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Abstract: Predicting pillar stability is a vital task in hard rock mines as pillar instability can cause
large-scale collapse hazards. However, it is challenging because the pillar stability is affected by
many factors. With the accumulation of pillar stability cases, machine learning (ML) has shown great
potential to predict pillar stability. This study aims to predict hard rock pillar stability using gradient
boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting
machine (LightGBM) algorithms. First, 236 cases with five indicators were collected from seven
hard rock mines. Afterwards, the hyperparameters of each model were tuned using a five-fold cross
validation (CV) approach. Based on the optimal hyperparameters configuration, prediction models
were constructed using training set (70% of the data). Finally, the test set (30% of the data) was adopted
to evaluate the performance of each model. The precision, recall, and F1 indexes were utilized to
analyze prediction results of each level, and the accuracy and their macro average values were used to
assess the overall prediction performance. Based on the sensitivity analysis of indicators, the relative
importance of each indicator was obtained. In addition, the safety factor approach and other ML
algorithms were adopted as comparisons. The results showed that GBDT, XGBoost, and LightGBM
algorithms achieved a better comprehensive performance, and their prediction accuracies were 0.8310,
0.8310, and 0.8169, respectively. The average pillar stress and ratio of pillar width to pillar height
had the most important influences on prediction results. The proposed methodology can provide a
reliable reference for pillar design and stability risk management.

Keywords: pillar stability; hard rock; prediction; gradient boosting decision tree (GBDT); extreme
gradient boosting (XGBoost); light gradient boosting machine (LightGBM)

1. Introduction

Pillars are essential structural units to ensure mining safety in underground hard rock mines.
Their functions are to provide safe access to working areas, and support the weight of overburden
rocks for guaranteeing global stability [1,2]. Instable pillars can cause large-scale catastrophic collapse,
and significantly increase safety hazards of workers [3]. If a pillar fails, the adjacent pillars have to bear
a larger load. The increased load may exceed the strength of adjacent pillars, and lead to their failure.
Like the domino effect, rapid and large-scale collapse can be induced [4]. In addition, with the increase
of mining depth, the ground stress is larger and pillar instability accidents become more frequent [5–7].
Accordingly, determining pillar stability is essential for achieving safe and efficient mining.

In general, there are three types of methods to determine pillar stability in hard rock mines.
The first one is the safety factor approach. The safety factor indicates the ratio of pillar strength to
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stress [8]. Using this method, three parts, namely, pillar strength, pillar stress, and safety threshold,
should be determined. For the calculation of pillar strength, many empirical methods have been
proposed, such as the linear shape effect, power shape effect, size effect, and Hoek–Brown formulas [9].
For the determination of pillar stress, tributary area theory, and numerical modeling technology are
the main approaches [10]. Based on the pillar strength and stress, the safety factor can be calculated. A
larger safety factor means the pillar is more stable. Theoretically, the safety threshold is assigned as 1.
If the safety factor is larger than 1, the pillar is stable, otherwise it is unstable [11]. Considering the
possible deviations of this method, the safety threshold is generally larger than 1 to ensure safety in
practice. Although the safety factor method is simple, the unified pillar strength formula and safety
threshold are still not determined.

The second one is the numerical simulation technique. Numerical simulation methods have been
widely used because the complicated boundary conditions and rock mass properties can be considered.
Mortazavi et al. [12] adopted fast Lagrangian analysis of continua (FLAC) approach to study the failure
process and non-linear behavior of rock pillars; Shnorhokian et al. [13] used FLAC3D to assess the pillar
stability based on different mining sequence scenarios; Elmo and Stead [14] integrated finite element
method (FEM) and discrete element method (DEM) to investigate the failure characteristics of naturally
fractured pillars; Li et al. [15] used rock failure process analysis (RFPA) to evaluate the pillar stability
under coupled thermo-hydrologic-mechanical conditions; Jaiswal et al. [16] utilized boundary element
method (BEM) to simulate asymmetry in the induced stresses over pillars; and Li et al. [17] introduced
finite-discrete element method (FDEM) to analyze the mechanical behavior and failure mechanisms
of the pillar. In addition, some scholars combined numerical simulation and other mathematical
models to study pillar stability. Deng et al. [18] used FEM, neural networks, and reliability analysis to
optimize pillar design; and Griffiths et al. [19] adopted random field theory, elastoplastic finite element
algorithm and Monte-Carlo approach to analyze pillar failure probability. Using numerical simulation
techniques, the complex failure behaviors of pillars can be modeled and the failure process and range
can be obtained. However, because of the complicated nonlinear characteristics and anisotropic nature
of rock mass, the model inputs and constitutive equations are not easy to be accurately determined [20].
Therefore, the reliability of results obtained by this method is limited.

