent outbreaks are the 2003 severe acute respiratory syndrome
(SARS), 2004 H5N1 (Avian flu), 2005 Zika fever, 2009 H1N1 and HIV/AIDS pandemics, just to name a
few [1–5]. Presently the Coronavirus disease 2019 (COVID-19) is of utmost importance for the human
species [6–10]. For controlling an outbreak, governments adopt basic containment, mitigation
and suppression strategies. Containment is considered the early stages of the outbreak, for trying to
stop the infection from being transmitted to the rest of the population. Mitigation is adopted to slow
down the spread of the disease to moderate its effects on the population and the health care system.
Suppression, attempts to reverse the pandemic by reducing the so-called basic reproduction number
R0, to a value less than 1 [11,12].

The political and logistic management of an infectious outbreak is of key importance in order
to decrease the epidemic peak, often called as ‘flattening the epidemic curve’. A second political
issue is to handle the consequences in economy, with governments investing huge capitals to reduce
the threats posed by the pandemics. In both cases, tools for estimating and foreseeing the evolution of
the spread are an invaluable asset for decision makers. We find studies adopting a variety of approaches
going from the use of models based on mathematical tools [13,14], such as systems of differential
equations [15–17], or data fitting techniques and statistics, up to computer assisted strategies [18–21].
In the present days, artificial intelligence and soft computing are gaining importance and they lead to
reliable methods to handle problems difficult to model and involving variables, either impossible to
measure, or exhibiting unreliable values.

We find nowadays relevant initiatives involving political, academic and social organizations,
trying to give a fast response to urgent problems based on data-driven and computational resources.
For example, in the scope of the COVID-19 outbreak we can mention the daily update by
the Italian Department of Civil Protection http://opendatadpc.maps.arcgis.com/apps/opsdashboard/
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index.html#/b0c68bce2cce478eaac82fe38d4138b1, the European Centre for Disease Prevention
and Control https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-
distribution-covid-19-cases-worldwide, the ‘Acción Matemática contra el Coronavirus’, http://
matematicas.uclm.es/cemat/covid19/en/ by the Spanish Mathematics Committee, or the Global
research on coronavirus disease (COVID-19) https://www.who.int/emergencies/diseases/novel-
coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov by the World Health Organization
(WHO), just to name a few.

In this area of computer science, evolutionary computation provides a framework for optimization
schemes inspired by biological evolution [22–26]. In general, evolutionary computation leads to
a family of population-based optimization algorithms [27,28], with a numerical trial and error
meta-heuristic and probabilistic behavior [29–33]. An initial set of elements in a population (often called
candidate solutions) are generated and successively updated by means of some logical rules including
some random variations. Probably the most well-known scheme is the ‘genetic algorithm’ [34], where a
population is subjected to natural selection using mutation and crossover operations. The population
gradually evolves to increase its performance according with a given fitness function chosen by
the user.

In the last decades a large variety of Evolutionary algorithms (EA) were proposed. In 2013 Iztok
Fister [35] presented a brief review of EA and found 74 algorithms that could be distributed in four
classes, namely the families entitled swarm intelligence, biological inspired, or physics and chemistry
based algorithms and miscellaneous schemes. A search in scientific and technical literature reveals a
large number of proposed techniques for EA, demonstrating their popularity in the research community
for dealing with real-world problems [36–38].

In the case of health care systems, machine learning algorithms have also been explored. Interested
readers can find a review in Reference [39]. In what concerns specific diseases, we find, for example,
the problem of distinguishing bacterial from viral meningitis through a machine learning using a data
set [40]. Nonetheless, we must have in mind that in pervasive/ubiquitous computing environments,
users may evaluate their trustworthiness by using historical data from their past interactions, and that
some solution detecting unfair recommendations must be implemented [41].

The classical approach for compartmental models in epidemiology follows the so-called SIR
model by Kermack et al. [13,42–44], described by a system of differential equations, where a fixed
population of individuals that fit into three categories, namely the susceptible (but not yet infected),
infectious and recovered (with immunity) individuals, that vary in time. The small number of
variables and parameters limit its applicability and several improvements have been proposed [45–47].
Nonetheless, the additional degrees of freedom come at the cost of an extra complexity often requiring
variables and parameters either not available in real world, or with a considerable noise and uncertainty
due to a variety of factors. Therefore, we can question if a computational scheme following the concepts
of EA can overcome those problems and represent a valid alternative for modeling purposes.

