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Abstract: Optimal fourth-order multiple-root finders with parameter λ were conjugated via the
Möbius map applied to a simple polynomial function. The long-term dynamics of these conjugated
maps in the λ-parameter plane was analyzed to discover some properties of periodic, bounded and
chaotic orbits. The λ-parameters for periodic orbits in the parameter plane are painted in different
colors depending on their periods, and the bounded or chaotic ones are colored black to illustrate
λ-dependent connected components. When a red fixed component in the parameter plane branches
into a q-periodic component, we encounter geometric bifurcation phenomena whose characteristics
determine the desired boundary equation and bifurcation point. Computational results along with
illustrated components support the bifurcation phenomena underlying this paper.
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1. Introduction

The governing equations of natural phenomena are usually represented as nonlinear equations in
the form of f (x) = 0, when solving the relevant algebraic or differential equations obtained through
the scientific observations, experiments, experiences as well as mathematical modeling. Since the exact
solutions of such nonlinear governing equations are rarely feasible, it is considered best to rely on
numerical solution techniques such as multi-point iterative methods [1–4], splitting methods [5,6],
semi-explicit methods [7,8] as well as analytical-numerical methods [9]. Among such techniques,
the most widely used multi-point iterative method under general circumstances is Newton’s method
which converges quadratically to a simple root and linearly to a multiple root. In order to more
accurately solve the nonlinear governing equations, many researchers have been developing new
iteration methods with high convergence orders, including Newton’s method as a particular case.
Motivation for writing this paper is to analyze the convergence behavior of these iterative numerical
methods from the viewpoint of the limit behavior under the iteration dynamics with illustrative
computational results.

Although the limit behavior of the aforementioned numerical solution techniques draws great
attention to the readers, our study will focus on the limit behavior of a family of Newton-like
iterative methods with a simple structure of a weight function possessing a λ-control parameter.
The convergence behavior of these iterative numerical methods equipped with λ-control parameters
can be analyzed from a viewpoint of iteration dynamics. Let us begin with a family of nonlinear
governing equations with parameter λ as represented by the following nonlinear recurrence relation:
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xn+1 = W f (λ; xn), n = 0, 1, 2, · · · , (1)

where W f is called the iteration function or fixed point operator [10]. If iteration index n is regarded
as an indicator of time, then the nonlinear recurrence relation (1) would represent itself the relevant
discrete dynamical system. Consequently, pursuing the convergence of the root of the nonlinear
recurrence relation (1) is initiated by dealing with its limit behavior under the action of the nonlinear
discrete dynamical system (1). The governing equation to be dealt with in this paper is a family of
optimal [11] two-point Newton-like fourth-order multiple–root finders with parameter λ studied
in Reference [3]: 

yn = xn −m · f (xn)
f ′(xn)

,

xn+1 = xn −m ·Q f (λ; t) · f (xn)
f ′(xn)

= W f (λ; xn), t =
ï

f (yn)
f (xn)

ò1/m

,
(2)

where Q f : C2 → C is analytic [12] in a neighborhood of (λ, 0) with λ ∈ C fixed and t is taken on the
principal analytic branch of the m-th root. In the current study, we will employ a specific form of Q f
with a controllable parameter λ ∈ C as follows:

Q f (λ; t) = 1+(λ+1)t+(λ+2)t2

1+λt . (3)

The advantage of choosing such a rational function Q f is to allow the conjugated W f to contain
the low-order polynomial factor T(λ; z) with exact λ-dependent roots, that is, the exact fixed points of
F from fixed-point relation (6) under the Möbius conjugacy to be introduced in Section 4. If a different
type of Q f , say, a polynomial were chosen, then the higher order of T(λ; z) would hinder us from
locating the exact fixed points.

In Reference [13], as a part of long-term dynamics for the conjugated map of (2), a study was
conducted on bifurcation [14,15] phenomena occurring on the boundary curve of the yellow fixed
component related to λ-free strange fixed point z = 1. The number of the component was turned out
to be only one. Moreover, the equation of the boundary curve turned out to be a circle as one of the
known geometric shapes. This simple circle allowed us to analyze the global bifurcations occurring on
it without difficulties.