The third one is the machine learning (ML) algorithm. Big data has been proved to be useful for
managing emergencies and disasters [21]. With the accumulation of pillar stability cases, it provides
researchers the opportunity to develop advanced predictive models using ML algorithms. Tawadrous
and Katsabanis [22] used the artificial neural networks (ANN) to analyze the stability of surface
crown pillars; Wattimena [23] introduced the multinomial logistic regression (MLR) for pillar stability
prediction; Ding et al. [24] adopted a stochastic gradient boosting (SGB) model to predict pillar stability,
and found that this model achieved a better performance than the random forest (RF), support vector
machine (SVM), and multilayer perceptron neural networks (MPNN); Ghasemi et al. [25] utilized J48
algorithm and SVM to develop two pillar stability graphs, and obtained acceptable prediction accuracy;
and Zhou et al. [9] compared the prediction performance of pillar stability using six supervised learning
methods, and revealed that SVM and RF performed better. Although these ML algorithms can solve
pillar stability prediction issues to some extent, none can be applied to all engineering conditions. To
date, there is not a uniform algorithm under the consensus of the mining industry.

Compared with traditional safety factor and numerical simulation methods, ML approach can
deeply find implicit relationships between variables, and well handle nonlinear problems. Therefore,
it is a promising method for predicting pillar stability. In addition to these above ML algorithms,
the gradient boosting decision tree (GBDT) method has shown great prediction performances in many
fields [26–28]. As one of the ensemble learning algorithms, it integrates multiple decision trees (DTs)
into a strong classifier using the boosting approach [29]. DTs refer to a ML method using tree-like
structure, which can deal with various types of data and trace every path to the prediction results [30].
However, DTs are easy to overfit and sensitive to noises of the dataset. Through the integration of DTs,
the overall prediction performances of GBDT become better because the errors of DTs are compensated
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by each other. Under the framework of GBDT, extreme gradient boosting (XGBoost) [31] and light
gradient boosting machine (LightGBM) [32] have been proposed recently. They have also received
wide attentions because of their excellent performances. Particularly, these three algorithms work well
with small datasets. Additionally, overfitting, which means the model fits the existing data too exactly
but fails to predict the future data reliably, can be avoided to some extent [30]. However, to the best
of our knowledge, GBDT, XGBoost, and LightGBM algorithms have not been used to predict pillar
stability in hard rock mines.

The objective of this study is to predict hard rock pillar stability using GBDT, XGBoost,
and LightGBM algorithms. First, pillar stability cases are collected from seven hard rock mines.
Next, these three algorithms are applied to predict pillar stability. Finally, their comprehensive
performances are analyzed and compared with the safety factor approach and other ML algorithms.

2. Data Acquisition

The existing hard rock pillar cases are obtained as supportive data for the establishment of
prediction model. In this study, 236 samples were collected from seven underground hard rock
mines [8,10,33]. These mines include the Elliot Lake uranium mine, Selebi-Phikwe mine, Open stope
mine, Zinkgruvan mine, Westmin Resources Ltd.’s H-W mine, Marble mine, and Stone mine. The pillar
stability data is shown in Table 1 (the complete database is available in Table S1), where A1 indicates
the pillar width, A2 indicates the pillar height, A3 indicates the ratio of pillar width to pillar height,
A4 indicates the uniaxial compressive strength, and A5 indicates the average pillar stress.

Table 1. Pillar stability data.

Samples A1 (m) A2 (m) A3 A4 (MPa) A5 (MPa) Level

1 5.9 4 1.48 172 49.6 Stable
2 7.2 4 1.8 172 56.7 Stable
3 7.8 4 1.95 172 99.9 Unstable
. . . . . . . . . . . . . . . . . . . . .

