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Abstract: Resources planning is an important task in a supply chain in order to achieve a good result.
The better the utilization of resources, especially scarce resources, the better the performance of a
supply chain. This research focuses on allocating two scarce resources, i.e., berth and quay cranes
(QCs), to ships that call at a container terminal in a maritime supply chain. As global container
shipments continue to grow, improving the efficiency of container terminals is important. A two-stage
approach is used to find the optimal/near-optimal solution, in which the first stage is devoted to
generating alternative ship placement sequences as inputs to the second stage that subsequently
employs an event-based heuristic to place ships, resolve overlaps of ships, and assign/adjust QCs so
as to develop a feasible solution. For identifying a better approach, various heuristics/metaheuristics,
including first-come first-served (FCFS), particle swarm optimization (PSO), improved PSO (PSO2),
and multiple PSO (MPSO), have been employed in the first stage, respectively. The experimental
results show that combining the MPSO with the event-based heuristic leads to a better result.

Keywords: berth allocation problem (BAP); quay crane assignment problem (QCAP); metaheuristic;
multiple particle swarms optimization (MPSO)

1. Introduction

A supply chain consists of a series of steps to deliver products or services to end customers.
These steps include activities of storing, moving and transforming raw materials into finished products
that are further transported and distributed to end users. Relevant entities in a supply chain include
producers, vendors, warehouses, transportation companies, distribution centers, container terminals,
customs, retailers, etc. This research focuses upon the transportation activity in a container terminal of
a maritime supply chain.

Transportation is one of the major activities in a supply chain. Materials and products can be
transported via air, water or land. This research is specifically focused on transportation by sea,
i.e., maritime transport. This kind of transport is important for international trading due to a relatively
lower unit transportation cost resulting from a larger volume of delivery at one time. Maritime
transportation is important for many countries, especially island countries. Among various kinds of
maritime transportation, container transport is found to be especially important as global container
shipments continue to grow and this kind of transport has been the mainstream transport in a maritime
supply chain. However, container transport depends on container terminals which are the main
working fields for loading/unloading containers to/from container ships. To achieve an efficient
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maritime supply chain, improving the operational efficiency of a container terminal is necessary and
important [1].

A container terminal includes three main areas: seaside, yard and landside [2]. The seaside
operations are considered to be the most critical as they relate to berth and quay crane (QC), two scarce
resources affecting the performance of a container terminal considerably. The seaside operational
area includes three well-known operational problems, namely the berth allocation problem (BAP),
quay crane assignment problem (QCAP) and quay crane scheduling problem (QCSP) [3–5], which are
faced by container terminal planners every day. To achieve a good performance for a container terminal,
better resolution of these seaside operational problems is necessary [5]. This subject has thus been
focused upon in this research.

Specifically, the research focuses on dealing with BAP and QCAP simultaneously. The BAP is a
problem of planning how to best use berths whereas the QCAP is the problem of planning how to best
use QCs. The two kinds of resources are essential for ships calling in to a container terminal. However,
it is found that the two problems have different variants that should be firstly understood before
solving them. Basically, the BAP can have the four variants: static and discrete BAP (SDBAP), static and
continuous BAP (SCBAP), dynamic and discrete BAP (DDBAP), and dynamic and continuous BAP
(DCBAP). The “static” means to consider arrived ships only whereas the “dynamic” means to also
take incoming ships into account. The “discrete” means to use a quay as a number of fixed sections
each of which can accommodate one ship at a time, whereas the “continuous” means to use a quay as
a continuous line that can accommodate as many ships as possible at one time. On the other hand,
the QCAP can have four variants: time-invariant QCAP (specific), time-invariant QCAP (number),
variable-in-time QCAP (specific), variable-in-time QCAP (number). The “time-invariant” means no
change on assigned QCs to a ship whereas the “variable-in-time” means that further changes on
assigned QCs to a ship are allowed. The “specific” means the need to specify the identity of an assigned
QC whereas the “number” means that only the number of QCs assigned is specified. This research
focuses on the DCBAP and variable-in-time QCAP (number) simultaneously. These variants of BAP
and QCAP are further detailed in the Sections 2.1.1 and 2.1.2, respectively.

Some approaches are available for resources planning, including mathematical models, heuristics
and metaheuristics. As a kind of exact approach, mathematical models aim to find the optimal
solution. However, they tend to become computationally intractable when dealing with a large
problem, due to Non Polynomial (NP)-complete [6–8]. Thus, heuristics/metaheuristics have become
alternatives. Simple heuristics are popular in industry due to their simplicity and computational
efficiency. In particular, first-come first-served (FCFS) is one of the most popularly used simple
heuristics. However, simple heuristics are found incapable of finding the optimal/near optimal
solution due to their simplicity and only one visit into the solution space. Advanced heuristics,
such as the metaheuristics, have thus been increasingly used to deal with various problems, including
container terminal operational problems. Essentially, metaheuristics are kind of high-level procedures
or heuristics that can find, generate, or select a heuristic to find an optimal/near-optimal solution,
based on incomplete or imperfect information or limited computational capacity [9]. In terms of
advantage, metaheuristics can address the simplicity problem of simple heuristics while avoiding
the computationally intractable problem of exact approaches. To deal with seaside operational
problems, metaheuristics such as ant colony optimization [10], genetic algorithms (GAs) [8,11–17],
particle swarm optimization (PSO) [18,19] have been used, in which GAs have been the mainstream
approach [20]. However, particle swarm optimization has never been used to deal with the DCBAP
and variable-in-time QCAP (number) simultaneously.

Proposed by Kennedy and Eberhart in 1995 [21], PSO is a kind of evolutionary and
population-based metaheuristic as it employs a swarm of particles to search a solution space iteratively.
The PSOs are found with the advantages of ease to implement and tune due to fewer parameters [22].
This approach has been mostly used to deal with combinative optimization problems (COPs) [23],
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such as assignment problems [24], scheduling problems [1,25–29], and BAP and QCAP [5]. However,
[5] focused on the DCBAP, instead of the dynamic and continuous BAP (DCBAP).

The objective of this research was to propose a PSO-based approach for dealing with the DCBAP
and variable-in-time QCAP (number) simultaneously. In this research, a two-stage procedure is used
in which the first stage uses a heuristic/metaheuristic to generate alternative ship placement sequences
as inputs to the second stage. Subsequently, the second stage employs an event-based heuristic to
place ships, adjust QCs, and resolve overlaps of ships one by one in order to develop feasible solutions.
The QCs released from a leaving ship are reassigned to berthed ships to best utilize QC capacity. To find
the best approach, different methods including FCFS, PSO, PSO2, and multiple PSO (MPSO) have been
respectively used in the first stage to investigate the best combination with the event-based heuristic
used in the second stage. Our experimental results showed that the combination of MPSO with the
event-based heuristic has the best result in terms of total cost.

The rest of this research is organized as follows. Section 2 includes a literature review of the
continuous BAP (CBAP) and the simultaneous CBAP and QCAP. Section 3 formulates an integer
programming (IP) model for the two problems. Section 4 introduces the basic formulas of PSO and
develops the MPSO. Section 5 conducts some experiments. Section 6 has a conclusion and suggestion
for a future research direction.

2. Literature Review

2.1. The Classification of Berth Allocation Problem (BAP) and Quay Crane Assignment Problem (QCAP)

2.1.1. BAP Classification

Figure 1 shows that the “arrival time of ship” and the “configuration of quay” are two factors
characterizing the BAP into four variants: static and discrete BAP (SDBAP), static and continuous
BAP (SCBAP), dynamic and discrete BAP (DDBAP), and dynamic and continuous BAP (DCBAP) [5].
The static BAP only considers arrived ships whereas the dynamic version also takes incoming ships into
consideration. The quay configuration is the factor featuring the BAP as a discrete or continuous version.
The discrete version separates a quay into a fixed number of sections, each only accommodating one
ship at a time; whereas the continuous version uses the quay as a continuous line to accommodate as
many ships as possible at one time. This research focuses on the DCBAP.
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2.1.2. QCAP Classification