Having these ideas in mind, this paper develops an EA for mimicking a epidemic diffusion within
a population. As usual with these computational schemes several simplifications will be adopted
both to speed-up the computational processing and to clarify the role of the distinct parameters
and variables. In fact, we can add extra degrees of sophistication and detail at the expense of building
a logical scheme leading to results more difficult to interpret given the plethora of cross effects. In spite
of the simplification, we shall have a considerable number of variables and scenarios which makes
difficult to compare the results. In order to overcome this problem, we adopt the multidimensional
scaling (MDS) technique [48–51]. The MDS is a data processing numerical technique that allows
depicting in a low dimensional locus results from a high-dimensional space. This strategy leads to a
computational visualization that unravels the most important aspects embedded in the data.

The paper is organized as follows. Section 2 discusses the main ideas and formulates the structure
of the proposed evolutionary epidemic diffusion (EED). Sections 3 and 4 discuss the results given by
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the EED and explore several possible configurations of the parameters and distinct scenarios. Section 5
analyses the results by means MDS. Finally, Section 6 summarizes the main conclusions.

2. The Evolutionary Epidemic Diffusion Algorithm

The EED adopts a 2-dimensional squared small-world (SW) with a population of N elements,
so that the i-th individual is positioned on the coordinates (xi, yi), i = 1, . . . , N, inside the square.
The population will evolve in time t and in the 2-dimensional space according with the rules defined in
the sequel. Two exceptions outside the coordinates of the SW are considered consisting of the ‘hospital
and house’ (hereafter simply denoted as hospital) and ‘cemetery’. These two additional repositories
are allocated to the elements of the population that are found by health care system as infected or
that passed away due to the action of the virus. The population is distributed along five categories:
‘healthy’, ‘infected’ (but not in hospital or confined in house) and ‘immunized’ that move in time
and space, the ‘hospitalized’ corresponding to infected people that are taken to the hospital or that
are confined to some part of his house in case the health state is not too serious, and ‘dead’ that are
positioned in the ‘cemetery’.

The population is initialized in 2 categories ‘healthy’ and ‘infected’ with percentages 1− p1 and p1,
respectively. Let us suppose that two individuals in the SW can be randomly selected. If they are
in a distance range inferior to a given threshold limit, that may be called ‘social neighborhood’, D,
and if one is healthy and the other is infected, then the healthy became infected with a probability p2,
otherwise he stays in the previous state. Therefore, if (xi, yi) and (xj, yj) are the coordinates of the i-th
and j-th individuals (i, j = 1, . . . , N) and one is infected, then infection of the other will occur with
probability p2 if d < D, where the spatial distance d is defined as [52]:

d =
(∣∣xi − xj

∣∣α + ∣∣yi − yj
∣∣α) 1

α , α ≥ 1. (1)

An infected individual can remain as ‘infected’ with probability p3 if not detected by the health
care system (either due to logistic limitations, or because of being asymptomatic). Nonetheless, an
‘infected’ individual can change to the categories ‘hospitalized’, ‘dead’, or ‘immunized’ as described in
the follow-up. The hospital has limited capacity of Nh places. Therefore, an infected individual that is
detected by the health care system, can enter in the hospital if, and only if, the number of patients
nh does not surpass the limit, that is nh ≤ Nh. Moreover, infected and hospitalized individuals can
change to the category ‘dead’ with probabilities p4 and p5, respectively. The infected or hospitalized
i-th individual changes to ‘immunized’ after being in that state for the period of time ti ≥ T ± ∆T,
where ∆T stands for some random variation with a uniform probability distribution. Individuals
‘immunized’ re-enter the SW with randomly generated coordinates and cannot be infected again.
Moreover, dead or immunized do not transmit infection to others.

The population located in the SW (i.e., ‘healthy’, ‘infected’ and ‘immunized’) changes position in
space with a small increment (δx, δy) generated randomly and independently with uniform distribution
and zero mean. Therefore, the ith individual evolves in space (xi, yi)→ (xi + δx, yi + δy) between two
successive time iterations t and t + 1. In the follow-up, we consider that the maximum displacement
values are identical (i.e., max |δx| = max |δy| = δ). Therefore, two independent values −δ ≤ δx ≤ δ

and −δ ≤ δy ≤ δ are generated, as long as the new coordinates (xi + δx, yi + δy) remain in the SW,
otherwise a new set of random displacements is generated.