234 14.25 18 0.79 104 5.33 Unstable
235 13 17 0.76 104 16.67 Stable
236 7.75 11 0.70 104 4.57 Unstable

From Table 1, it can be seen that each sample contains five indicators and the level of pillar stability.
These five indicators have been widely used in a large amount of literature [9,10,24,33]. The advantages
are two-fold: (1) They can reflect the necessary conditions of pillar stability, such as pillar size, strength,
and load; (2) their values are relatively easy to be obtained. The descriptive statistics of each indicator
are listed in Table 2. Besides, according to the instability mechanism and failure process of pillars,
the level of pillar stability is divided into three types: stable, instable, and failed. Among them,
the stable level indicates that the pillar shows no sign of stress induced fracturing, or only has minor
spallings which do not affect pillar stability; the instable level indicates that the pillar is partially failed,
and has prominent spallings, but still possesses a certain supporting capacity; the failed level indicates
that the pillar is crushed, and has pronounced openings of joints, which shows a great collapse risk.
The distribution of these three pillar stability levels is described in Figure 1.

Table 2. Descriptive statistics of each indicator.

Samples A1 (m) A2 (m) A3 A4 (MPa) A5 (MPa)

Minimum 1.90 2.4 0.21 61 0.14
Maximum 45 61 4.50 316 127.60

Mean 11.51 12.58 1.17 141.06 41.50
Standard deviation 7.75 11.34 0.61 64.62 31.42
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to Figure 2, some meaningful characteristics can be found. First, all indicators have several outliers. 
Second, the pillar stability level is negatively correlated with 1A  and 3A (the Pearson correlation 
coefficients are −0.381 and −0.266, respectively), while is positively correlated with 5A (the Pearson 
correlation coefficient is 0.433). However, there are no obvious correlations with 2A  and 4A  (the 
Pearson correlation coefficients are −0.121 and 0.079, respectively). Third, the distances between 
upper and lower quartiles are different for the same indicators in various levels. Fourth, there are 
some overlapping parts for the range of indicator values in different levels. Fifth, as the median is not 
in the center of the box, the distribution of indicator values is asymmetric. All these phenomena 
illustrate the complexity of pillar stability prediction. 
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Figure 1. Distribution of pillar stability levels.

The box plot of each indicator for different pillar stability level is shown in Figure 2. According
to Figure 2, some meaningful characteristics can be found. First, all indicators have several outliers.
Second, the pillar stability level is negatively correlated with A1 and A3(the Pearson correlation
coefficients are −0.381 and −0.266, respectively), while is positively correlated with A5(the Pearson
correlation coefficient is 0.433). However, there are no obvious correlations with A2 and A4 (the Pearson
correlation coefficients are −0.121 and 0.079, respectively). Third, the distances between upper and
lower quartiles are different for the same indicators in various levels. Fourth, there are some overlapping
parts for the range of indicator values in different levels. Fifth, as the median is not in the center of the
box, the distribution of indicator values is asymmetric. All these phenomena illustrate the complexity
of pillar stability prediction.
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Figure 2. Distribution of pillar stability levels.

3. Methodology

3.1. GBDT Algorithm

GBDT is an ensemble ML algorithm using multiple DTs as base learners. Every decision tree (DT)
is not independent, because a new added DT increases emphasis on the misclassified samples attained
by previous DTs [34]. The diagram of GBDT algorithm is shown in Figure 3. It can be noticed that the
residual of former DTs is taken as the input for the next DT. Then, the added DT is used to reduce
residual, so that the loss decreases following the negative gradient direction in each iteration. Finally,
the prediction result is determined based on the sum of results from all DTs.
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Let
{
xi, yi

}m
i=1 indicates the sample data, where xi = (x1i, x2i, · · · , xri) represent the indicators,

and yi denotes the label. The specific steps of GBDT are indicated as follows [35]:
Step 1: The initial constant value γ is obtained as

F0(x) = argmin
γ

m∑
i=1

L(yi,γ) (1)

where L(yi,γ) is the loss function.
Step 2: The residual along the gradient direction is written as