Figure 2 shows that the “QC identification” and “QC adjustment” are two factors characterizing
the QCAP into four variants: time-invariant QCAP (specific), time-invariant QCAP (number),
variable-in-time QCAP (number), and variable-in-time QCAP (specific). The factor “QC identification”
means whether to identify each QC assigned to a ship. If “yes,” the QCAP is attributed as QCAP
(specific); otherwise, it is attributed as QCAP (number) [27]. The factor “QC adjustment” means whether
to allow further adjustment on assigned QCs to a ship. If yes, this QCAP is termed as variable-in-time
QCAP; otherwise, it is termed as time-invariant QCAP [1]. Figure 3a shows a variable-in-time QC
assignment in which the assigned number of QCs to the ship k has been changed from 1 to 3; whereas
Figure 3b shows a time-invariant QC assignment with 1fixed QC assigned to the ship k. Obviously,
the ship k can be completed earlier due to a variable-in-time QC adjustment.
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2.2. Relevant Studies

Some studies have focused on the BAP only. Lim [30] regarded the CBAP as a 2D cutting stock
problem and proposed a heuristic to solve this problem. That heuristic aims to minimize the total
length required in a wharf to accommodate all calling ships. However, it assumed fixed times for
calling ships. Kim and Moon [6] used a simulated annealing (SA) metaheuristic to assign wharf space
for calling ships with constraints taking into consideration. They concluded the SA could find the
optimal solution. However, this study also assumed fixed handling times for ships. Wang and Lim [17]
used a stochastic beam search to solve the CBAP. The authors claimed that the approach was able
to outperform some state-of-the-art metaheuristics and the traditional deterministic beam search in
terms of accuracy and efficiency. Lee and Chen [31] solved the dynamic and discrete BAP by using a
neighborhood-search optimization heuristic, taking factors including FCFS rule, clearance distance
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between ships, and possible ship shifting into consideration. They claimed considering these factors
could lead to a better decision. Zhen et al. [32] developed another two-stage model to deal with the
CBAP, in which arrival and handling times of ships were treated as uncertainties. An initial schedule
was generated and then adjusted in the second stage with the objective to minimize the total penalty
cost deviating from the initial schedule. In addition, the authors proposed a metaheuristic to deal with
a big problem. Hsu [9] proposed an improved shuffled frog-leaping algorithm (ISFLA) to deal with
the DCBAP. The results showed the ISFLA outperformed the FCFS and the basic SFLA in terms of
solution quality. Reference [18] focused on the DDBAP, which assigns ships to discrete berth positions
and minimizes the total waiting times and handling times for all ships. A mixed integer programming
(MIP) model was firstly formulated for the DDBAP. However, due to NP-hard, the authors further
proposed a PSO-based approach to deal with this problem. Reference [19] focused on solving the
continuous BAP (BAPC) by proposing a PSO. The PSO had been compared with GA. The results
showed that the PSO works better in terms of accuracy and computational time.

However, the above studies are found only to have focused on the BAP, in which the handling
times of ships are assumed. These studies neglected the fact that the handling times of a ship are
mainly determined by the number of QCs assigned to the ship. It is better to solve the BAP and
QCAP at the same time in order to achieve a better overall performance because of considering
their interrelationship.

An increasing number of studies have considered both BAP and QCAP simultaneously and
they are reviewed as follows. Park and Kim [7] formulated the two problems as an IP model. Then,
they solved the two problems with a two-phase procedure. The first phase uses a sub-gradient
technique to assign berthing position, berthing time, and QCs for a ship. The second phase uses a
dynamic programming technique to identify the QCs assigned to each ship. However, that study
did not consider QC interference on handling time. The Imai et al. [33] also proposed a two-stage
approach to solve the two problems. The first stage focused on generating an initial plan that is
further adjusted in the second stage to become a feasible solution. Sparsely-located or overlapped
ships were repositioned in the second stage. However, this study also neglected QC interference on
handling time. In Meisel and Biewirth [34] the authors proposed the consideration of QC interference
on handling time. A decreasing QC marginal productivity had been considered when solving the
simultaneous CBAP and QCAP. The author also used a two-stage procedure. The first stage used the
hybrid approach, which combined squeaky wheel optimization (SWO) with Tabu search, to generate
alternative ship assignment sequences as inputs to the second stage. Then, in the second stage another
heuristic was used to assign berthing location and QCs for calling ships. The proposed approach was
found to outperform that proposed by Park and Kim [7] in terms of cost. The authors demonstrated
the impacts of QC interference on the total cost. Chang et al. [10] proposed a hybrid parallel GA
(HPGA) to solve the CBAP together with the QCAP, taking factors including energy consumption
and rolling horizon into consideration. The solutions found were further evaluated by a simulation
model. The experiments confirmed the derived results were better than those obtained from the
approach proposed in Chang et al. [35]. Zhang et al. [36] formulated the CBAP and QCAP as an
MIP model. Then, they proposed a sub-gradient optimization algorithm to solve the two problems,
taking factors including QC cover range and limited QC adjustments into consideration. The handling
time of a ship was determined by the number of QCs assigned. However, that study also neglected
the QC interference. Raa et al. [4] proposed an enriched MILP model for the simultaneous BAP and
QCAP, taking factors including vessel priorities, preferred berthing locations and handling times into
consideration. The objective was to minimize total penalty cost consisting of sub-costs of handling
delay, deviation from the desired berth location, and the QC changes. Their experimental results
showed that the proposed model resulted in a better decision. Yang et al. [37] proposed an integrated
MIP to deal with the BAP and QCAP simultaneously. The objective was to minimize service time and
total number of QC shifts. A nested loop-based evolutionary algorithm (NLEA) which includes two
inner loops and one outer loop was proposed. The inner loop 1 uses a GA to find a BAP solution while
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loop 2 employs a heuristic-based GA to find a QCAP solution. The outer loop was mainly used to
explore alternative solutions. Türkoğvllari et al. [38] separated a QCAP as a type of either “number” or
“specific”. A MIP was firstly developed to deal with the combination of BAP and QCAP (number),
abbreviated as BACAP. However, at most that MIP can handle 60 ships to optimality and it cannot deal
with the combination of BAP and QCAP (specific), abbreviated as BACASP. To deal with the BACASP,
the authors proposed using a post-processing algorithm with the optimal solution from the BACAP
as an input. However, this algorithm requires a sufficient condition. If not satisfied, a cutting plane
algorithm was proposed to cut plane(s) to reach that condition. However, these approach are still
unable to perform variable-in-time QC assignment.

Our literature review shows that the assigned number of QCs, berthing location, and QC
interference are factors affecting the handling time of a ship, and thus these factors should be
considered when dealing with the simultaneous DCBAP and DQCAP (number).

3. Formulation of a Mathematical Model for Simultaneous DCBAP and QCAP

3.1. Problem Definition

Definition 1. The problem P is defined as a simultaneous dynamic and continuous berth allocation problem
(DCBAP) and variable-in-time quay crane assignment problem (QCAP) (number) with the aim of finding a
feasible berth plan that includes six-tuples:

P = (L, H, V, C, Th, Z)

where
L: the length of a quay;
T: the planning horizon H = {1, . . . ,H}, where H is the total number of time segments;
V: a finite set of calling vessels; V = {1, 2, . . . , N}, where N is the total number of calling ships;
Ç: a finite set of berthing constraints;
Þ: a set of plans with assignments of berthing positions, start berthing times and numbers

of QCs assigned for ships at each time interval; ∀ pi ∈ Th,= {∪k=N
k=1 (Bk, Sk) + ∪

k=N
k=1 ∪

j=H
j=1

(
Zkj

)
},

where Bk, Sk, and Zkj are decision variables. The Bk is the berthing position on L assigned to the ship k
under the constraint, 0 ≤ Bk ≤ L− lk, where lk is the length of ship k. The Sk is the start berthing time
assigned to the ship j under the constraint, Sk ≥ ETAk (estimated arrival time of ship k). The Zkj is the
number of QCs assigned to the ship k at the time segment t, Zkj ≥ 0;

Z: an objective function mapping pi to a time/cot value Z;
The objective of the problem P is to find a pi or p∗ (pi, p∗ ∈ Th) that minimizes the objective function

value Z, in which pi is a feasible solution, while p∗ is the optimal solution subjecting to Ç. For each ship
k a berthing position (Bk, Sk) is assigned. The problem P is an NP-hard problem.

3.2. The Estimation of Handling Time for a Ship

Estimating the handling time for a ship is essential to create a berthing plan. Meisel and
Bierwirth [32] proposed Equation (1) to estimate the minimum handling time for a ship, taking berth
deviation, QC interference, and QC capacity into consideration.