The aim of this paper is to study of the fixed points under the Möbius conjugacy map and
to investigate in depth the boundary curves and other geometric properties of the hyperbolic
components [16] in the λ-parameter plane (to be defined in Section 4). The current study will cover a
challenging task not handled in the previous study in Reference [13]. We will extensively investigate
the bifurcation phenomena of the red fixed component R f (whose notation and analysis will be
described in Sections 3 and 4) related to the strange fixed point z = z(λ), which is λ-dependent, that
is, not λ-free as in the case of the previous study for the yellow fixed component. In particular, it is
our curiosity and concern to find out whether the number of R f is more than one, and whether the
equation of the boundary curve represents a known geometric figure. From the perspective of plane
geometric curves, our main interest lies in the computational, theoretical and visual exploration of
bifurcation phenomena occurring on the boundary curve of R f .

A theoretical formulation of the boundary equation of R f developed here will serve as a basis
for describing bifurcation phenomena occurring in another discrete dynamical system. For example,
it is helpful to establish the boundary equations of hyperbolic components with small periods in the
Mandelbrot set [17] for a better analysis of bifurcation phenomena occurring there.

The remainder of this paper further describes the important points for the analysis of bifurcation
phenomena. Described in Section 2 are preliminary results on the long-term behavior of a dynamical
system and local bifurcations. In Section 3, we describe various properties of the fixed and critical
points under the Möbius conjugacy map. Section 4 investigates a long-term dynamical behavior and the
symmetry of the parameter plane. The location of the bifurcation points is extensively explored based
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upon the existence of a common osculating point between the fixed component (maximal connected
set) [12] and q-periodic component. Section 5 describes the boundary curves of the fixed components
along with their geometric properties. Finally in Section 6, we summarize overall studies and state the
possible future work on the long-term dynamics of period-2 components.

2. Preliminary Results

Although iteration function W f in (1) is in general meromorphic, it suffices to treat the dynamics
of rational functions only, in view of Lemma of 2.1 of Reference [13]. Indeed, we apply f (z) =

((z− a)(z− b))m to obtain the conjugation of rational W f , namely, F = h ◦W f ◦ h−1 in the form of
a rational function to be shown in (4) via the first-order rational Möbius conjugacy map h(z) = z−b

z−a ,
with a 6= b [18].

The following definition of conjugacy and other assertions are useful for continuing discussion of
the relevant dynamics.

Definition 1. Let F : D ⊂ C→ D and K : E ⊂ C→ E represent two dynamical systems. The dynamical
system F is said to be conjugate to K via h if there exists an isomorphism h : E→ D such that F ◦ h = h ◦ K.
Such h is called a conjugacy [19].

According to Theorem of 2.1 in Reference [13], we find:

Theorem 1. Let F ,K ∈ C1 and be conjugate to each other via the diffeomorphic conjugacy h. In addition, let ξ

be a fixed point of K. Then the following hold:

(a) The fixed point property remains invariant under a topological conjugacy h, that is,

ξ = K(ξ) if and only if h(ξ) = F (h(ξ)).

(b) The Poincaré characteristic multiplier [15] of ξ by K, denoted by m(K, ξ), is invariant under a
diffeomorphic conjugacy h, that is,

m(h ◦ K ◦ h−1, h(ξ)) = F ′(h(ξ)) = K′(ξ) = m(K, ξ).

Remark 1. IfF andK are conjugate to each other via the topological conjugacy h, then we findF = h ◦K ◦ h−1

and Fn = (h ◦ K ◦ h−1) ◦ (h ◦ K ◦ h−1) · · · ◦ (h ◦ K ◦ h−1) = h ◦ Kn ◦ h−1. If F and K are further invertible,
then we also find F−1 = h ◦ K−1 ◦ h−1 and F−n = h ◦ K−n ◦ h−1. Hence, the topological conjugacy h gives
an isomorphism between two orbits of F and K.

Letting K = W f (λ; zn) in (2) yields Fn = h ◦W n
f ◦ h−1 for all n ∈ Z. Then the orbit behavior

of F exhibits a behavior similar to that of the iterative function W f . According to Theorem 1,
the invariant properties of the fixed point and the Poincaré characteristic multiplier after the conjugacy
transformation address that F and W f have the advantage that their orbit dynamics is invariant.
Such an advantage may give the favorable geometric characteristics induced by the orbit behavior of F .