ŷi = −

[
∂L(yi, F(xi))

∂F(xi)

]
f (x)= fn−1(x)

(2)
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where n indicates the number of iterations, and n = 1, 2, · · · , N.
Step 3: The initial model T(xi;αn) is obtained by fitting sample data, and the parameter αn is

calculated based on the least square method as

αn = argmin
α,β

m∑
i=1

(ŷi − βT(xi;α))
2 (3)

Step 4: By minimizing the loss function, the current model weight is expressed as

γn = argmin
γ

m∑
i=1

L(yi, Fn−1(x) + γT(xi;αn)) (4)

Step 5: The model is updated as

Fn(x) = Fn−1(x) + γnT(xi;αn) (5)

This loop is performed until the specified iterations times or the convergence conditions are met.

3.2. XGBoost Algorithm

XGBoost algorithm was proposed by Chen and Guestrin [31] based on the GBDT structure. It has
received widespread attentions because of its excellent performances in Kaggle’s ML competitions [36].
Different from the GBDT, XGBoost introduces the regularization term in the objective function to
prevent overfitting. The objective function is defined as

O =
n∑

i=1

L(yi, F(xi)) +
t∑

k=1

R( fk) + C (6)

where R( fk) denotes the regularization term at the k time iteration, and C is a constant term, which can
be selectively omitted.

The regularization term R( fk) is expressed as

R( fk) = αH +
1
2
η

H∑
j=1

w2
j (7)

where α represents the complexity of leaves, H indicates the number of leaves, η denotes the penalty
parameter, and w j is the output result of each leaf node. In particular, the leaves indicate the predicted
categories following the classification rules, and the leaf node indicates the node of the tree that cannot
be split.

Moreover, as opposed to use the first-order derivative in GBDT, a second-order Taylor series of
objective function is adopted in XGBoost. Suppose the mean square error is used as the loss function,
then the objective function can be derived as

O =
n∑

i=1

[piwq(xi)
+

1
2
(qiw2

q(xi)
)] + αH +

1
2
η

H∑
j=1

w2
j (8)

where q(xi) indicates a function that assigns data points to the corresponding leaves, and gi and hi
denote the first and second derivative of loss function, respectively.

The final loss value is calculated based on the sum of all loss values. Because samples correspond
to leaf nodes in the DT, the ultimate loss value can be determined by summing the loss values of leaf
nodes. Therefore, the objective function is also expressed as
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O =
T∑

j=1

[P jw j +
1
2
(Q j + η)w2

j ] + αH (9)

where P j =
∑
i∈I j

pi, Q j =
∑
i∈I j

qi, and I j indicates all samples in leaf node j.

To conclude, the optimization of objective function is converted to a problem of determining the
minimum of a quadratic function. In addition, because of the introduction of regularization term,
XGBoost has a better ability to against overfitting.

3.3. LightGBM Algorithm

LightGBM was another algorithm designed by Microsoft Research Asia [32] using GBDT
framework. It aims to improve the computational efficiency, so that the prediction problems with big
data can be solved more effectively. In GBDT algorithm, presorting approach is used to select and split
indicators. Although this method can precisely determine the splitting point, it requires more time
and memory. In LightGBM, the histogram-based algorithm and trees leaf-wise growth strategy with a
maximum depth limit is adopted to increase the training speed and reduce memory consumption.

The histogram-based DT algorithm is shown in Figure 4. It can be seen that the successive
floating-point eigenvalues are discretized into s small bins. After that, these bins are used to construct
the histogram with width s. Once the data is traversed at the first time, the required statistics (sum of
gradients and number of samples in each bin) are accumulated in the histogram. Based on the discrete
value of histogram, the optimal segmentation point can be found [37]. By using this method, the cost
of storage and calculation can be reduced.
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Figure 4. Histogram-based decision tree algorithm.