Hmin
k =

(1 + β·∆bk)·mk(
rmax

k

)α (1)

where
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mk the QC capacity required for the ship k
rmax

k the maximum number of QCs assignable to ship k
∆bk the berth deviation of a ship k from its desired berthing position
β the berth deviation factor
α the interference exponent of QCs

In this research, we define the berth deviation (∆bk) as Equation (2),

∆bk = |Bk − dk| (2)

where

Bk : is the actual berthing position of ship k
dk : is the desired berthing position of the ship k

and, we define the QC capacity required for the ship k (mk) as Equation (3).

mk =
θk
ρ

(3)

where
θk: the total number of loading and unloading containers for ship k
ρ: the working rate of a QC (QCs/hour)
Now, we transform Equation (1) to Equation (4) that is used in this research for estimating the

minimum handling time required for a ship k at the time period j. Here, Zkj is a decision variable
indicating the number of QCs assigned to ship k at the time period j.

Hkj =
(1 + β·|Bk − dk| )·θk(

Zkj
)α
ρ

, (4)

where
θk the total number of containers to be handled for the ship k
Zkj the number of QCs assigned to the ship k
∆bk the berth deviation
β the berth deviation factor

The completion time of the ship k can be estimated by Equation (5),

Ck = Tk +
∑H

j=1
HkjXi jk, ∀ k ∈ K (5)

where Tk is the start berthing time of the ship k.

3.3. Berthing Plan

For a traditional 2D berthing plan, it lacks a dimension to represent the number of QCs assigned
to a ship. Thus, this research uses a 3D berthing plan (Figure 4) with the X axis representing the time
dimension; the Y axis representing the space dimension; and the Z representing the number of QC
assigned to a ship. Then, each 3D object represents a ship occupying some grid squares on the X−Y
plane with each square being only assigned to one ship, or it will lead to an infeasible plan.
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The formation of a 3D berthing plan requires two tasks. The first task is the assignment of a
coordinate on the X−Y plane for the lower-left hand corner of a ship (a 3D object). This coordinate
indicates berthing time and the berthing position for the ship. The second task is the assignment of a
number of QCs to the ship. Note that when performing the two tasks spatial constraints such as the
quay length and the length of a ship should be considered to avoid forming an infeasible solution.

3.4. Mathematical Model

This section formulates a mathematical model for the simultaneous DCBAP and variable-in-time
DQCAP (number). Before formulating this model, we first introduce the assumptions, parameters,
indices, and decision variables required.

Assumptions

• Each ship is handled continuously until it is completed.
• Inter-ship clearance distance is included in ship length.
• A ship departs immediately when handling completed.

Indices

i a berth position; i ∈ I = {1, . . . , L}.
j a time segment; j ∈ T = {1, . . . , H}.
k a ship number; k ∈ K = {1, . . . , N}.
q, q′ QC number; q, q′ ∈ {1, . . . , Q}.

Parameters
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L
H
T
N
Q
lk
rmin

k
rmax

k
ETAk
θk
dk
α

β

ρ

C1
C2

the quay length (meters)
the total number of segments (each is one hour) within the planning
horizon
the set of time periods, T = {1, . . . ,H}
the total number of calling ships within the planning horizon
the total number of QCs
the length of ship k
the minimum number of QC assignable to ship k
the maximum number of QC assignable to ship k
the expected arrival time of ship k
the total number of loading and unloading containers for ship k at this
port
the desired berthing position of ship k
the interference exponent of QCs (0≤ α < 1)
the berth deviation factor; the increase rate of QC capacity/one berth
deviation (β ≥ 0)
the cost rate of handling time (Twenty foot equivalent units (TEUs)/hour)
the cost rate of waiting time

Decision variables

Xi jk=

{
1, if the ship k is assigned to the grid square (i, j)

0, otherwise

Zkj the number of QCs assigned to ship k at the time period j
Bk the berthing position of ship k (k ∈ K)

Tk the beginning berthing time of ship k (k ∈ K)

The mathematical model for the simultaneous DCBAP and DQCAP (number) is formulated as
follows. It is a kind of mixed integer linear programing (MILP) model.

Min Z =
∑N

k=1
(C1·∆Wk + C2·∆Hk)Xi jk, s.t. (6)∑

k∈K

Xi jk ≤ 1∀ i ∈ I, ∀ j ∈ T (7)

∑
k∈K

Zkj ≤ Q∀ j ∈ T (8)

rmin
k ≤ Zkj ≤ rmax

k ∀ k ∈ K, ∀ j ∈ T (9)

0≤ Bk ≤ L− lk∀ k ∈ K (10)

Bk = Min
{
jXi jk

}
∀ i ∈ I, ∀ j ∈ T, ∀ k ∈ K, ∀Xi jk = 1 (11)

Tk ≥ ETAk ∀ k ∈ K,
(12)

Tk = Min
{
iXi jk

}
∀ i ∈ I, ∀ j ∈ T, ∀ k ∈ K,∀Xi jk = 1 (13)

Xi jk ∈ {0, 1}∀ i ∈ I, j ∈ T, k ∈ K (14)

Equation (6) is the objective function minimizing the total cost (Z) composed of increased costs of
handling and waiting for all ships, where ∆Wk is the increased waiting cost of ship k and ∆Hk is the
increased handling time of ship k. Constraint (7) stipulates that a grid square can only be assigned to
one ship or not assigned. Constraint (8) stipulates that the number of QCs assigned to a ship in a time
period cannot exceed maximum number of available QCs. Constraint (9) stipulates the number of QCs
assigned to a ship is limited to the range [rmin

k , rmax
k ]. Constraint (10) prevents a ship from berthing over

the quay boundary. Equation (11) indicates the berthing position of a ship k to be the minimum one
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of among { jXi jk
}
, where Xi jk = 1. Equation (12) requires that the berthing time of a ship k cannot be

before its ETA. Equation (13) indicates the start berthing time of a ship k to be the minimum one of
among

{
iXi jk

}
, where Xi jk = 1. Equation (14) are binary constraints for decision variables Xi jk.

4. Multiple Particle Swarm Optimization (MPSO)

4.1. PSO

Proposed by Kennedy and Eberhart [21], PSO employs a group of particles to find the
optimal/near-optimal solution in a solution space. For a d-dimensional space, given Xi = [xi,1,
. . . ,xi,d] as the position and Vi = [vi,1, . . . ,vi,d] as the velocity of a particle i at the time t, and pi = [pi,1,
. . . ,pi,d] as the best position of particle i and pg = [pg,1, . . . ,pg,d] as the position of the global best particle
g, the velocity of particle i at the time t + 1 is updated by Equation (15).

vi,d(t) = wvi,d(t) + c1r1(pi,d(t) − xi,d(t)) + c2r2(pg,d(t) − xi,d(t)) (15)

where
vi,d: the current velocity of the particle i; which is within the range [vmin,vmax].
w: an inertia weight typically set to a fixed value within the range [0,1].
c1, c2: acceleration coefficients usually set to the value 2.0.
r1, r2: random values selected from the interval [0,1].
The next position of the particle i is determined by Equation (16).

xi,d(t + 1) = xi,d(t) + vi,d(t) (16)

4.2. The MPSO

4.2.1. Position Representation for a Particle

Figure 5 shows the position presentation for a particle to search a D-dimensional solution space.
In this research we let D = n, where n is the total number of calling ships. In this position scheme, each
uk (k = 1, . . . ,n) indicates the placement sequence of n ships.
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Figure 5. The encoding scheme of a particle position.

To be feasible, each uk should be an integer, thus we employ a rank order value (ROV) technique
to transform real values into ranking numbers (integers) in an increasing order. For example, the real
vector [0.2,0.6,0.7,0.4] will be transformed into the ranking set [1,3,4,2] which indicates a placement
sequence for ships 1,2,3 and 4.

4.2.2. The Two-Stage Procedure

Figure 6 shows the main logic flow for solving the simultaneous DCBAP and variable-in-time
DQCAP (number). These procedure includes two stages. The first stage (steps 1 to 4) focuses on
developing alternative ship placement sequences. The second stage (steps 5 to 12) is dedicated to
assigning a berthing position to each ship, while resolving overlapped ships and adjusting QCs for
ships using an event-based simulation approach, with spatial constraints taking into account. We detail
each of these steps as follows:
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Figure 6. The algorithm of the two-stage procedure.

Step 1: Set parameter values such as n, H, rmax
j , iteration, l_iter, θ, etc.