The Minkowski distance d leads to the Manhattan (or city), Euclidean and Chebyshev
distances [53] for α = {1, 2, ∞}. In particular, we can simulate different environments in the SW,
such with and without buildings for α = 1 and α = 2, respectively.

Several issues must be considered:

• The SW is considered to have an isotropic structure, that is, without a special architectural or
geophysical structure. Therefore, the choice for max |δx| = max |δy| = δ seems intuitive.
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• The uniform probability distribution is often adopted in the scope of EA, merely for the sake of
simplification. The adoption of other distributions, such as the Gaussian, or the use of conditional
probabilities, for example, would imply further assumptions that imply adding an extra complexity
to the EED. Section 4 will discuss further this preliminary assumption.

• The Manhattan and Euclidean attempt to model distinct behaviors of the individuals moving
in the SW, but not the propagation of the virus. In fact, individuals have a macroscopic nature
in opposition to virus that has a microscopic dimension and can propagate in a variety of ways,
such as in air by the wind or in the clothes and shoes of the host individuals. So, the city distance
reflects the adoption of social attitudes such as passing for the other side of the street when another
individual appears in the same direction.

In summary, the EA (i) starts with two categories ‘healthy’ and ‘infected’, (ii) evolves in time
and space with five categories ‘healthy’, ‘infected’, ‘hospitalized’, ‘immunized’ and ‘dead’, and (iii)
at the end the SW includes only three categories, specifically the ‘healthy’, ‘immunized’ and ‘dead’.
Obviously, during the simulation the number of active individuals in the SW (i.e., those that are not
‘hospitalized’, or ‘dead’) decreases.

The overall description and assignment of variables and parameters is represented in the diagram
of Figure 1.

Figure 1. Diagram of the evolutionary epidemic diffusion (EED) involving the five state variables
‘healthy’, ‘infected’, ‘hospitalized’, ‘immunized’ and ‘dead’ and the three locations small world (SW),
hospital and cemetery.

Some of the simplifications may be a matter of criticism, such as:

• A 2-dimensional SW with fixed Cartesian boundaries is considered
• The SW has a uniform structure, without including rivers, hills or other structures
• The rules of the EA are fixed in time
• Some additional modeling of the hospital, such as staff burnout or equipment limitation, is absent
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• The effect of different clinical conditions and age are identical for all population
• The total population decreases along time since no births or incoming visitors are included
• Hospitalized individuals can infect others, but no such case is considered
• No ‘dead’ individuals due to other causes

Indeed we can include extra rules and answer these issues. However, we must have in mind
that EA are usually a simplification of the real-world. This allows a faster calculation and a simpler
and more assertive interpretation of the meaning of each parameter.

3. Exploring the Evolutionary Algorithm: A First Set of Experiments

Let us consider a population of N = 500 individuals with p1 = 0.1 and 1 − p1 = 0.9
for infected and healthy, respectively, and simulate the SW during τ = 30 iterations. Therefore,
the EED simulation starts with ni = 50 ‘infected’ and N − ni = 450 ‘healthy’ individuals. The SW
is delimited by the coordinates (x, y) = (0, 0) and (x, y) = (1, 1), the infection distance is set to
D = 0.07, and the maximum step in space (x, y) between two consecutive time iterations is δ = 0.1 .
Other parameters are set to p2 = 0.9, p3 = 0.7, p4 = 0.05 and α = 2. The infection incubation period
is set to T = 15 days with a variation ∆T = ±2 days, and the hospital capacity Nh is considered
unlimited. We consider low values for the mortality, such as the common flu or the COVID19, but not
others such as Ebola or Marburg [2,4]. Nonetheless, the adoption of such numerical values does not
precludes the use of higher values for such probabilities. Moreover, it is considered p4 > p5 to describe
the positive influence of the medical health care. Figure 2 shows the time evolution of the 5 state
variables during the period of t = 1, . . . , τ iterations for this first scenario S1.
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Figure 2. Scenario S1: Time evolution of the 5 state variables, for N = 500, ni = 50, D = 0.07, δ = 0.1,
p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02, α = 2 and Nh → ∞.