The level-wise and leaf-wise growth strategies are shown in Figure 5. According to the level-wise
growth strategy, the leaves on the same layer are simultaneously split. It is favorable to optimize with
multiple threads, and control model complexity. However, leaves on same layer are indiscriminately
treated, whereas they have different information gain. Information gain indicates the expected
reduction in entropy caused by splitting the nodes based on attributes, which can be determined by [38]

IG(B, V) = En(B) −
∑

v∈Values(V)

|Bv|

B
En(Bv) (10)

En(B) =
D∑

d=1

−pd log2 pd (11)

where En(B) is the information entropy of the collection B, pd is the ratio of B pertaining to category d,
D is the number of categories, v is the value of attribute V, and Bv is the subset of B for which attribute
has value v.

Actually, many leaves with low information gain are unnecessary to be searched and split, which
increases a great deal of extra memory consumption and causes this method to be ineffective. In
contrast, leaf-wise growth strategy is more efficient because it only split the leaf that has the largest
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information gain on the same layer. Furthermore, considering this strategy may cause trees with high
depth, resulting in overfitting, a maximum depth limitation is adopted during the growth of trees [39].Mathematics 2020, 8, x FOR PEER REVIEW 8 of 18 
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4. Construction of Prediction Model

The construction process of prediction model is shown in Figure 6. First, approximately 70%
and 30% of the original pillar stability data are selected as training and test sets, respectively.
Second, a five-fold cross validation (CV) approach is utilized to tune the model hyperparameters.
Third, using the optimal hyperparameters configuration, the prediction model is fitted based on training
set. Fourth, the test set is adopted to evaluate model performances according to the overall prediction
results and the prediction ability for each stability level. Last, by comparing the comprehensive
performance of these models, the optimal model is determined. If the prediction performance of this
model is acceptable, then it can be adopted for deployment. The entire calculation process is performed
in Python 3.7 based on the scikit-learn [40], XGBoost [41], and LightGBM [42] libraries, respectively.
The hyperparameter optimization process and model evaluation indexes are descripted as follows.
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4.1. Hyperparameter Optimization

Most of ML algorithms contain hyperparameters that need to be tuned. These hyperparameters
should be adjusted based on dataset rather than specifying manually. Generally, the hyperparameters
search methods include grid search, Bayesian optimization, heuristic search and randomized
search [43]. Because the randomized search method is more efficient for simultaneously tuning
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multiple hyperparameters, it is used to recognize the best set of hyperparameters in this study.
In general, K-fold CV approach is utilized for hyperparameters configuration [44]. In our work,
five-fold CV method is used, which is illustrated in Figure 7. The original training set is randomly split
into five equal size subsamples. Among them, a singular subsample is adopted as the validation set,
and the other four subsamples are used as the training sub-set. This procedure is repeated five times
until each subsample is selected as a validation set once. Thereafter, the average accuracy of these five
validation sets is used to determine the optimal hyperparameter values.
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In this study, some critical hyperparameters in GBDT, XGBoost, and LightGBM algorithms are
tuned, as shown in Table 3. The specific meanings of these hyperparameters are also explained
in Table 3. First, the search range of different hyperparameters values is specified. In particular,
for different algorithms, the search range of the same hyperparameters is kept consistent. Further on,
according to the maximum average accuracy, the optimal values for each set of hyperparameters are
obtained, which are indicted in Table 3.

Table 3. Hyperparameters optimization results.

Algorithm Hyperparameters Meanings Search Ranges Optimal Values

GBDC n_estimators Number of trees (1000, 2000) 1200
learning_rate Shrinkage coefficient of each tree (0.01, 0.2) 0.17
max_depth Maximum depth of a tree (10, 100) 20

min_samples_leaf Minimum number of samples
for leaf nodes (2, 11) 7

min_samples_split Minimum number of samples
for nodes split (2, 11) 7

XGBoost n_estimators Number of trees (1000, 2000) 1000
learning_rate Shrinkage coefficient of each tree (0.01, 0.2) 0.2
max_depth Maximum depth of a tree (10, 100) 50

colsample_bytree Subsample ratio of columns for
tree construction (0.1, 1) 1

subsample Subsample ratio of training
samples (0.1, 1) 0.3

LightGBM n_estimators Number of trees (1000, 2000) 1900
learning_rate Shrinkage coefficient of each tree (0.01, 0.2) 0.2
max_depth Maximum depth of a tree (10, 100) 80
num_leaves Number of leaves for each tree (2, 100) 11