Step 2: Generate ship data including aj, dj, lj and θj for n calling ships. Estimate the hj for each
ship j based on θj and rmax

j using Equation (1).
Step 3: Generate alternative placement sequences of ships such as a heuristic (FCFS) or

metaheuristic (PSO, MPSO, etc.).
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Step 4: Transform a solution into the discrete domain using the ROV technique; Set k = 1; s =

1.The s indicates a placement order of a ship and the k indicates the difference from the s.
Step 5: Place the ship j at the placement order s into the berthing plan, with the coordinates of the

lower-left and upper-right corners being positioned at the (x j
0, y j

0) = (aj, cj) and (x j
1, y j

1) = (aj + hj, cj +

lj), respectively.
Step 6: Check whether the ship j at the placement order s has overlapped with the ship at the

placement order s−k using Equation (17). If “Yes” then go to Step 7; otherwise, go to Step 8.
Step 7: Resolve an overlap through cost estimation. Set k = k + 1 and go to Step 6.
Step 8: Perform event-based simulation while adjusting and reassigning QCs to ships (determines

Zkj) based on berthing and departure events of ships.
Step 9: Check any overlap after QC adjustment? If “Yes” go to Step 10; otherwise go to Step 11.
Step 10: Resolve an overlap of ships and then go to Step 11.
Step 11: Check whether this is the last particle? If “Yes” go to Step 12; otherwise go to step 4.
Step 12: Check whether this is the last iteration? If “Yes” go to Step 13; otherwise go to Step 3.
Stop 13: End.

4.2.3. Details of the Main Tasks in the Second Stage

The tasks to be dealt in the second stage are detailed as follows.

• Assign berthing positions for ships

An optimal berthing plan, which is based on each ship’s ETA and desired berthing position (dj)
with the maximum QCs (rmax), is first initialized for all ships. However, this optimal berthing plan
may be infeasible due to limited resources of time and quay space that cannot satisfy all ships’ needs
and thus result in overlaps of ships. Detecting and resolving these overlaps of ships are necessary to
develop a feasible solution. These are detailed as follows.

• Detect an overlap of ships

Figure 7 shows a berthing plan with an overlap of ships j and k. Given a = (x j
0, y j

0) and a’ = (xk
0, yk

0)

are coordinates of lower-left hand corners of ships j and k respectively; while c = (x j
1, y j

1) and c’ = (xk
1, yk

1)
are coordinates of upper-right hand corners. Then, Equation (17) gives the sufficient and necessary
conditions of overlap for the two ships j and k. If any one of the conditions is not satisfied, then the
two ships j and k are free of overlap.

x j
0< xk

1, y j
0< yk

1, xk
0< x j

1, yk
0< y j

1 (17)
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• Resolve an overlap of ships

In this research, repositioning one of the overlapped ships is the main approach for resolving
an overlap. As shown in Figure 8, the ship j is overlapped with the ship k and repositioning one of
them can resolve this overlap. In this research, the ship being selected to repositioning is termed as
“target ship” that is allowed to be moved towards the three directions including up (+Y), down (−Y),
and right (+X), one at a time. However, as shown in Figure 8, moving the target ship j towards either
+Y or −Y will increase handling time for the target ship j due to a deviation from its desired berthing
position (assume that y j

o = d j, d j is the desired berthing position of the ship j). The increased handling
time is due to a longer moving distance for a container.

In Figure 8, the ∆H j indicates the increased handling time when moving the target ship j towards
the +Y/−Y; the ∆Y j is the distance deviating from the ship j’s desired berthing position. Equation (18)
is used for calculating the ∆Y j.

∆Y j =

 l j +
∣∣∣∣yk

1 − y j
0

∣∣∣∣ if moved toward Y direction

−

∣∣∣∣y j
1 − yk

0

∣∣∣∣ if moved toward−Y direction
(18)

After this reposition, the coordinates of the lower-left hand and upper-right hand corners of the
target ship j will become as a = (x j

0, y j
0 + ∆Y j) and c = (x j

1, y j
1 + ∆Y j), respectively. Equation (19) is used

for estimating the increased cost of handling times ∆CY( j) for the target ship j. The C2 is a cost rate of
handling time.

∆CY( j) =
2
∣∣∣∆Y j

∣∣∣
100 ∗ 60

×C2, (19)
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Figure 9 shows that moving the target ship j towards the +X direction will increase the ship’s
waiting time (cost). The increased waiting time is estimated by Equation (20).

∆X j =
∣∣∣∣x j

0 − xk
1

∣∣∣∣ (20)

After this reposition, the coordinates of the lower-left hand and upper-right hand corners of the
target ship j will become as a = (x j

0 + ∆X j, y j
0) and c = (x j

1 + ∆X j, y j
1), respectively. The increased waiting

cost of this target ship j is estimated by Equation (21), where C1 is the cost rate of waiting time.

∆Cx( j) = ∆X j ×C1 (21)
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Estimations and prioritization of the three moving directions are required to determine the best
and feasible direction.

• Adjustment of QCs

Reassigning released QCs from leaving ships to berthed ships can better utilize QCs. Referring
to [4], we develop an event-based simulation based on discrete events.

Each ship has the three events: “arrive,” “berth,” and “departure.” If a ship arrives it may not
berth immediately. It may lead to waiting time. If berths are available, a berth is selected and a number
of QCs is assigned to the ship. A ship is assumed to depart immediately if handling is completed.
In addition, we define a stage j as a time interval, denoted as [t( j),t( j + 1)], where t( j) and t( j + 1)
are event times of two consecutive events, denoted as E( j) and E( j + 1), respectively. For example,
the stage 1 is formed by [t(1),t(2)], where t(1) and t(2) are event times of the two events E(1) and E(2).
Given n calling ships, there exist 2n events and 2n− 1 stages.

To simulate the berthing and departure of ships, it needs to identify discrete events one by one.
Equation (22) is used to find the next event.

t( j + 1) = Min
{
min
k∈A
{ak}, min

k∈B
{ETDk( j)}

}
j = 0, . . . , 2n− 1 (22)

which subjects to the following conditions in Equation (23).

1 < j, j + 1 ≤ 2n− 1; 1 ≤ k ≤ n; A∪B∪C = {1, . . . , n}, (23)
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In Equation (22), the ak is the ETA of the ship k while the ETDk( j) is the expected departure time
of ship k estimated at the stage j. The A is a set of ships to berth; and the B is a set of berthed ships.
For discrete simulation, finding the next event is necessary. This can also help to identify the owner
(ship) and the type of event. For example, given the a3 as the next event, then we can identify that
the ship 3 is the event owner and this is a berthing event because the ship 3 ∈ A. When dealing with
a “departure” event, the number of QCs assigned to a ship should subject to the two QC constraints,
Equations (8) and (9). For a “departure” event, the release QCs from a ship can be assigned to berthed
ships, subjecting to the two QC constraints. In Equation (23), the C is a set of completed ships.

Equations (4) and (5) can be used to estimate the ETDk( j) of a ship k at a stage j. However, due
to QC adjustment the number of QCs assigned to a ship k at two consecutive stage, such as j and j
+ 1, may be different. Thus, due to discrete simulation, if the ship k has a QC adjustment then its
ETDk( j + 1) should be updated by using Equation (24).

ETDk( j + 1) =

 t(ε+ 1) +
(

Zkj
Zk( j+1)

)
(ETDk( j) − t( j + 1)), if zk( j+1) < Zkj;

t(ε+ 1) +
(

Zkj
Zk( j+1)

)
(ETDk( j) − t( j + 1)), if Zk( j+1) < Zkj;

(24)

where
Zkj the number of QCs assigned to ship k at the stage j;
Zk( j+1) the number of QCs assigned to ship k at the stage j + 1;

The MPSO is one of the methods employed in step 3 of the first stage to generate alternative
sequences of ship placements.

4.2.4. The Features of the MPSO

As an improved PSO, the MPSO includes the following features.

Multiple Groups of Particles

The first difference between the MPSO and the PSO is the use of multiple particle groups,
which enables particles to search around elites in the swarm so as to diversify research in the solution
space. Figure 10 illustrates three particle groups searching in the solution space currently. Each of the
groups has a best particle that creates a search area.
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Regrouping Mechanism

A reshuffle mechanism is used for the MPSO to regroup particles at the beginning of each iteration.
Then, non-best particles in a group will search around the best particle in this group. The reshuffle
mechanism can also change the number of particle groups as well as the best particle in a group. In a
D-dimensional solution space, the position of a particle i at the time t is denoted as P(t) = (Pi1, . . . , PiD)
which corresponds to a solution in the solution space. The goodness of a position can be indicated by a
Z value of an objective function. Given P particles and m groups, the MPSO groups particles in this
way: the best particle is assigned to the group 1; the 2nd best to the group 2; the mth best to the group
m; the m + 1th best then to the group 1 again, and so on. Finally, each of the groups contains n = P/m
particles, and the particles of a same group are ordered increasingly, according to the Z values of the
particles (for a problem of minimizing Z).