Lemma 1. Suppose that ψ : Ω ⊂ C → Ω is meromorphic and has a fixed point ξ ∈ Ω with |ψ′(ξ)| < 1.
Then ψ has a unique fixed point ξ such that sequence {zn+1 = ψ(zn)}∞

0 converges to ξ for any given z0 ∈ Ω.

Proof. (i) For ξ ∈ Ω ⊂ C, the proof is done by Lemma 1 of Reference [20]. (ii) For ψ(∞) =

∞, it is possible to make |ψ′(∞)| < 1 under some restrictions on the form of ψ,
which can be justified based on the following description. By definition from Section 3.1
of Reference [21], ψ is said to be analytic at ∞ if H ◦ ψ ◦ H−1 is analytic at 0 with H(z) =

1/z. Due to Lemma 2.1 of Reference [13], we can express ψ(z) = a0+a1z+···+anzn

b0+b1z+···+bmzm as a
rational function with anbm 6= 0, n > m for n, m ∈ N ∪ {0}. We further define a function
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S(z) ≡ H ◦ ψ ◦ H−1(z) = 1
ψ(1/z) and find ψ′(∞) = S′(0) =

{
bm/an, if n = m + 1

0, if n > m + 1
by direct

computation or from Section 2.6 of Reference [19]. Hence if restriction |ψ′(∞)| = | bm
an
| < 1 is made,

then ∞ becomes an attracting fixed point of ψ.

If we select z0 as a critical point z∗ of ψ satisfying ψ ′(z∗) = 0, then Lemma 1 with z0 = z∗ yields
the following corollary.

Corollary 1. Let q ∈ N and ξ be an attracting q-periodic point of ψ in Lemma 1. Then every critical orbit of ψ

tends to ξ.

Corollary 1 will theoretically support the formation of hyperbolic components serving as
important parts of the structure of the parameter space to be introduced later in Section 4.

We now define a function G(λ; z) = ψλ(z) for a given parameter λ ∈ C. Let ξ and ω

respectively denote a fixed point and a critical point of G(λ; z). Then, in view of Lemma 1,
| d

dz G(λ; ξ)| = |G′(λ; ξ)| = |ψλ
′(ξ)| = 1 would influence the long-term orbit behavior of G(λ; ω)

as the parameter λ varies across the boundary of region Ω ⊂ C. The unit circle characterizes the
stability G′(λ; ξ) and is better designated as the stability unit circle S for further analysis.

An abrupt change of such a long-term orbit behavior of G(λ; ω) often arises at λ = λ∗, where the
value of G′(λ; ξ) crosses the boundary of S. This kind of abrupt change in its dynamical behavior is
said to be a bifurcation. Consulting the notions of such bifurcations in Reference [22], the following
three types of bifurcation may occur:

(1) If G′(λ∗; ξ) = 1, then the bifurcation is of (cyclic) fold(saddle-node).
(2) If G′(λ∗; ξ) = −1, then the bifurcation is of flip(period-doubling).
(3) If G′(λ∗; ξ) = eiθ , then the bifurcation is of Neimark-Sacker(secondary Hopf),

with θ 6= π, 0 < θ < 2π.
Such a control parameter λ∗ in the parameter plane is called a bifurcation point whose location will

be treated in Section 4.2.

3. Fixed and Critical Points under a Linear Fractional Möbius Conjugacy Map

The conjugated map of (2) under a linear fractional Möbius conjugacy map applied to a polynomial
f (z) = ((z− a)(z− b))m will be investigated regarding the relevant properties underlying its fixed
and critical points for λ ∈ C. We will explore its long-term dynamical behavior [10,18,23–27] behind
the parameter plane via a linear fractional conjugacy map which is given by the Möbius conjugacy
map h(z) = z−b

z−a , with a 6= b. Let F = h ◦W f ◦ h−1. Then the resulting F represents:

F (λ; z) =
z4(5 + 4z + z2 + λ(z + 2))

q(λ; z)
=

z6(q(λ; 1
z )

q(λ; z)
, (4)

where q(λ; z) = 1 + z(4 + λ) + z2(5 + 2λ). Be aware that conjugacy h(z) makes F (λ; z) free from
parameters m, a, b. In addition, we directly compute the derivative of F from (4):

