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Abstract: Queueing systems with random resource requirements, in which an arriving customer,
in addition to a server, demands a random amount of resources from a shared resource pool,
have proved useful to analyze wireless communication networks. The stationary distributions of
such queuing systems are expressed in terms of truncated convolution powers of the cumulative
distribution function of the resource requirements. Discretization of the cumulative distribution
function and the application of the fast Fourier transform are a traditional way of calculating
convolutions. We suggest finding truncated convolution powers of the cumulative distribution
functions by calculating the convolution powers of the truncated cumulative distribution functions
via fast Fourier transform. This radically decreases computational complexity. We introduce the
concept of resource load and investigate the accuracy of the proposed method at low and high
resource loads. It is shown that the proposed method makes it possible to quickly and accurately
calculate truncated convolution powers required for the analysis of queuing systems with random
resource requirements.
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1. Introduction

When queuing theory is applied to modeling modern information technology systems, one should
take into account various system’s features, such as the reliability of a radio channel in wireless
communication networks. The latest models from references [1,2] are widely used for the analysis of
such networks. In these models, the analytical solution is often cumbersome or difficult to solve and
there is a need for approximate [3] or special [4] computational algorithms.

Resource queuing systems, in which an arriving customer, in addition to a server, demands a
random amount of resources from a shared resource pool, have proved useful to analyze wireless
communication networks. The steady state distributions of such systems are expressed in terms
of truncated convolution powers of the cumulative distribution function (CDF) of the resource
requirement. The problem of calculating convolution powers of a CDF arises in solving many problems
of queuing theory. Its solution is facilitated if the Laplace–Stieltjes transform (LST) of the CDF is known.
In this case, the convolution can be found using tables [5,6], or by numerically reversing the LST [7,8].
The method of numerical transform inversion can be successfully applied for the analysis of some
resource queueing systems with discrete CDF of resource requirements, such as product-form loss
networks [9–11].
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In practice, the need often arises for calculating convolutions of an exotic continuous CDF
with unknown LST [12–14]. An alternative method in such cases is the numerical calculation of
convolutions by discretization of the initial distribution functions and then using the discrete Fourier
transform (DFT) [15]. When computing convolutions numerically, it is convenient to choose some
discretization interval τ and to approximate the CDF of a continuous nonnegative random variable
using its values at 0, τ, 2τ, 3τ, .... Ackroyd et al. [16,17] used two very simple approximations
F1(x) = G

([
x
τ

]
τ
)

and F2(x) = G
([

x
τ

]
τ+ τ

)
, where [x] denotes the integral part of x, thus putting upper

and lower bounds on CDF G(x). In reference [17] it was shown that the n-fold convolutions of
these approximations always satisfy the inequalities F(n)

1 (x) ≤ G(n)(x) ≤ F(n)
2 (x). A more accurate

approximation, F3(x) = G
([

x
τ

]
τ+ 0.5τ

)
, was used in reference [18] to compute the CDF of stationary

waiting time in a single server queue with general inter-arrival and service time distributions by
means of the fast Fourier transform (FFT). An algorithm for computing the high-order convolution
of CDFs representable as the mixture of continuous and discrete components was proposed in
reference [19]. Schaller and Temnov [20] analyze an error in the quintile function of the n-fold
convolution and applied FFT for the convolution of heavy-tailed distributions. A general-purpose
efficient and precise algorithm based on FFT for convolution of two CDFs is considered in reference [21].
In insurance mathematics, recursive schemes to compute compound distributions have been in
use for a long time [22]. A comparison of recursion schemes and algorithms based on FFT can be
found in references [20,23,24]. Errors of compound distributions computations are investigated in
references [25,26].

For a wide range of Markovian resource queueing systems, the stationary distribution of the
total amount of occupied resources is given by a truncated compound distribution [27]. In order
to obtain the stationary distribution for a resource queueing system of capacity L it is necessary to
compute L truncated convolution powers of the resource requirement CDF. The existing computational
methods [28,29] calculate some performance metrics for the resource systems but not the entire
stationary distribution. In this paper we develop an algorithm for the computation of sequences of
truncated convolution powers of continuous CDF and truncated compound distributions via FFT.
Instead of truncation of convolution powers we calculate convolution powers of truncated CDFs,
which radically decreases computational complexity. We also propose a new approximation of
continuous CDF by arithmetic CDF and compare it with F3(x). In the next section we describe a class of
Markovian resource queuing systems to which the results of this paper are applicable. The computation
method is detailed in Section 3. Section 4 presents several numerical experiments, in which we compute
series of truncated convolutions and analyze the accuracy of the proposed method. The results are
discussed in Section 5.