Self-Adaptive Velocity

One main feature of the MPSO is the use of a set of discrete operators to develop adaptive
movements for particles, including distance measuring operator (~), adaptive distance operator (∇), and next
position operator ().

The distance measuring operator (~) measures the distance between two position vectors of
particles. Given Po(t) = [Po,1 (t), . . . , Po,D (t)] and P j(t) =

[
P j,1 (t), . . . , P j,D (t)

]
as two position vectors

of particles o and j. Of a same group assume o is the target particle attracting particles i and j
to search around. If we denote Do, j(t) as the total distance vector between the particles o and j,
then Do, j(t) = [Po,1(t) ∼ P j,1(t), . . . , Po,D(t) ∼ P j,D(t)], and each element k in Do, j(t) is determined by
the operations defined in Equation (25).

Po,k(t) ∼ P j,k(t) =
{

0, if Po,k(t) = P j,k(t)
P j,k (t), if Po,k(t) , P j,k(t)

for the k− th element, (25)

The distance between the two particles o and j is denoted as
∣∣∣Do, j(t)

∣∣∣ and derived by Equation (26).

∣∣∣Do, j(t)
∣∣∣= D−

∑D

k=1
(Po,k(t) ∼ P j,k(t))/Po,k(t), (26)

Subsequently, the total distance vector Do, j(t) is refined by the adaptive distance operator (∇) based on
an adaptive velocity vector AV j(t) using Equation (27) to find an adaptive velocity V j(t) for the particle i.

V j(t) = Do, j(t) ∇ AV j(t), (27)

Each element AV j,k(t) (k = 1, . . . ,D) in the AV j(t) is a binary value (0 or 1) and the adaptive velocity
V j(t) for a particle i is derived through the operations in Equation (28).

Po,k(t) ∼ P j,k(t)) ∇ AV j,k(t)=
{

Po,k(t) ∼ P j,k(t), if AV j,k(t) = 1
0, if AV j,k(t) = 0

for the k− th element, (28)

The AV j,k(t) is used to adaptive the moving velocity of the particle j and it depends on two values,
R1k(t) and BR1 j(t), through the operations defined in Equation (29).

AV j,k(t) =
{

0, if R1k(t) ≥ BR1 j(t);
1, if R1k(t) < BR1 j(t);

(29)

In Equation (26), RR1k(t) and BR1 j(t) ∈ [0,1]; the R1k(t) is a random number and the BR1 j(t) is a
threshold controlling the probability used to generate the binary value 1 into AV j(t). To enable a bigger
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flying distance for a farther particle to approach the target particle quickly, BR1 j(t) is determined by
Equations (30).

BR1 j(t)=


|Do, j(t)|−2

D , if
∣∣∣∣∣Do, j(t)

∣∣∣∣∣> 2;

0, if
∣∣∣Do, j(t)

∣∣∣≤ 2;
(30)

Having determined the V j(t), we can determine the next position, P j(t + 1), of the particle j using
the next position operator () and Equation (31).

P j(t + 1) = P j(t)V j(t), (31)

The operator “” works as follows. First, it takes the first non-zero value out from the V j(t) and
replaces the value (that has a same position and segment and position as the non-zero value) in the
P j(t). Second, the replaced value takes the position of the non-zero value in the X j(t). Third, repeat the
first and second steps until there is no non-zero value in the D j(t). Finally, the operator copies the
current P j(t) as the P j(t + 1).

Figure 11 illustrates three particles o, i and j of a same group and their positions are Po(t) =

[4,3,2,1], Pi(t) = [4,1,3,2], and P j(t) = [1,2,3,4], respectively. The particle Po is the best particle attracting
other particles of a same group to search around it. The particles o and i are closer as

∣∣∣Do,i(t)
∣∣∣ = 3 while∣∣∣Do, j(t)

∣∣∣ = 4. To search around the particle o quickly, the particle j requires a bigger velocity to approach
the particle o while the particle i requires a smaller velocity to avoid flying over the optima. However,
no particle is allowed flying to the best particle directly due to a waste of local search.
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Based on Equation (23), we can derive Do, j(t) for the particle j at the time t as follows.

Do, j(t) = [4, 3, 2, 1] ∼ [1, 2, 3, 4] = [4, 3, 2, 1]

In this case, we can derive the
∣∣∣Do, j(t)

∣∣∣ = 4 and BR1 j(t) = 2/4 for the particle j based on Equation (26)
and Equation (30), respectively. With this BR1 j(t) and assume that AV j(t) = [0,1,0,0], then according to
Equation (27) we can determine the V j(t) as follows.

V j(t) = [4, 3, 2, 1] ∇ [0, 1, 0, 0] = [0, 3, 0, 0]
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The next position of the particle j is finally derived as follows using Equation (31).

P j(t + 1) = P j(t)V j(t) =[1, 2, 3, 4][0, 3, 0, 0] = [1, 3, 2, 4]

This example shows that an non-zero element in the V j(t) will cause an exchange of two elements
in the P j(t). At the time t + 1, the two particles o and j are closer due to a shorter distance

∣∣∣Do, j(t)
∣∣∣ = 2

and this will lead to the generation of a V(t + 1) = [0,0,0,0] that can prevent the particle j from directly
flying to the particle o.

Intelligent Movement of a Particle

When moving a particle, the MPSO uses the following intelligent mechanisms:

• Direct-fly prevention: the direct-fly prevention is a mechanism stopping a particle from flying to
the target particle in the next step because such a move will waste one local search. Specifically,
the MPSO will measure the current distance between a particle j and a target particle o. If the
distance between them is satisfied with the condition,

∣∣∣Do, j(t)
∣∣∣≤ 2 , the MPSO then stops generating

binary value 1 for the AV j(t) of the particle j as additional one binary value 1 added to the AV j(t)
will trigger a direct-fly.

• Neighborhood search: while imposed by the direct-fly prevention, a particle will stay at its current
position, which will waste one local search. For improvement, the function, exchange (p1,p2),
is used for neighborhood search by exchanging two randomly-selected position elements in the
position vector of a particle.

The Self-Adaptive Variant of a Particle

Mutations (chaotic) can be used to avoid a solution to be trapped in a local optimum. In the
MPSO, it includes two kinds of mutations to mutate a particle. They are detailed as follows.

• Swap Mutation (SM): in this mutation two values of two positions (p1 < p2) are first randomly
selected and then swapped.

• Thoros Mutation (TM): in this mutation three values of three positions p1, p2, and p3 (where
p1 < p2 < p3) are first selected randomly, and then the value of p1 becomes the value of p2,
the original value of p2 becomes the value of p3, and the original value of p3 becomes the value of
p1. Compared with the SM, the TM has a greater variant due to more mutated values.

Figure 12 shows the logical flow of mutation. The mutation depends on a generated random
number RN( ) and a mutation rate θ; if RN( ) < θ then trigger mutation; Otherwise, abort mutation.
If going into mutation process, the similarity degree SDo, j(t) between Po(t) and P j(t) is firstly estimated
by using Equation (32), where D−

∣∣∣Do, j(t)
∣∣∣ indicates the total number of same elements between the

particles o and j. The lower the SDo, j(t) indicates the two particles o and j have a higher similarity and
thus the TM is used; otherwise, the SM is used.

SDo, j(t)=
(
D−

∣∣∣Do, j(t)
∣∣∣)/D (32)
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A particle with a smaller SDo, j(t) is assumed to require a bigger variant due to being at an
unfavorable position. Therefore, if a particle is with SDo, j(t) < δ then the TM is used to have a big
variant; otherwise, the SM is used to have a small variant. The parameter δ ∈ [0, 1], a threshold used to
control the choice of TM or SM.

4.3. The Main Flow Logic of MPSO

Algorithm 1 shows the main logic flow of the MPSO.
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Algorithm 1. The logic flow of MPSO.