F ′(λ; z) =
2z3(z + 1)2Q(λ; z)

q(λ; z)2 , (5)

where Q(λ; z) = 10 + 4λ + z(20 + 14λ + 3λ2) + 2z2(5 + 2λ).
The λ-dependent fixed points of F (λ; z) are given by the roots of

F (λ; z)− z =
z(z− 1) · T(λ; z)

q(λ; z)
, (6)
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where T(λ; z) = 1 + z(5 + λ) + z2(10 + 3λ) + z3(5 + λ) + z4.
Consulting Sections 3.1 and 3.2 of Reference [20], we state following proposition for properties of

F and F ′:

Proposition 1. (a) If ξ ∈ C is a fixed point of F , then so is 1/ξ.
(b) If ω ∈ C is a critical point of F , then so is 1/ω.
(c) Relation F (λ; 1

z ) =
1

F (λ;z) holds for any λ ∈ C and any z ∈ C.

(d) Relation F ′(λ; 1
ξ ) = F

′(λ; ξ) holds for any λ ∈ C and any fixed point ξ ∈ C of F .

According to Theorem 1-(a), the fixed points 0 and ∞ of F = h ◦ K ◦ h−1 with h(z) = z−b
z−a , (a 6= b)

and K = W f respectively correspond to the fixed points a and b of W f , that is, the roots of polynomial
f (z) = (z − a)m(z − b)m. They are super-attractive, free of λ and also imply the critical points of
F (λ; z) in view of (5).

Nevertheless, because their orbits approach themselves, the dynamical impact is expected to be
small. Fixed points excluding such fixed points {0, ∞} are termed as strange fixed points [28] which
are not the roots of f (z) = (z− a)m(z− b)m. Notice that z = 1 is a λ-free strange fixed point whose
dynamics was explored in Reference [13]. The roots of T(λ; z) = 0 in (6) are indeed λ-dependent
strange fixed points. Simple computations directly prove the following lemma.

Lemma 2. T(λ; 1
z ) =

T(λ;z)
z4 and Q(λ; 1

z ) =
Q(λ;z)

z2 hold for any λ ∈ C and any z ∈ C.

We seek λ-dependent strange fixed points ξλ by solving T(λ; ξλ) = 0 for a fixed λ ∈ C.
According to Proposition 1-(a), T(λ; z) can be written in the form: T(λ; z) =

∏ 2
k=1(z

2 + ckz + 1) = 0,
that is, z = − 1

2
(
ck +

»
c2

k − 4
)

where ck, (1 ≤ k ≤ 2) are the roots satisfying

c2 − c(λ + 5) + 3λ + 8 = 0. (7)

Hence, we are able to express all the desired λ-dependent strange fixed points of F as ξ
(k)
λ and

1/ξ
(k)
λ with the notation ξ

(k)
λ = − 1

2
(
ck +

»
c2

k − 4
)

for 1 ≤ k ≤ 2. Figure 4 of Reference [13] illustrates

the stability surfaces of λ-dependent strange fixed points ξλ
(j)(1 ≤ j ≤ 2).

The super-attractors of F (λ; z) can be found by solving T(λ; z) = Q(λ; z) = 0 for z and λ.
Eliminating z in T(λ; z) = Q(λ; z) = 0 yields a 4-degree polynomial

(2 + λ)(−100− 50λ + 8λ2 + 3λ3) = 0, (8)

from which we find λ ∈ {−4.7034, 3.86866,−2,−1.83192} for the desired super-attractors. Note that
the cubic factor in (8) with positive discriminant value of 1, 594, 800 has three distinct real roots.

On the other hand, eliminating λ in T(λ; z) = Q(λ; z) = 0 yields an 8-degree polynomial

(1 + z)2(1 + 4z− 4z2 − 10z3 − 4z4 + 4z5 + z6) = 0, (9)

which induces 8 supper-attractors denoted by 4 pairs of (zj, 1/zj) for 1 ≤ j ≤ 4 with
z1 = 0.568254, z2 = −0.224773, z3 = −1 and z4 = −0.827167 − 0.561957i. Lemma 2 leads us
to only 4 pairs of super-attractors (λ; z) as follows:

(λ; z) ∈ {(−4.7034; 0.568254), (3.86866;−0.224773), (−2;−1), (−1.83192;−0.827167− 0.561957i)}. (10)

The critical points of F are given by the roots of F ′(λ; z) = 0. A quick glance of (5) reveals that
z = −1 is a λ-free critical point. Evidently z = 0 and z = ∞ are critical points that respectively
correspond to the roots a and b of the polynomial (z− a)m(z− b)m. The critical points excluding the
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both roots a and b are termed as free critical points [28]. Since the orbit behavior of λ-dependent critical
point of F (λ; z) draws our attention, we will treat free critical points that are λ-dependent.