We verify a fast decrease of the number of ‘hospitalized’ and an increase in the ‘immunized’.
The number of ‘infected’ (not in hospital) has a slow but continuous reduction and the ‘dead’ increase
linearly until the ‘immunized’ reach the steady-state. Varying the value of T changes the delay period
for starting the emergence of the variable ‘immunized’. On the other hand, the main effect of increasing
∆T is to smooth the curve at the start and end of the immunization transient.
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The value of α = 2 represents a free space. Therefore, we consider a second scenario S2 of a SW
described by a distance with α = 1, while the rest of the parameters remain identical. Figure 3 depicts
the time evolution of the 5 state variables. Comparing the two scenarios we conclude that for α = 1 we
have a larger number of ‘healthy’ and a smaller value for the ‘dead’.
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Figure 3. Scenario S2: Time evolution of the 5 state variables for α = 1 (N = 500, ni = 50, D = 0.07,
δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02 and Nh → ∞).

In a third scenario S3 we limit the hospital capacity (and house confinement capacity) to Nh = 100,
that is, to 20% of the total population. The other parameters remain identical to first scenario. Figure 4
shows clearly the effect of saturation in the ‘hospitalized’ time evolution and a clear increase in the final
number of ‘dead’.
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Figure 4. Scenario S3: Time evolution of the 5 state variables for Nh = 100 (N = 500, ni = 50, D = 0.07,
δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02 and α = 2).
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In a 4th scenario S4 we evaluate the influence of confining the individuals by reducing the distance
threshold limit to D = 0.05 while the rest of the parameters remain identical to scenario S1. Figure 5
shows the strong effect of the limitation that leads to the increasing of ‘healthy’, and the diminishing
of ‘immunized’ and ‘dead’.
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Figure 5. Scenario S4: Time evolution of the 5 state variables for D = 0.05 (N = 500, ni = 50, δ = 0.1,
p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02, α = 2 and Nh → ∞).

Let us consider four cost indices consisting of:

• I1, the integral in time of the number of ‘hospitalized’ divided by the maximum value (i.e., N × τ)
• I2, the maximum number of ‘hospitalized’ divided by the population maximum number (i.e., N)
• I3, the number of ‘dead’ divided by the population maximum number (i.e., N)
• I4, the integral in time of the total number ‘healthy’ and ‘immunized’ divided by the maximum

value (i.e., N × τ).

The indices I1 and I2 assess social and logistic issues, I3 addresses mainly a social aspect and I4

focuses in economic matters. Table 1 lists the parameters and the obtained values of the indices
for the proposed scenarios.

Table 1. Numerical values of the EED parameters for scenarios Si, i = 1, . . . , 4, and the cost indices Ij,
j = 1, . . . , 4.

Scenario N ni D δ p1 p2 p3 p4 p5 Nh α τ I1 I2 I3 I4

S1 500 50 0.07 0.1 0.1 0.9 0.7 0.05 0.02 ∞ 2 30 0.290 0.676 0.360 0.367
S2 500 50 0.07 0.1 0.1 0.9 0.7 0.05 0.02 ∞ 1 30 0.256 0.588 0.286 0.476
S3 500 50 0.07 0.1 0.1 0.9 0.7 0.05 0.02 100 2 30 0.107 0.200 0.448 0.321
S4 500 50 0.05 0.1 0.1 0.9 0.7 0.05 0.02 ∞ 2 30 0.220 0.516 0.244 0.544

In all scenarios we find 4 phases

• P1 starting from two categories only, namely ‘healthy’ and ‘infected’, an initial transient with a fast
diminishing in the number of ‘healthy’ and an inverse behavior with the ‘infected’, ‘hospitalized’
and ‘dead’

• P2 a slow diminishing or even a steady-state in the ‘healthy’ and a moderate increase with
the ‘infected’, ‘hospitalized’ and ‘dead’
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• P3 a fast increase of the ‘immunized’ and slow decrease of ‘infected’, ‘hospitalized’ and ‘dead’,
• P4 a steady-state with individuals in there categories only, namely ‘healthy’, ‘dead’

and ‘immunized’.

Let us now consider the influence of the control strategy based on the social neighborhood D
upon the cost indices. Therefore, we simulate the EED for 0 ≤ D ≤ 0.1 and we consider the effect of
the social neighborhood for the cases of α = 1 and α = 2. The rest of the parameters remain identical
to those adopted in scenario S1.