1 Set parameter values (N, Rm, P, m, iterations, l_iter, etc.)
2 Initial positions for particles using rank order values (ROVs)
3 FOR (int t = 1; t <= iterations; t++){
4 Calculate the Z values for all particles using Equation (6).
5 Rank particles according to their FVs
6 Generate groups m(t) for particles.
7 FOR (int li = 1;li< = l_iter; li++)
8 FOR (int j = 1; j <= m(t); j++)
9 FOR (int k = 1;k <= the_number_of_particles_in_j; k++)
10 IF particle k is not the best particle in the subgroup j
11 Move the particle k one step toward the best particle in j
12 Calculate Z value using Equation (6).
13 IF Z value of this movement is improved
14 Store the Z value for this particle k
15 Store the current position for this particle k
16 ELSE
17 Move the particle k toward the global best particle in the swarm
18 Calculate Z value using Equation (6).
19 IF Z value of this movement is improved
20 Store the Z value for this particle k
21 Store the current position for this particle k
22 ELSE
23 Change the particle k to a random position
24 END IF
25 END IF
26 Compare the solution to the global best solution
27 IF better
28 Store the solution as the global best solution
29 END IF
30 Perform the self-adaptive variant for the particle k
31 END IF
32 END FOR k
33 END FOR j
34 END FOR li
35 END FOR t

5. Numerical Example

Java language was used for programming the FCFS, PSO, PSO2, and MPSO for comparison
to investigate their effectiveness. These approaches were used in the first stage of the two-stage
procedure. In the second stage of the two-stage procedure a same simulation-based heuristic was used.
Each comparison is based on a set of same inputs.

In this research, the simple heuristic FCFS was used due to likely less waiting time.
Section 5.1 lists the parameter values used of experiments. Section 5.2 shows the results of an

experiments (N = 15). Section 5.3 shows the results of some experiments with N = 15, 20, 25, and 30.

5.1. Parameters Setting for Experiments

Table 1 shows the setting of parameters for experiments.
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Table 1. The parameters setting for the four approaches for experiments.

Parameters FCFS PSO PSO2 MPSO

t 1 20 20 20
w 0.5
p 64 64 64 64
c1 2.0
c2 2.0
r1 Random()
r2 Random()
w1 Equation defined in [5]
w2 Equation defined in [5]
w3 Equation defined in [5]
δ 0.5
θ 0.5
Rc 0.3
Rm 0.4
vmax 2 2
vmin −2 −2
T0 90
Te 0
β 0.8

The t indicates the number of iterative runs. For the PSO, the w is an inertial weight of velocity;
the p is a number of total particles; the c1 and c2 are two coefficients; the r1 and r2 are two random
numbers; the vmax and vmin are maximum and minimum velocities, respectively. For the MPSO, the θ
is a mutation rate; the δ (δ ∈ [0,1]) is a threshold controlling the use of either TM or SM; the Rm is a
mutation rate; and the Rc is a crossover rate. PSO. For PSO2, the w1, w2, and w3, as with the values
used in [4], are coefficients of weights; the T0 is an initial temperature; the Te is the final temperature;
the β is a falling rate of temperature.

In addition, we set planning horizon to 1 week (H = 168 h). As a result, the ETAs of ships are with
the interval [0,168] (hours). The quay length (L) is set to 800 m. The length of a ship k (lk) is set within
the interval [100,200] (meters). The desired berthing location of a ship k (dk) then should be within the
interval [0, L-lk]. The total number of loading and unloading containers of a ship k (θk) is within the
interval [80,2000]. In the quay side there are 8 QCs in total. Table 2 shows the parameters of costs used
for the FCFS, PSO, PSO2 and MPSO. The C1 and C2 are set to USD 1000/hour.

Table 2. The original data of ships (N = 15).

Lower-Left Hand Corner Upper-Right Hand Corner
No SID lj aj dj Cj X0 Y0 X1 Y1
1 3 167 26.1 398 1838 26.1 398 50.61 565
2 8 118 128.8 151 844 128.8 151 140.05 269
3 10 109 148.2 267 1080 148.2 267 162.60 376
4 1 108 147.3 169 1830 147.3 169 171.70 277
5 15 135 112.5 167 1768 112.5 167 136.07 302
6 4 134 89.5 344 864 89.5 344 101.02 478
7 9 154 42.8 574 1181 42.8 574 58.55 728
8 13 163 14.6 134 1759 14.6 134 38.05 297
9 7 131 33.3 272 1059 33.3 272 47.42 403
10 6 119 77.6 639 1152 77.6 639 92.96 758
11 12 158 35.8 582 1820 35.8 582 60.07 740
12 11 176 142.9 68 1820 142.9 68 160.89 244
13 2 165 140.1 602 1290 140.1 602 157.30 767
14 14 157 53.8 254 1267 53.8 254 70.69 411
15 5 184 126.4 592 1267 126.4 592 146.69 776
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5.2. A Small-Size Example

Table 2 shows the ship data randomly generated by computer for a small-size experiment (N = 15).
The first column No indicates the placement order of ship. The second column SID indicates

the ship’s id. The column lj indicates the length of ship j, the column aj indicates the ETA of ship j,
the column dj indicates the desired berthing position of ship j, the column Cj indicates the total number
of loading and unloading containers of the ship j. The columns X0 and Y0 indicate the coordinates of
the lower-left corner (X0,Y0) of a ship while the columns X1 and Y1 indicate the coordinates of the
upper-right corner (X1,Y1) of a ship.

Figure 13 shows the berthing plan of 15 calling ships based on the original ship data in Table 3.
We can find this is an infeasible berthing plan due to 6 overlaps of ships. Thus, resolving these overlaps
of ships by using the two-stage solution procedure with different heuristics/meta-heuristics is necessary.
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Table 3. Summary data of different approaches.

Approaches

Item FCFS PSO PSO2 MPSO

∆WC 61,551.1 24,758.2 55,740.8 18,345.6
∆HC 11,030.0 15,369.2 14,660.0 19,133.9

Z (Total cost) 72,581.1 40,127.4 70,400.8 37479.5
T (Times) 1.57 s 1.57 s 1.57 s 129.063 s

Figure 14 shows the best berthing plans obtained from different approaches used in the first stage
in the two-stage solution procedure. Figure 14a is the berthing plan obtained from the FCFS heuristic.
Figure 14b is the best solution obtained from the PSO. Figure 14c is the best berthing plan obtained
from the PSO2. Finally, Figure 14d shows the best berthing plan obtained from the MPSO. Details data
obtained from these approaches are listed in Table 3 as shown below.
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From Table 3 we know that the MPSO outperforms the FCFS, PSO and PSO2 in terms of total
costs (Z) including two sub-costs: increased waiting time (∆WC) and increased handling times (∆HC).

Table 4 shows the ship data and the coordinate data of the berthing plan in Figure 14d obtained
from the MPSO, after repositioning target ships to avoid overlapping with other ships by using the
two-stage approach.

From Figure 13 we found that there exist 6 overlaps of ships, thus repositioning some target ships
are necessary for making a feasible solution.

In Table 4, after comparing this table with Table 2, we have highlighted the ships with changed
coordinates. These ships and changed coordinates are in bolded face. Firstly, it is noted that there
are 4 calling ships with no any change on their coordinates. They are ships 3,4,13 and 6. Referring to
Table 6, it is found that these ships are assigned with the maximum QCs (rmax

k = 3) in their all working
stages. These information help us to ensure that these ships get zero increased waiting cost as well as
handling cost (∆WC = ∆HC = 0) because they are at their best positions (i.e., the desired berthing
positions) and with the best amount of QCs assigned. Due to being at the optimal situation, these ships
face no increased cost. Furthermore, it is noted that the remaining 11 ships have changed coordinates,
including ships 8, 10,1,15,9,7,12,11,2,14, and 5. These changes are adaptable to resources constraints.
For example, some of these ships, including 10, 9 and 12, are found with the condition aj < X0,
which indicates that these ships to have been moved toward the +X direction and thus face increased
waiting times (their ∆WCs > 0). In addition, some of these ships, including 8,10,1,15,9,7,12,11,2,14 and
5, are found with increased handling costs (∆HC > 0). These increases may come from two sources:
one is the deviation from their respective desired berthing positions and another the adjustments of



Mathematics 2020, 8, 764 24 of 31

their QCs (variable-in-time QC assignment). The two reasons can change (increase or shorten) their
required handling times. For example, ships 5 and 15 are found to be deviating from their berthing
positions and this introduce increased handling times for them. In addition, from Table 6 we see that
some other ships such as 8,10,1,9,7,12,11,2, and 14 which have QC adjustments and this introduces
additional increased handling times for these ships. Take ship 8 in Table 6 as an example; ship 8
berths at 128.8 with 2 QCs initially assigned but this number of QCs has been increased to 3 when ship
15 completes its job and releases its QCs at the time point 136.1. Similarly, those ships with d j < Y0 are
identified to have been moved toward the +Y direction (such as the ship 1) while those ships with
d j > Y0 are identified to have been moved towards the −Y direction (such as ship 12).