In the remainder of the paper we adopt the following notation: R+ denotes the set of nonnegative
real numbers, G∗n(x) denotes the n-fold convolution of CDF G(x), a ∗ b denotes the convolution of
sequences a = (ai) and b = (bi), and δi, j = 1 if i = j and δi, j = 0 otherwise.

2. Markovian Resource Queueing Systems

Consider a queuing system that can be described by a process X(t) with a finite state space X,
whose paths are continuous on the right and have limits on the left. Customers arrive and leave the
system one by one. We use 0 < a1 < a2 < . . . to denote the arrival times and 0 < d1 < d2 < . . . to
denote the departure times. We assume that the process X(t) describes the system so that for any of
its states i ∈ X it is possible to determine the number ν(i) of customers in the system. We denote the
maximum number of customers in the system by L and split the state space X into disjoint subsets
Xk =

{
i ∈ X

∣∣∣ν(i) = k
}
, k = 0, 1, . . . , L.

In a resource queuing system, an arriving customer requires a certain amount of resources.
V denotes the maximum amount of the resource and rn the resource quantities requested
by n-th customer. Information about resources occupied at time t is stored as the vector
s(t) = (s1(t), s2(t), . . . , sk(t)) of the length k = ν(X(t)), where si(t) is the amount of resource occupied
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by the customer with the number i. The customer arriving at time a j is admitted to the system
only if ν

(
a j − 0

)
< L and the requested resource quantity can be provided, i.e., if σ(a j − 0) + r j ≤ V,

where σ(t) = s1(t) + s2(t) + . . .+ sk(t) is the total amount of resources occupied at time t.
All customers in the system are numbered. If the system accepts the customer arriving at an, it will

be assigned a number ϕn from the interval 1 ≤ ϕn ≤ ν(X(an − 0)) + 1. The numbers ϕn, ϕn + 1, . . . , k,
assigned to the customers before an, will be increased by one. If, at the service completion time dn,
the system leaves the customer with a number ψn, the numbers ψn + 1, ψn + 2, . . . , ν(X(dn − 0)),
assigned to the customers before dn, will be reduced by one. For example, in the “First In
First Out” service discipline, the numbers of incoming and serviced customers are determined
by ϕn = ν(X(an − 0)) + 1 and ψn = 1, and for the “Last In First Out” service discipline, we have
ϕn = ν(X(an − 0)) + 1 and ψn = ν(X(dn − 0)).

We assume that the process Y(t) = (X(t), s(t)) is a homogeneous Markov jump process with a state
space Y =

{
(i, x)

∣∣∣i ∈ X, x ∈ Sv(i)

}
, with sk =

{
(x1, x2, ..., xk) ∈ Rk

+

∣∣∣x1 + x2 + ... + xk ≤ V
}
. The sojourn time

in each state (i, x) has an exponential distribution with a parameter depending only on the state i of the
system. Additionally, the vector of occupied resources s(t) can change only upon customer arrivals
and departures. With pi, i ∈ X we denote the stationary probabilities of the system states in the case of
unlimited resources. For the Markovian resource queueing systems considered here, probabilities pi
yield a solution to the steady-state equations with a block tri-diagonal generator [27].

3. A Method for Computing the Stationary Distribution

Consider the stationary probabilities of the process Y(t),

Pi = lim
t→∞

P
{
X(t) = i

}
, i ∈ X0, Pi(x) = lim

t→∞
P
{
X(t) = i, s(t) ≤ x

}
, i ∈ Xk, X ∈ Sk, 0 < k ≤ L. (1)

For a wide range of resource queueing systems described in Section 1, the stationary distribution
of Y(t) has the product form:

Pi = cpi, i ∈ X0, Pi(x1, . . . , xk) = cpiG(x1) · · ·G(xk), i ∈ Xk, (x1, .., xk) ∈ Sk, 0 < k ≤ L. (2)

where G(x) is the CDF of the customer resource requirements and c is the normalizing constant:

c =

 L∑
k=0

∑
i∈Xk

piG∗k(V)


−1

(3)

Necessary and sufficient conditions for the product-form (Equation (2)) of the stationary
distribution (Equation (1)) can be found in reference [27].