Figures 6–9 show the evolution of the four indices versus D for the two values of α. In all cases
we verify that the cost increases significantly for D > 0.02 and stabilizes at an high value for D > 0.06.
Furthermore, the value of α has some influence and we verify that a SW with α = 1 limits slightly
the propagation of the infection in relation with the case of a SW with α = 2.
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Figure 6. Variation of the integral in time of the number of hospitalized (I1) versus the social
neighborhood D for α = {1, 2} (N = 500, ni = 50, δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05,
p5 = 0.02 and Nh → ∞).
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Figure 7. Variation of the maximum number of hospitalized (I2) versus the social neighborhood D
for α = {1, 2} (N = 500, ni = 50, δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02
and Nh → ∞).
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Figure 8. Variation of the number of dead (I3) versus the social neighborhood D for α = {1, 2}
(N = 500, ni = 50, δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02 and Nh → ∞).
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Figure 9. Variation of the integral in time of the number of healthy and ‘immunized’ (I4) versus
the social neighborhood D for α = {1, 2} (N = 500, ni = 50, δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7,
p4 = 0.05, p5 = 0.02 and Nh → ∞).

The spatial distribution of the elements in the SW can also be measured. Let us adopt
the Shannon entropy of the (x, y) space occupation by any type of individual, that is, ‘healthy’,
‘infected’ and ‘immunized’, since the ‘hospitalized’ and and ‘dead’ are located outside the SW namely
at the ‘hospital’ and ‘cemetery’, respectively. The SW is subdivided into an array of r × r matrix
and the number of individuals in each cell in counted for obtaining a 2-dimensional histogram.
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The statistics of the spatial distribution versus time t is obtained my means of the 2-dimensional space
entropy Hxy given by [54–58]:

Hxy = −
r

∑
i=1

r

∑
j=1

p
(
xi, yj

)
log
(

p
(
xi, yj

))
, (2)

where p
(

xi, yj
)

is the probability obtained for the i, j-cell of the r× r matrix, at a given time instant t.
Figure 10 illustrates the evolution of the individuals in the SW for t = {1, 5, 10, 20} and Figure 11

depicts the evolution of Hxy versus time t, for r = 20 and α = {1, 2}. In all cases it is considered
N = 500, D = 0.05, δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05 and p5 = 0.02. We observe clearly
(i) the diminishing of the ‘healthy’ and the increase of the ‘infected’ when passing from t = 1 to t = 5,
(ii) the disappearance to the ‘infected’ and the emergence of the ‘immunized’ when going to t = 17
and (iii) the steady-state at t = 25 with ‘healthy’ and ‘immunized’. The space entropy Hxy reflects also
clearly the transient and the difference between the initial condition and the steady-state.
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Figure 10. State of the SW space occupation by ‘healthy’, ‘infected’ and ‘immunized’ individuals for:
(a) t = 1, (b) t = 5, (c) t = 10, (d) t = 20 (N = 500, ni = 50, D = 0.05, δ = 0.1, p1 = 0.1, p2 = 0.9,
p3 = 0.7, p4 = 0.05, p5 = 0.02, α = 2 and Nh → ∞).
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Figure 11. Space entropy Hxy versus time t, for r = 20 and α = {1, 2} (N = 500, D = 0.05, ni = 50,
δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02 and Nh → ∞).

4. Exploring the Evolutionary Algorithm: A Second Set of Experiments

In the previous scenarios no available vaccine or treatment is considered. Therefore,
the ‘immunized’ variable is an important issue against any new surge of infection. To illustrate
this problem let us consider the 5th and 6th scenarios, S5 and S6, with a disturbance of 50 recently
‘infected’ visitors entering in the SW at t = 25 with coordinates (x, y) generated randomly. Scenarios
S5 and S6 follow the conditions of scenarios S1 and S4 (i.e., D = 0.07 and D = 0.05), respectively,
for the rest of the parameters, with exception of the simulation period that is extended to τ = 50.

Figures 12 and 13 show the immediate effect in all variables. However, in scenario S6 the number
of ‘immunized’ is lower at t = 25 and, consequently, the propagation of the perturbation is
much superior.
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Figure 12. Scenario S5: Time evolution of the 5 state variables for D = 0.07 and a disturbance in the SW
with the input of 50 new ‘infected’ visitors at t = 25 (N = 500, ni = 50 at t = 1, δ = 0.1, p1 = 0.1,
p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02, α = 2 and Nh → ∞).
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Figure 13. Scenario S6: Time evolution of the 5 state variables for D = 0.05 and a disturbance in the SW
with the input of 50 new ‘infected’ visitors at t = 25 (N = 500, ni = 50 at t = 1, δ = 0.1, p1 = 0.1,
p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02, α = 2 and Nh → ∞).