Table 4. The coordinates of the calling ships (N = 15) after resolving overlaps of ships.

No Ship
id

lj aj dj Cj

Lower-Left
Hand Corner

Upper-Right
Hand Corner ∆WC ∆HC

X0 Y0 X1 Y1

1 3 167 26.1 398 1838 26.1 398 50.61 565 0 0
2 8 118 128.8 151 844 128.8 151 142.48 269 0 2426.67
3 10 109 148.2 267 1080 158.09 267 173.85 376 9892.22 1357.04
4 1 108 147.3 169 1830 147.3 376 175.3 484 0 3597.41
5 15 135 112.5 167 1768 112.5 269 136.1 404 0 34
6 4 134 89.5 344 864 89.5 344 101.02 478 0 0
7 9 154 42.8 574 1181 49 574 65.29 728 6203.33 532.22
8 13 163 14.6 134 1759 14.6 134 38.05 297 0 0
9 7 131 33.3 272 1059 33.3 565 49 696 0 1583.33
10 6 119 77.6 639 1152 77.6 639 92.96 758 0 0
11 12 158 35.8 582 1820 38.05 240 65.97 298 2250 3647.78
12 11 176 142.9 68 1349 142.9 68 162.16 244 0 1273.33
13 2 165 140.1 602 1290 140.1 602 158.09 767 0 792.22
14 14 157 53.8 254 1267 53.8 398 74.52 555 0 3831.85
15 5 184 126.4 592 1525 126.4 418 146.7 602 0 58

Sub-total 18,345.6 19,133.9
Total (∆WC + ∆HC) 37,479.5

Table 5 shows the QC assignment for each ships at each stage, which is a variable-in-time QC
assignment based on available QCs. In this case, a total number of 8 QCs (Q = 8) is set.

The column “No” indicates the stage No; the column “Fm” and “To” indicates “from” and “To”
which indicates a duration of a stage; The column “SID” indicates a “ship ID”; the column “S” indicates
the “state” of a ship with the value of 2 indicating a “berthing event” of the ship and the value of
3 indicating a “departure event” of the ship. In the MPSO, at the first stage all ships are default to
have the maximum QC assignment (rmax

k = 3) initially. But, at the second stage this number of QCs
assignment may be adjusted to conform to QC constraints, i.e., Equations (7) and (8). In addition,
the released QCs from a leaving ship will be reallocated to berthed ships to best utilize available QC
capacity but such reallocations should also conform to the two QC constraints. We give a detailed
explanation on Table 5. At first, all ships are ∈ A (where A is a set of ships to berth). At stage 1, [0,14.6],
until to the time point 14.6 the first ship (SID = 13) arrives and berths immediately because quay space
and QCs are available. The ship 13 gets 3 QCs in this stage and now becomes a berthed ship ∈ B
(where B is a set of berthed ships). The S = 2 indicates that a “berthing event” occurs. Following this,
at stage 2, with the duration [14.6,26.1], the ship 3 (SID = 3) arrives and berths at the time point 26.1
and gets 3 QCs assigned. This is also a “berthing event” (S = 2). So, now ships 13 and 3 ∈ B. At stage 3,
with the duration [26.1,33,3], the ship 7 (SID = 7) arrives and berths at the time point 33.3. However,
ship 7 is only get 2 QCs assigned due the QC constraints (i.e., the total number of QCs in this case
is 8). At the stage 3 all the QCs assigned to these berthed ships (including 13, 3 and 7) is subject to
the constraints, Equation (8). Now, we have 3 berthed ships. At stage 4, with the duration [33.3,38],
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all these berthed ships are loading and unloading containers, but at the time point 38 the first ship
(ship 13) is completed and it triggers a leaving event (S = 3). The ship 13 then leaves and the working
duration for this is [14.6,38]. Now, ship 13 ∈ C (where C is a set of completed ships) ships 3 and 7 are
two remaining berthed ships. The other stages in Table 5 are explained in the same way. Finally, at the
last stage 30, with the working duration [173.8,175.3], ship 1 leaves at the time point 175.3. Table 5
shows the simulation results obtained from the second stage with QCs assigned/adjusted conforming
to the two QCs constraints. The Table 5 provides a solution to the variable-in-time QCAP (number).

Table 5. The number of QCs assigned to each ship.

No Fm To SID S
Ship ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 14.6 13 2 3
2 14.6 26.1 3 2 3 3
3 26.1 33.3 7 2 3 2 3
4 33.3 38 13 3 3 3
5 38 38 12 2 3 3 2
6 38 49 7 3 3 3
7 49 49 9 2 3 2 3
8 49 50.6 3 3 3 3
9 50.6 53.8 14 2 3 3 2

10 53.8 65.3 9 3 3 3
11 65.3 66 12 3 3
12 66 74.5 14 3
13 74.5 77.6 6 2 3
14 77.6 89.5 4 2 3 3
15 89.5 93 6 3 3
16 93 101 4 3
17 101 112.5 15 2 3
18 112.5 126.4 5 2 3 3
19 126.4 128.8 8 2 3 2 3
20 128.8 136.1 15 3 3 3
21 136.1 140.1 2 2 2 3 3
22 140.1 142.5 8 3 3 3
23 142.5 142.9 11 2 3 3 2
24 142.9 146.7 5 3 3 3
25 146.7 147.3 1 2 2 3 3
26 147.3 158.1 2 3 3 3
27 158.1 158.1 10 2 3 2 3
28 158.1 162.2 11 3 3 3
29 162.2 173.8 10 3 3
30 173.8 175.3 1 3

No: Stage No; Fm: From; SID: Ship ID.

5.3. Experiments

In this section, more experiments are performed to investigate the effectiveness of different
approaches used in the first stage of the two-stage procedure. Table 6 shows the experimental results.



Mathematics 2020, 8, 764 26 of 31

Table 6. The results obtained from different methods used in the first stage.

FCFS PSO PSO2 MPSO
N = 15 Z T Z T Z T Z T

1 64,683.7 0.4 64,683.7 13.0 71,372.2 16.3 61,707.0 137.2
2 43,463.3 0.4 27,335.5 8.4 27,335.5 12.1 27,335.5 79.7
3 35,920.3 0.4 32,518.1 11.2 32,518.1 17.7 32,518.1 120.7
4 78,542.8 0.4 44,180.8 13.0 44,180.8 21.4 44,180.8 143.9
5 33,372.2 0.4 31,381.1 9.2 31,923.3 13.2 31,381.1 97.6
6 37,798.1 0.4 37,798.1 13.2 37,798.1 17.0 37,798.1 149.3
7 58,942.9 0.4 58,927.1 13.2 61,305.4 20.9 57,407.6 150.7
8 33,090.0 0.4 18,567.7 9.4 18,567.7 13.2 18,567.7 92.2
9 49,148.5 0.4 46,223.3 16.2 46,801.8 18.4 46,223.3 134.1

10 78,829.2 0.4 51,495.9 9.7 51,630.1 20.2 51,495.9 102.6
Avg. 51,379.1 0.4 41,311.1 11.7 42,399.0 17.0 40,861.5 120.8

N = 20 Z T Z T Z T Z T
1 52,850.0 0.3 48,371.1 14.8 52,850.0 21.4 48,371.1 158.6
2 130,274.7 0.4 78,144.0 17.1 102,875.5 25.9 71,693.9 198.3
3 78,635.2 0.4 52,986.3 15.6 52,986.3 22.0 52,986.3 178.5
4 218,097.7 0.3 162,495.5 14.2 140,255.0 30.7 149,887.0 159.2
5 315,525.4 0.4 173,686.9 19.5 196,587.5 31.5 176,399.1 220.9
6 399,651.6 0.3 176,799.2 19.7 261,978.7 29.7 173,919.3 221.0
7 228,430.4 0.4 105,253.6 17.1 172,601.2 24.2 96,449.2 194.8
8 70,074.1 0.3 69,024.8 16.1 79,974.6 25.1 66,469.3 185.8
9 129,956.7 0.3 84,379.7 15.3 97,594.0 22.4 83,122.3 170.4

10 342,539.1 0.3 283,706.5 15.5 287,765.3 26.8 272,191.9 172.4
Avg. 196,603.5 0.3 123,484.8 16.5 144,546.8 26.0 119,148.9 186.0