It follows from Equation (2) that the stationary distribution

Q(x) = lim
t→∞

P
{
σ(t) ≤ x

}
, 0 ≤ x ≤ V

of the total amount of occupied resources is given by the truncated compound distribution:

Q(x) = c
L∑

k=0

qkG∗k(x), 0 ≤ x ≤ V

where
qk =

∑
i∈Xk

pi, 0 ≤ k ≤ L

is the stationary distribution of the number of customers in the system.
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In order to find the stationary distribution (Equations (2) and (3)) of resource queueing systems,
one should compute a series of convolutions G∗n(x), n = 2, 3, . . . , L, in the interval 0 ≤ x ≤ V.
These functions are related by the following recursion formula:

G∗0(x) = 1, G∗n(x) =

x∫
0

G∗(n−1)(x− t)dG(t), n = 1, 2, . . . , L, 0 ≤ x ≤ V. (4)

For computing G∗n(x) we approximate G(x) by some step function F(x) with jumps of size fk
at τk, k = 0, 1, 2, . . . , K, where τK = V. The convolutions F∗n(x) are also step functions and their jumps
f ∗nk at τk are related by the recursion formula:

f ∗0k = δk,0, f ∗nk =
k∑

i=0

f ∗(n−1)
k−i fi, n = 1, 2, . . . , L, 0 ≤ k ≤ K. (5)

Thus, the task of computing approximately the integrals in Equation (4) depends on computing
the convolution powers f ∗n = ( f ∗nk ) of the sequence f = ( fk).

3.1. Computing Convolutions via the Discrete Fourier Transform

The method for computing convolutions by means of the forward and inverse discrete Fourier
transforms (DFT) is well known [15]. Let a = (ai, i = 0, 1, . . . , I), and b = (b j, j = 0, 1, . . . , J) be two
finite sequences. Choose a whole number M > I + J and let A = (Am) and B = (Bm) denote the DFTs
of the sequences a and b over the range from 0 to M− 1:

Am =
I∑

r=0

are2π jmr/M, Bm =

J∑
r=0

bre2π jmr/M, m = 0, 1, . . . , M− 1,

where j =
√
−1. Now the elements ck of the convolution c = a ∗ b are given by the inverse DFT:

ck =
1
M

M−1∑
m=0

AmBme−2π jmk/M, k = 0, 1, . . . , I + J.

3.2. Computing the Truncated Convolutions

The procedure described above allows computing consecutively convolutions (Equation (5)).
This requires the calculation of the DFTs Φ(n) = (Φ(n)

m ) of the convolution f ∗n,

Φ(n)
m =

nK∑
r=0

f ∗nr e2π jmr/Mn , m = 0, 1, . . . , Mn − 1,

over the range of length Mn > nK, which increases with n.
Equation (5) can be quickened further in the following way. Note that there is no need to calculate

the values of f ∗nk for k > K since they are not present in Equations (4) and (5). For any given sequence
a = (a0, a1, . . . , aw) of length w ≥ K, let Tr(a) = (a0, a1, . . . , aK) denote the sequence of its first K + 1
members. Obviously, probabilities of Equation (2) will remain unchanged if we replace f ∗n with their
truncations g(n) = Tr( f ∗n) in Equations (2) and (3). It follows from Equation (5) that the truncated
sequences g(n) satisfy the recursion relation:

g(1) = Tr( f ), g(n) = Tr(g(n−1)
∗ g(1)), n = 2, 3, . . . , L. (6)
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There are two options for calculating truncated convolution powers f ∗n, n = 2, 3, . . . , L: calculation
of convolution powers using the recursion of Equation (5) with their subsequent truncation, and the
calculation of the truncated convolution powers using the recursion of Equation (6). In the first case
the forward and inverse DFTs deal with sequences with length Mn > nK, n = 2, 3, . . . , L, while in the
second case DFTs deal with sequences of equal size M2. For large L it radically decreases computational
time because the total length (L − 1)M2 of sequences g(n), n = 2, 3, . . . , L, is much smaller than the total
length M2 + M3 + . . .+ ML of sequences f ∗n, n = 2, 3, . . . , L. Computation time of sequences g(n) can
be substantially reduced further using FFT with M2 set equal to a power of 2 [15], for example:

M2 = 2m,m = 1 + [log2(1 + K)]. (7)

3.3. Computing the Stationary Distribution

From the above it follows that one can compute the stationary distribution of a resource queueing
system via FFT in the following steps:

1. Choose a whole number K and a discretization step size τ = V/K.
2. Choose a step function F(x) with jumps of size fk at τk, k = 0, 1, . . . , K that would approximate

CDF G(x).
3. Apply FFT and compute the sequences g(n) = ( f ∗n0 , f ∗n1 , . . . , f ∗nK ), n = 2, 3, . . . , L. using formulae (6).

4. Define the functions

F∗n(x) =
[ x
τ ]∑

k=0

f ∗nk , 0 ≤ x ≤ V, n = 2, 3, . . . , L.

5. Obtain the stationary state probabilities pi, i ∈ X, of the system with unlimited resources.
6. Use distribution pi, i ∈ X, and the approximations G∗n(x) ≈ F∗n(x) given by Equations (2) and (4)

to compute the stationary distribution of the system with limited resources.

4. Numerical Examples

To approximate the resource requirement CDF G(x), it is convenient to use one of the previously
mentioned functions (see Figure 1):

F1(x) = G
([x
τ

]
τ
)
, F2(x) = G

([x
τ

]
τ+ τ

)
, F3(x) = G

([x
τ

]
τ+ 0.5τ

)
, 0 ≤ x < V.

We use F3(x) because it approximates G(x) closer than F1(x) and F2(x). We also consider a
new approximation:

F4(x) = 1
4τ (G(kτ) + 2G((k + 0.5)τ) + G((k + 1)τ)), kτ ≤ x < (k + 1)τ, k = 0, 1, . . . , K − 1 , F4(V) = G(V),

which, in the interval kτ ≤ x < (k + 1)τ, equals the average value of G(x) obtained approximately
using the trapezoidal rule [30]:

1
τ

(k+1)τ∫
kτ

G(t)dt ≈
1

4τ
(G(kτ) + 2G((k + 0.5)τ) + G((k + 1)τ)).

The plot of F4(x) is similar to F3(x) and, therefore, not shown in Figure 1.
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Figure 1. The resource requirement cumulative distribution function (CDF) G(x) (solid line) and its
approximations: (a) dashed line –F1(x), dotted line –F2(x); (b) dotted line –F3(x).

To verify the accuracy of the proposed method, it is necessary to compare the obtained
approximate values of truncated convolution powers with their exact values G∗n(x), 0 ≤ x < V.
The gamma distribution

Γα,β(x) =
1

Γ(α)

βx∫
0

e−ttα−1dt,

is well suited for these purposes because it has a useful property facilitating computation of exact
values of convolution powers:

Γ∗nα,β(x) = Γnα,β(x).

We compare the exact values of G∗n(x) = Γ∗nα,β(x) with their approximations F∗n3 (x) and F∗n4 (x)
obtained using the method proposed in Section 3.2. The gamma distribution was calculated via
the incog procedure from reference [31], and the convolutions were found via FFT using the ffako
procedure from reference [32].

Now we consider the case where the total amount of system resources V = 100 and the interval
[0, V] is divided into K = 105 subintervals. Figure 2 shows the approximation errors

ε
(n)
i = max

1≤k≤K

∣∣∣∣∣G∗n(kτ) − F∗ni (kτ)
∣∣∣∣∣, i = 3, 4,

as functions of n for various values of the mean m = α/β and the square of the coefficient of variation
s = 1/α of the resource requirements. The time needed to compute the series of truncated convolutions
of length 250 on a PC with an Intel i5-7200 2.5 GHz processor did not exceed 20 min. For s < 1,
the approximation errors ε(n)3 and ε

(n)
4 were under 0.0001 and the difference between them was

negligible. Therefore, only results for s > 1 are shown in Figure 2. Computational errors grew with the
coefficient of variation and have maximum value mainly for small n. Table 1 shows the maximum
computational errors for the cases depicted in Figure 2.