4.2. Model Evaluation Indexes

The accuracy, precision, recall and F1 measures have been widely used for the performance
evaluation of ML algorithms [43]. Among them, accuracy indicates the proportion of samples that is
correctly predicted; precision is the ability to accurately predict samples; recall denotes the capability of
correctly predicting as many samples as possible in actual samples; and F1 represents a comprehensive
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metric that measures the performance of both precision and recall. Accordingly, these indexes are
adopted to evaluate model performances in this study. Assume the confusion matrix is expressed as

G =


g11 g12 · · · g1E
g21 g22 · · · g2E

...
...

. . .
...

gE1 gE2 · · · gEE

 (12)

where E is the number of pillar stability levels, gaa represents the number of samples correctly predicted
for level a, and gab denotes the number of samples of level a that are classified to level b.

Based on the confusion matrix, the precision, recall and F1 measure for each pillar stability level
are respectively determined by

Pr =
gaa

E∑
a=1

gab

(13)

Re =
gaa

E∑
b=1

gab

(14)

F1 =
2× Pr×Re

Pr + Re
(15)

To further reflect the overall prediction performance, the accuracy and macro average of precision,
recall and F1 (expressed as macro− Pr, macro−Re and macro− F1, respectively) are calculated as

Accuracy =
1

E∑
a=1

E∑
b=1

gab

E∑
a=1

gaa (16)

macro− Pr = (
E∑

b=1

gaa
E∑

a=1
gab

)/E (17)

macro−Re = (
E∑

a=1

gaa
E∑

b=1
gab

)/E (18)

macro− F1 =
2×macro− Pr×macro−Re

macro− Pr + macro−Re
(19)

5. Results and Analysis

5.1. Overall Prediction Results

The prediction results of GBDT, XGBoost, and LightGBM algorithms were obtained on the test
set. Subsequently, the confusion matrix of each algorithm was determined, as shown in Table 4.
The values on the main diagonal indicated the number of samples correctly predicted. It can be
seen that most samples were accurately classified using these three algorithms. Based on Table 4,
the accuracy, macro − Pr, macro − Re, and macro − F1 were calculated based on Equations (16)–(19),
which were listed in Table 5. According to the results, all these three algorithms had good performances
in predicting the pillar stability of hard rock. Furthermore, the accuracy degrees of GBDT and XGBoost
were largest and up to 0.8310, followed by LightGBM with an accuracy of 0.8169. Although GBDT and
XGBoost possessed the same accuracy, the prediction performances were different. Comparing their
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values of macro − Pr, macro − Re, and macro − F1, GBDT performed better than XGBoost. Therefore,
based on their overall prediction performances, the rank was GBDT > XGBoost > LightGBM.

Table 4. Prediction results of each algorithm.

Predicted

GBDT XGBoost LightGBM

1 2 3 1 2 3 1 2 3

True
1 25 4 1 26 2 2 26 3 1
2 2 12 2 4 10 2 4 11 1
3 1 2 22 1 1 23 2 2 21

Table 5. Overall prediction results of each algorithm.

Accuracy macro−Pr macro−Re macro−F1

GBDT 0.8310 0.8132 0.8211 0.8160
XGBoost 0.8310 0.8199 0.8039 0.8089

LightGBM 0.8169 0.8043 0.7981 0.8004

5.2. Prediction Results of Each Stability

To analyze the prediction performance of algorithms for each stability level, the precision, recall
and F1 indexes were calculated based on Equations (13)–(15), which were shown in Figures 8–10,
respectively. It can be seen that the prediction performance of each algorithm for different stability
level was not the same. For the stable level, GBDT achieved the highest precision value (0.8929) and
the highest F1 value (0.8621); and XGBoost achieved the highest recall value (0.8667). For the instable
level, XGBoost possessed the highest precision value (0.7692); and GBDT possessed the highest recall
value (0.7500) and the highest F1 value (0.7059). For the failed level, LightGBM obtained the highest
precision value (0.9130); and XGBoost obtained the highest recall value (0.9200) and the highest F1

value (0.8846). Moreover, it can be observed that the prediction performance of these algorithms for
failed level was the best, followed by stable level. However, the prediction performance for instable
level was the worst.
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5.3. Relative Importance of Indicators