N = 25 Z T Z T Z T Z T
1 519,044.0 0.4 319,344.3 27.1 360,801.4 73.8 301,731.1 461.5
2 417,073.2 0.4 356,883.6 43.9 339,845.3 63.8 326,855.9 362.6
3 968,779.5 0.4 679,711.5 33.1 606,488.8 73.7 659,997.3 1441.6
4 383,264.7 0.4 279,950.7 60.0 349,901.0 105.1 263,709.6 912.4
5 322,685.3 0.8 208,590.6 66.0 284,606.1 251.1 212,131.9 839.9
6 529,640.8 0.6 487,985.8 50.5 559,947.5 117.5 329,771.0 1049.8
7 225,380.0 0.4 146,537.4 26.6 156,685.9 58.8 137,635.2 746.5
8 329,470.8 0.3 312,931.8 40.3 325,643.4 64.7 288,524.7 341.8
9 794,016.0 0.4 609,751.5 34.2 554,842.2 99.1 601,662.3 815.0

10 527,476.6 0.4 388,389.2 69.5 372,384.8 40.6 377,306.5 301.6
Avg. 501,683.1 0.4 379,007.6 45.1 391,114.6 94.8 349,932.6 727.3

N = 30 Z T Z T Z T Z T
1 280,309.3 0.3 192,679.5 22.8 264,531.4 38.3 152,391.4 261.9
2 219,780.4 0.4 122,902.1 23.5 169,330.9 36.3 126,911.9 267.7
3 191,652.2 0.4 99,641.6 20.9 137,728.7 38.4 91,690.0 233.9
4 326,444.1 0.4 212,452.8 23.2 251,530.4 45.0 203,730.3 263.7
5 1,638,434.5 0.4 1,245,954.6 34.5 1,306,552.2 81.9 1,281,544.0 430.2
6 1,241,025.7 0.4 1,173,821.3 35.3 1,027,884.1 84.5 1,169,000.7 436.2
7 1,509,662.9 0.4 973,022.3 37.0 853,598.5 91.4 940,819.3 440.2
8 688,383.0 0.4 602,804.1 46.7 521,229.2 106.8 553,369.4 1,312.4
9 1,368,850.4 0.4 1,018,128.0 34.7 919,646.3 106.4 1,003,536.2 471.0

10 966,228.0 0.4 721,914.3 131.5 655,321.0 122.9 693,514.7 870.5
Avg. 843,077.0 0.4 636,332.1 41.0 619,124.2 75.2 621,650.8 498.8

In Table 6, the “Z” column indicates the objective function value and the “T” column indicates the
computational times for each experiment. In addition, Figure 15a to Figure 15d shows the comparison
of total cost for different approaches under different numbers of calling ships (n = 15, 20, 25, and 30).
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Figure 15a shows the total costs of 4 approaches employed in the first stage of the two-stage
procedure for a problem with 15 ships (n = 15), from which we note that the MPSO has the least
cost (40,861.5). Figure 15b also shows the MPSO with least average cost (119,148.9) for the problem
with 20 ships (n = 20). Furthermore, Figure 15c also shows the MPSO with the least average cost
(349,932.6) for the problem with 25 ships (n = 25). Finally, Figure 15d shows that the MPSO has a slight
higher average cost (621,650.8) than the PSO2 that has the least average cost (619,124.2) for the problem
with 30 ships (n = 30). This result may come from the bias experimental samples generated by the
computer automatically. However, in this research, the total number of experimental instances that
MPSO performs equally or better than the PSO2 in 36 (out of the 40 samples), thus we consider the
MPSO in general can find a better solution than the PSO2, especially in problem sizes n = 15,20 and 25.

5.4. Analysis and Discussion

We summarize and discuss the findings as follows:

(1) This research has, respectively, employed FCFS, PSO, PSO2, and MPSO in the first stage of the
two-stage procedure and it is found that these approaches lead to different results. The MPSO is
found to outperform the other approaches in terms of the total cost defined in the objective function.

(2) The tuning of the total number of iterative runs can also control the computational times. The more
the iterative runs the more the computational times.
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(3) Although having less computational cost, the FCFS is incapable of finding a high-quality solution
due to its simplicity. This disadvantage increases when the solution space increases. The FCFS
cannot improve the solution continuously.

(4) It is found that moving a target toward either the +Y or −Y direction is less costly than towards
the +X direction. This leads to the better use of available quay space. Thus, the cost values of C1
and C2 can inference the selection of a moving direction for a target ship.

(5) As the least-cost direction has a high priority to be selected for a target ship, it is expected that
our approach is likely to find, at least, a near-optimal solution. This cost estimation mechanism
plays an essential role for this finding.

(6) From Table 6, as the computational times to find the solutions for these approaches are found to
be acceptable, these approaches are considered as applicable for practical usage.

(7) Our approach is different from some proposed in past studies. For example, it differs from [39] in
which the marginal decreasing capacity of QCs was not considered. This research differs from
studies [5,18,19], which are PSO-based research. The [5] focused on a discrete version of BAP
instead of a continuous version. The [18,19] only focused on the BAP, which did not consider
the QCAP.

(8) In [5] the proposed approach, PSO2, assigns a random number of QCs to a ship initially. However,
this initial assignment cannot guarantee the best assignment of QCs to a ship as it did not use
the rmax

k . In this research, the MPSO assigns an initial number of QCs to a ship based on the rmax
k ,

which promises the best assignment. The best number is to be adjusted if not conforming to the
two QC constraints, Equations (8) and (9), to ensure a feasible solution. The experimental results
show that the MPSO outperforms the PSO2 proposed in [5].

(9) However, one limitation of the MPSO is that it cannot identify each QC assigned to a ship
though it allows QC adjustment, i.e., it is the type of variable-in-time QCAP (number) instead of
variable-in-time QCAP (specific) that is more specific and convenient for practical usage. Thus,
there is room to improve the MPSO further.

(10) One lack of this research is the comparison of the MPSO to GAs that have been widely used
for solving seaside operational problems. This can be treated as a future research direction.
Nevertheless, this research has achieved a preliminary result.

(11) Although we have reached the preliminary conclusion that the MPSO outperforms the other
approaches, extensive experiments are still required to consolidate this conclusion further.

(12) One concern raised by a maritime supply chain is the damage and pollution to our environment,
thus environmental protection is a concern. To pursuit higher efficiency for container terminal
operations, some recent ideas have even proposed to allow speeding up ships so that they can
arrive at a port earlier to make a better plan for resource usage (such as better use of quay space).
However, speeding up a ship can introduce more air pollution that can damage our environment.
In this research, speeding up a ship is not considered, as our approach does not allow a ship to
move toward the −X direction (which requires a ship to speed up its speed). Thus, our approach
has the merit of protecting our environment, while trying to better use resources including quay
space and berths.

6. Conclusions

A hybrid approach combining multiple particle swarm optimization (MPSO) with an event-based
simulation heuristic is proposed in this research to deal with the DCBAP and the variable-in-time
QCAP (number) through a two-stage procedure. Both arrived and incoming ships are considered and
assigned to a quay used as a continuous line to accommodate these ships. The handling time of each
ship is determined by the number of QCs assigned to this ship with QC interference being taken into
consideration and the number of QCs assigned to a ship is further adjustable.
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The first stage uses a heuristic/metaheuristic to generate alternative ship placement sequences as
inputs to the second stage that includes an event-based simulation heuristic to place ships into the
berth plan, assign/adjust QCs and resolve overlaps of ships for developing feasible solutions. Finally,
the best solution is outputted. Among FCFS, PSO, PSO2, and MPSO, the MPSO is found to be the best,
in terms of total cost, when used in the first stage to work with the simulation-based heuristic in the
second stage.

The DCBAP and the QCAP are two problems commonly faced by container terminal planners
daily. A better solution for the two problems is necessary due to their considerable impacts on the
productivity of a container terminal. The main contributions of this research are listed as follows:

(1) We have formulated the two problems as a mathematical model. Based on this model, a two-stage
procedure was proposed to solve the two problems by including heuristics and metaheuristics.

(2) A resolution of the conflict of ships is developed based on the concept of moving a target towards
the least direction. This mechanism can lead to the finding of the optimal/near optimal solutions.

(3) We have implemented this two-stage procedure by using java programing language to
facilitate the generation of solutions. Our experiments show that our approach can find the
optimal/near-optimal solution with acceptable computation times.

In future research, improving the MPSO to deal with the simultaneous DCBAP and variable-in-time
QCAP (specific) can be focused. This type of combined problem is more difficult to solve but indeed
more helpful for practical usage. The use of other metaheuristics such as GAs in the first stage of
the two-stage approach and a comparison to the MPSO can be performed in future research. Finally,
extending this research to the area of QCSP can be further considered.
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