Mathematics 2020, 8, 772 7 of 9

Mathematics 2020, 8, x 7 of 10 

We compare the exact values of ,
( ) ( )n nG x x

 
 =   with their approximations 3

( )nF x  and 

4
( )nF x  obtained using the method proposed in Section 3.2. The gamma distribution was calculated 

via the incog procedure from reference [31], and the convolutions were found via FFT using the 

ffako procedure from reference [32]. 

Now we consider the case where the total amount of system resources 100V =  and the interval 

[0, ]V  is divided into 510K =  subintervals. Figure 2 shows the approximation errors 

( ) *

1
max | ( ) ( ) |

n n n
ii

k K
G k F k  

 
= − ,   i = 3,4,  

as functions of n  for various values of the mean m  =  and the square of the coefficient of 

variation 1s =  of the resource requirements. The time needed to compute the series of truncated 

convolutions of length 250 on a PC with an Intel i5-7200 2.5 GHz processor did not exceed 20 min. 

For s < 1, the approximation errors 
( )
3
n

  and 
( )
4
n

  were under 0.0001 and the difference between 

them was negligible. Therefore, only results for s > 1 are shown in Figure 2. Computational errors 

grew with the coefficient of variation and have maximum value mainly for small .n  Table 1 shows 

the maximum computational errors for the cases depicted in Figure 2. 

 

Figure 2. The approximation errors 
( )
3
n

  (solid lines) and 
( )
4
n

  (dashed lines) as functions of n : (a) 

0.5,  s 1.5m= = ; (b) 0.5,  2.0m s= = ; (c) 0.5,  3.0m s= = ; (d) 1.0,  1.5m s= = ; (e) 1.0,  2.0m s= = ; (f) 

1.0,  3.0m s= = ; (g) 2.0,  1.5m s= = ; (h) 2.0,  2.0m s= = ; (i) 2.0,  3.0m s= = . 

Figure 2. The approximation errors ε(n)3 (solid lines) and ε
(n)
4 (dashed lines) as functions of n:

(a) m = 0.5, s = 1.5; (b) m = 0.5, s = 2.0; (c) m = 0.5, s = 3.0; (d) m = 1.0, s = 1.5; (e) m = 1.0, s = 2.0;
(f) m = 1.0, s = 3.0; (g) m = 2.0, s = 1.5; (h) m = 2.0, s = 2.0; (i) m = 2.0, s = 3.0.

Table 1. Maximum computational errors when calculating the convolutions for s = 3.

m n = 2 n = 3 n = 4 n = 5

ε
(n)
3

0.5 0.006027 0.000468 0.000196 0.000154

1 0.003797 0.000234 0.000097 0.000076

2 0.002392 0.000117 0.000048 0.000037

ε
(n)
4

0.5 0.004003 0.000275 0.000165 0.000126

1 0.002522 0.000142 0.000084 0.000065

2 0.001589 0.000073 0.000043 0.000033

5. Discussion

The levels of light and heavy load in resource queueing systems can vary significantly since they
depend on specific for these systems performance metrics. When speaking of resource load, we refer to:

Rn =
mn
V

,

which allows estimation of the extent to which the system’s resources suffice when it contains
n customers. The resource load grows with n. For any given resource load R the corresponding
maximum system capacity under which the resource load does not exceed R is given by L = R V

m .
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In the plots of Figure 2, three ranges of n can be clearly distinguished: those of light, moderate,
and heavy resource load. Light and high load areas are the areas at the beginning and the end of the
n axis respectively, where the approximation error rapidly decreases. The light load area is the area
with poorest computational accuracy, especially if the variance of the resource requirements is large
(see Table 1). Apparently, this is because for Rn > 1 the values of G∗n(x) and F∗ni (x) in the interval
[0, V] approach 0 as n grows large. In the range of moderate resource load, which is located between
light and high load areas, the computational accuracy is mostly high, although it may decrease when
approaching the heavy load area. The proposed discretization technique via function F4(x) yields
better or similar results as via function F3(x). All in all, FFT permits computing long series of truncated
convolution powers with sufficient accuracy.
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