The public feeling of risk as a consequence of known critical cases is a variable that we can consider
and implement in the EED. Therefore, we consider a scenario S7 where a disturbance is simulated
by reducing the social neighborhood to D = 0.01 for t ≥ 4. Figure 14 shows clearly the reduction of
‘hospitalized’, ‘dead’ and ‘immunized’ and, correspondingly, the improvement in the cost functions.
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Figure 14. Scenario S7: Time evolution of the 5 state variables for a disturbance in the SW so that
D = 0.07 for t ≤ 3, and D = 0.01 for t ≥ 4 (N = 500, ni = 50, δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7,
p4 = 0.05, p5 = 0.02, α = 2 and Nh → ∞).
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During the outbreak of the virus spread some medical drug for an efficient treatment may be
discovered and administrated to all population, both hospitalized and non-hospitalized. To simulate
this scenario S8 we consider a disturbance at t ≥ 6, where the probabilities of death are set to the values
p4 = p5 = 0.01. Figure 15 shows again a remarkable improvement.
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Figure 15. Scenario S8: Time evolution of the 5 state variables for a disturbance in the SW so that
p4 = 0.05 and p5 = 0.02 for t ≤ 5, and p4 = 0.01 and p5 = 0.01 for t ≥ 6 (N = 500, ni = 50, δ = 0.1,
p1 = 0.1, p2 = 0.9, p3 = 0.7, α = 2 and Nh → ∞).

Another issue to consider is the initialization of the EED. In the scenarios adopted so far,
the simulation starts with a considerable number of ‘infected’, namely with 50 individuals in a
total of 500. To evaluate the effect of starting with a smaller number, we consider 5, 10 and 20 ‘infected’
(see Figures 16–18) corresponding to the scenarios S9, S10 and S11, respectively. We verify clearly a
smother variation of the curves and the improvement in the cost indices, demonstrating the importance
of an early detection of the ‘infected’.
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Figure 16. Scenario S9: Time evolution of the 5 state variables for ni = 5 (N = 500, D = 0.07, δ = 0.1,
p1 = 0.1, p2 = 0.9, p3 = 0.7, α = 2 and Nh → ∞).
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Figure 17. Scenario S10: Time evolution of the 5 state variables for ni = 10 (N = 500, D = 0.07, δ = 0.1,
p1 = 0.1, p2 = 0.9, p3 = 0.7, α = 2 and Nh → ∞).
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Figure 18. Scenario S11: Time evolution of the 5 state variables for ni = 20 (N = 500, D = 0.07, δ = 0.1,
p1 = 0.1, p2 = 0.9, p3 = 0.7, α = 2 and Nh → ∞).

Table 2 lists the parameters and the obtained values of the indices for the seven new scenarios.
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Table 2. Numerical values of the EED parameters for scenarios Si, i = 5, . . . , 11, and the cost indices Ij, j = 1, . . . , 4.

Si N ni D δ p1 p2 p3 p4 p5 Nh α τ I1 I2 I3 I4

S5 500

{
50 t = 1
50 t = 25

0.07 0.1 0.1 0.9 0.7 0.05 0.02 ∞ 2 50 0.184 0.589 0.356 0.453

S6 500

{
50 t = 1
50 t = 25

0.05 0.1 0.1 0.9 0.7 0.05 0.02 ∞ 2 50 0.164 0.395 0.286 0.562

S7 500 50

{
0.07 t ≤ 3
0.01 t ≥ 4

0.1 0.1 0.9 0.7 0.05 0.02 ∞ 2 30 0.2380 0.5600 0.2560 0.5007

S8 500 50 0.05 0.1 0.1 0.9 0.7

{
0.05 t ≤ 5
0.01 t ≥ 6

{
0.02 t ≤ 5
0.01 t ≥ 6

∞ 2 30 0.3341 0.7660 0.2060 0.4360

S9 500 5 0.07 0.1 0.1 0.9 0.7 0.05 0.02 ∞ 2 30 0.196 0.430 0.238 0.608
S10 500 10 0.07 0.1 0.1 0.9 0.7 0.05 0.02 ∞ 2 30 0.284 0.608 0.304 0.449
S11 500 20 0.07 0.1 0.1 0.9 0.7 0.05 0.02 ∞ 2 30 0.307 0.696 0.290 0.424