The relative importance of indicators is a valuable reference for taking reasonable measures
to prevent pillar instability. In this study, the importance degree of each indicator was obtained
using GBDT, XGBoost, and LightGBM algorithms, which was indicated in Figure 11. Based on GBDT
algorithm, the rank of importance degree was A5 > A3 > A1 > A4 > A2. According to XGBoost
algorithm, the rank of importance degree was A5 > A3 > A1 > A4 > A2. Using LightGBM algorithm,
the rank of importance degree was A3 > A5 > A1 > A2 > A4. Therefore, there were two most important
indicators: A5 (average pillar stress) and A3 (ratio of pillar width to pillar height).
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6. Discussions

Although the pillar stability can be well predicted using GBDT, XGBoost, and LightGBM algorithms,
the prediction performance for different instable level was not the same. The reason may be two-fold.
One is that the number of samples for instable level is smaller than other two levels. Another is that
the discrimination boundary of instable level is more uncertain, which would influence the quality
of data. As data-driven approaches, the prediction performances of GBDT, XGBoost, and LightGBM
algorithms are greatly affected by the number and quality of supportive data. Therefore, compared
with other two levels, the prediction performance for instable level was worse.

According to the analysis of indicator importance, A5 and A3 were the most important indicator.
The reason may be that the pillar stability is greatly affected by the external stress conditions and
inherent dimension characteristics. According to the field experience, the spalling phenomenon of
pillar was more common in deep mines because of high stress, and the pillar with small A3 value was
more vulnerable to be damaged. Based on the importance degrees of indicators, some measures can
be adopted to improve pillar stability from two directions. One is reducing pillar stress, such as the
adjustment of excavation sequence and relief of pressure [32]. Another is optimizing pillar parameters,
such as the increase of pillar width and ratio of pillar width to pillar height.

To further illustrate the effectiveness of GBDT, XGBoost, and LightGBM algorithms, the safety
factor approach and other ML algorithms were adopted as comparisons.

First, the safety factor approach was used to determine pillar stability. According to the research
of Esterhuizen et al. [33], the pillar strength can be calculated by

S = 0.65×A4 ×
A1

0.30

A20.59 (20)

Based on Equation (20) and the given pillar stress, the safety factor can be determined by
their quotient. From the work of Lunder and Pakalnis [45], when η > 1.4, the pillar was stable;
when 1 < η < 1.4, the pillar was unstable; and when η < 1, the pillar was failed. According to this
discrimination method, the prediction accuracy was 0.6610. From the work of González-Nicieza et al. [8],
when η > 1.25, the pillar was stable; when 0.90 < η < 1.25, the pillar was unstable; and when η < 0.90,
the pillar was failed. Base on this classification method, the prediction accuracy was 0.6398. Therefore,
the prediction accuracy of safety factor approach was lower than that of the proposed methodology.
It can be inferred that this empirical method has difficulty in obtaining satisfactory prediction results
on these pillar samples.

On the other hand, some ML algorithms, such as RF, adaptive boosting (AdaBoost), MLR, Gaussian
naive Bayes (GNB), Gaussian processes (GP), DT, MLPNN, SVM, and k-nearest neighbor (KNN),
were adopted to predict pillar stability. First, some key hyperparameters in these algorithms were
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tuned, and the optimization results were listed in Table 6. Afterwards, these algorithms with optimal
hyperparameters were used to predict pillar stability based on the same dataset. The accuracy of each
algorithm was shown in Figure 12. It can be seen that the accuracies of these algorithms were all lower
than those of GBDT, XGBoost, and LightGBM algorithms. The accuracies of most algorithms (except
for GP) were lower than 0.8, whereas the accuracies of GBDT, XGBoost, and LightGBM algorithms
were all higher than 0.8. It demonstrated that compared with other ML algorithms, GBDT, XGBoost,
and LightGBM algorithms were better for predicting pillar stability in hard rock mines.

Table 6. Hyperparameters optimization of comparison algorithms.

Algorithm Hyperparameters Meanings Search Range Optimal Values

RF n_estimators Number of trees (1000, 2000) 1100

min_samples_split Minimum number of
samples for nodes split (2, 11) 4

max_depth Maximum depth of a tree (10, 100) 20

min_samples_leaf Minimum number of
samples for leaf nodes (2, 11) 2

AdaBoost n_estimators Number of trees (1000, 2000) 1200

learning_rate Shrinkage coefficient of each
tree (0.01, 0.2) 0.01

LR penalty Norm used in the
penalization {l1, l2} l2

C1
Inverse of regularization

strength (0.1, 10) 1.0

GNB

GP a Parameter of radial basis
function (a ∗RBF(b)) (0.1, 2.0) 0.9

b Parameter of radial basis
function (a ∗RBF(b)) (0.1, 2.0) 0.3

DT min_samples_split Minimum number of
samples for nodes split (2, 11) 4

max_depth Maximum depth of a tree (10, 100) 80

min_samples_leaf Minimum number of
samples for leaf nodes (2, 11) 4

MLPNN hidden_layer_sizes Number of neurons in the
hidden layer (10, 100) 87

learning_rate_init Initial learning rate for
weight updates (0.0001,0.002) 0.0019

SVM C2 Regularization parameter (0.1, 10) 1.2
KNN n_neighbors Number of neighbors (1, 20) 3
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Although the proposed approach obtains desirable prediction results, some limitations should be
addressed in the future.

(1) The dataset is relatively small and unbalanced. The prediction performance of ML algorithms
is heavily affected by the number and quality of dataset. Generally, if the dataset is small,
the generalization and reliability of model would be influenced. Although GBDT, XGBoost,
and LightGBM algorithms work well with small datasets, the prediction performances could be
better on a larger dataset. In addition, the dataset is unbalanced, particularly for samples with
instable level. Compared with other levels, the prediction performance for the instable level
is not good. This illustrates the adverse effects of imbalanced data on results. Therefore, it is
meaningful to establish a larger and more balanced pillar stability database.

(2) Other indicators may also have influences on the prediction results. Pillar stability is affected by
numerous factors, including the inherent characteristics and external environments. Although
the five indictors adopted in this study can describe the necessary conditions of pillar stability
to some extent, some other indicators may also have effects on pillar stability, such as joints,
underground water, and blasting disturbance. Theoretically, the joints and underground water can
affect the pillar strength, and blasting disturbance can be deemed as a dynamic stress on the pillar.
Accordingly, it is significant to analyze the influences of these indicators on the prediction results.

7. Conclusions

To ensure mining safety, pillar stability prediction is a crucial task in underground hard rock
mines. This study investigated the performance of GBDT, XGBoost, and LightGBM algorithms for
pillar stability prediction. The prediction models were constructed based on training set (165 cases)
after their hyperparameters were tuned using the five-fold CV method. The test set (71 cases) were
adopted to validate the feasibility of trained models. Overall, the performances of GBDT, XGBoost,
and LightGBM were acceptable, and their prediction accuracies were 0.8310, 0.8310, and 0.8169,
respectively. By comprehensively analyzing the accuracy and macro average of precision, recall and
F1, the rank of overall prediction performance was GBDT > XGBoost > LightGBM. According to
the precision, recall and F1 of each stability level, the prediction performance for stable and failed
levels was better than that for instable level. Based on the importance scores of indicators from these
three algorithms, the average pillar stress and ratio of pillar width to pillar height were the most
influential indicators on the prediction results. Compared with the safety factor approach and other
ML algorithms (RF, AdaBoost, LR, GNB, GP, DT, MLPNN, SVM, and KNN), the performances of
GBDT, XGBoost, and LightGBM were better, which further verified that they were reliable and effective
for the pillar stability prediction.

In the future, a larger and more balanced pillar stability database can be established to further
illustrate the adequacy of these algorithms for the prediction of stable, instable, and failed pillar
levels. The influences of other indicators on the prediction results are essential to be analyzed.
The methodology can also be applied in other fields, such as the risk prediction of landslide, debris
flow, and rockburst.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/5/765/s1,
Table S1: Pillar stability cases database.
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