Mathematics 2020, 8, 779 16 of 22

5. Multidimensional Scaling Analysis of the Evolutionary Algorithm

The results given by the EED have a probabilistic nature and vary slightly in each run. Moreover,
we have a large number of variables which makes difficult to compare the results. In order to
overcome these problems we adopt the multidimensional scaling (MDS) technique [48–51] to condense
the results in a single representation. In short, the MDS represents in a low dimensional space
(i.e., with dimension q) data sets from an higher dimensional space (i.e., with dimension p > q),
while preserving its main characteristics and highlighting the key issues. For achieving that goal
the MDS computational algorithms requires two phases. In a first phase the user defines a given
distance d comparing the set of M ∈ N items in a p-dimensional space [52,53]. Then, all items are
compared by calculating a matrix ∆ =

[
dij
]
, i, j = 1, . . . , M, with dij = dji and dii = 0, of item-to-item

distances in the p-dimensional space. In a second phase, the MDS performs successive iterations trying
to find a configuration of items in the q-dimensional space that mimic approximately the original
distances. Usually the MDS adopts a numerical strategy for minimizing some kind of least squares
index, often called stress. Several distinct types of distances can be used. Also, since we are
dealing with relative measurements (i.e., distances), the representation in the q-dimensional space
is read in terms of clusters and can be rotated, magnified or shifted since the axis have no physical
interpretation. Often the dimensions q = 2 or q = 3 are adopted since they allow a straightforward
visualization [59–61].

We consider data sets produced by the EED with vectors vi(n, t), n = 1, . . . , 5 and t = 1, . . . , 30,
for the five variables and time of simulation, respectively. For calculating the distances between items
we adopt the Canberra and Lorentzian metrics, dC and dL, to assess the dissimilarity between pairs:

dC
ti ,tj

=
5

∑
n=1

∣∣v (n, ti)− v
(
n, tj

)∣∣
v (n, ti) + vj

(
n, tj

) , (3)

dL
ti ,tj

=
5

∑
n=1

log
(
1 +

∣∣v (n, ti)− v
(
n, tj

)∣∣), (4)

where ti and tj denote two time instants, so that ti, tj ∈ {1, . . . , 30}. Therefore, in this case the matrices
∆ have dimension 30× 30, for both distances.

Additionally, we consider 10 runs to evaluate the probabilistic effect and 3 scenarios for the social
neighborhood D = {0.025, 0.05, 0.075}. We overlap the 10 MDS loci using the Procrustes
technique [62,63]. The Procrustes processing between two matrices ∆1 and ∆2 of identical dimension
determines a linear transformation (i.e., a translation, reflection, orthogonal rotation, and scaling) of
the points in matrix ∆2 to best conform them to the points in matrix ∆1.

Figures 19 and 20 show the resulting MDS loci for q = 3 and the Canberra (3) and Lorentzian (4)
distances, respectively. The numerical parameters are N = 500, D = {0.025, 0.05, 0.075}, δ = 0.1,
p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02 and α = 2. The initial time instants, corresponding to
t = 1, are marked with small circles.

We verify clearly the emergence of the phase Pi, i = 1, . . . , 4, observed in the first group of
experiments. Nonetheless, as usual with MDS, the two distances capture slightly distinct aspects of
the time series in what concerns the three distinct scenarios for D. The Canberra distance highlights
the distinct initial transients, while the crossover instants (t ≈ 5 and t ≈ 13) between phases
and the steady state have close characteristics. On the other hand, the Lorentzian distance considers
that the three scenarios have similar topological form, having merely a distinct scale factor.

We test also the EED for the collection of scenarios Si, i = 12, . . . , 20, corresponding to
the combination of three values of the social neighborhood D = {0.025, 0.05, 0.075} and three values
of the hospital capacity Nh = {200, 50, 20}. The average of the cost indices av(Ij), j = 1, . . . , 6,
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for 10 independent runs of each scenario, are listed in Table 3. We can also use the MDS to visualize
the information using the Canberra and Lorentzian metrics, dC and dL, that in this case are written as:

dC
si ,sj

=
4

∑
m=1

∣∣u (m, si)− u
(
m, sj

)∣∣
u (m, si) + uj

(
m, sj

) , (5)

dL
si ,sj

=
4

∑
m=1

log
(
1 +

∣∣u (m, si)− u
(
m, sj

)∣∣), (6)

where the vectors ui(m, t), m = 1, . . . , 4, and s = 1, . . . , 90, include the values of the 4 cost indices
for the nine scenarios with 10 runs each. Therefore, in this case each matrix ∆ has dimension 90× 90.

Figure 19. The 3-dimensional multidimensional scaling (MDS) locus, using the Canberra distance (3),
t ∈ {1, . . . , 30}, for D = {0.025, 0.05, 0.075} (N = 500, δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05,
p5 = 0.02, α = 2 and Nh → ∞).

Figure 20. The 3-dimensional MDS locus, using the Lorentzian distance (4), t ∈ {1, . . . , 30},
for D = {0.025, 0.05, 0.075} (N = 500, δ = 0.1, p1 = 0.1, p2 = 0.9, p3 = 0.7, p4 = 0.05, p5 = 0.02,
α = 2 and Nh → ∞).
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Table 3. Numerical values of the EED parameters for scenarios Si, i = 12, . . . , 20, and the average of
the cost indices av(Ij), j = 1, . . . , 4, for 10 independent runs.

Scenario N D δ p1 p2 p3 p4 p5 Nh α τ av(I1) av(I2) av(I3) av(I4)

S12 200 0.025 0.1 0.1 0.9 0.7 0.05 0.02 200 2 30 0.062 0.150 0.069 0.868
S13 200 0.050 0.1 0.1 0.9 0.7 0.05 0.02 200 2 30 0.191 0.400 0.258 0.545
S14 200 0.075 0.1 0.1 0.9 0.7 0.05 0.02 200 2 30 0.199 0.400 0.416 0.328
S15 200 0.025 0.1 0.1 0.9 0.7 0.05 0.02 50 2 30 0.046 0.100 0.077 0.867
S16 200 0.050 0.1 0.1 0.9 0.7 0.05 0.02 50 2 30 0.063 0.100 0.376 0.467
S17 200 0.075 0.1 0.1 0.9 0.7 0.05 0.02 50 2 30 0.056 0.100 0.504 0.284
S18 200 0.025 0.1 0.1 0.9 0.7 0.05 0.02 20 2 30 0.021 0.040 0.100 0.848
S19 200 0.050 0.1 0.1 0.9 0.7 0.05 0.02 20 2 30 0.027 0.040 0.425 0.411
S20 200 0.075 0.1 0.1 0.9 0.7 0.05 0.02 20 2 30 0.023 0.040 0.531 0.271

Figures 21 and 22 show the MDS loci for q = 3 and the Canberra (5) and Lorentzian (6), respectively.
The loci reveal clearly that the pairs of scenarios {S12,S15}, {S16,S17} and {S19,S20} have some
similarities. On the other hand, the scenarios S13, S14 and S18 have, each one, a very distinct behavior.
These results show that the combination of the parameters D and Nh are of utmost importance.

Figure 21. The 3-dimensional MDS locus, using the Canberra distance (5), for 10 runs of each scenario
Si, i = 12, . . . , 20, with performance captured by the cost indices Ij, j = 1, . . . , 4.
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Figure 22. The 3-dimensional MDS locus, using the Lorentzian distance (6), for 10 runs of each scenario
Si, i = 12, . . . , 20, with performance captured by the cost indices Ij, j = 1, . . . , 4.

6. Conclusions

This paper presented an EA that simulates the propagation of a virus infection in a SW. The EED
includes a limited number of variables and parameters, but characterizes a large number of possible
scenarios and allows a fast computational simulation. In fact, the extension of the EED to include
additional factors present in the real world is reasonably straightforward, but the limitation of
the EED complexity follows the usual strategy of developing EA with focus on the most important
variables and parameters. Several scenarios were tested and the results follow the common intuition
about the diffusion of infectious diseases. The system, involving several variables and parameters,
was assessed by several tools and performance indices. The MDS technique proved to be a valuable tool
to condense the multidimensional nature of the information. In fact, this technique takes also advantage
of present day computational resources and allows unraveling patterns embedded in complex data
and tracing conclusions that otherwise would require laborious schemes to highlight the main
conclusions. In summary, the EED represents a valuable computational tool for the development of
strategies for simulating, controlling and foreseeing future results of virus outbreaks.
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