4. Long-Term Orbit Behavior with Bifurcation Phenomena in the Parameter Plane

4.1. Parameter Plane and Long-Term Orbit Behavior

One way to efficiently handle the long-term orbit dynamics of the iterative map F (λ; z) in (4) is to
visually illustrate its dynamical orbit behavior in the λ-parameter plane whose definition will be made
in this section. The long-term critical orbit under the action of F (λ; z) will induce attracting periodic,
finitely bounded or chaotic orbits for each given λ selected in the λ-parameter plane. It is certainly
interesting to paint the point λ for which the long-term orbit approaches an attracting periodic orbit,
with different color depending on its period.

Corollary 2 and Remark 2 well state the orbit behavior between two critical points z and 1/z of F .

Corollary 2. Let q ∈ N be given. If z ∈ C is a q-periodic point of F (λ; z), then so is 1
z .

Proof. Lemma 2 directly shows that F (λ; z) = z and F (λ; 1/z) = 1/z for a fixed point z
of F with a fixed λ ∈ C. Hence there exists a topological conjugacy h(z) = 1/z such that
F (λ; z) = h ◦ F (λ; z) ◦ h−1 for a fixed point z. Hence, Remark 1 yields a relation
F q(λ; z) = h ◦ F q(λ; z) ◦ h−1. Clearly, F q(λ; z) = z gives F q(λ; 1

z ) = 1
F q(λ;z) = 1

z ,
completing the proof.

Remark 2. Let ω1 and ω2 be the two λ-dependent critical points ofF (λ; z) found from the roots of Q(λ; z) = 0
in (5) shown below:

ω1 =

−
20+14λ+3λ2+

√
3λ(2+λ)(4+λ)(10+3λ)

4(5+2λ)
, if λ 6= 5

2

∞, if λ = − 5
2 .

and ω2 =
1

ω1
. (11)

If the orbit of ω1 approaches a q-periodic point ξ1 of F , then the orbit of ω2 = 1
ω1

also approaches a
q-periodic point ξ2 = 1

ξ1
, by virtue of Corollary 2.

In light of Remark 2, it suffices to consider only one branch of the critical points ω1 for its typical
orbit behavior. We define the parameter plane(space) P for iterative map F (λ; z) as follows:

P = {λ ∈ C : an orbit of a critical point ω tends to a number γ ∈ C under the action of F (λ; ω)}.

From now on, let ω denote the critical point ω1 for convenience. Consider the limit behavior of
an orbit of F (λ; ω) approaching a number γ ∈ C in the long run. If γ = ∞, then it draws very little
attention to the limit behavior since F (λ; ∞) = ∞. On the contrary, if γ is finite, then it will create
a diversity of the limit behavior as λ ∈ C varies. More importantly, if γ is finite as well as bounded,
then Bolzano-Weierstass Theorem guarantees the existence of a subsequence of the orbit of F (λ; ω)

converging to the fixed point ξ(λ). In other words, we can find a q-periodic point ξ(λ) = γ for some
q ∈ N in such a way that

ξ(λ) = γ = lim
`→∞
F `(λ; ω) = lim

j→∞
F pj+q(λ; ω) = F q ◦ ( lim

j→∞
F pj(λ; ω)) = F q(λ; ξ(λ)), (12)

by expressing ` = p j + q for any `, p, j ∈ N with p < ` and q ∈ {0, 1, 2, · · · , p− 1}; if q = 0, then it
suggests that a non-periodic bounded orbit could exist. As a result, the q-periodic orbit of ξ(λ) = γ

forms a q-cycle: ¶
ξ(λ),F (λ; ξ(λ)),F 2(λ; ξ(λ)), · · · ,F q−1(λ; ξ(λ))

©
. (13)
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Taking the discussion in Section 3 into consideration, we find the possible fixed points
ξ(λ) ∈ {0, 1, ∞, ξ

(k)
λ , 1/ξ

(k)
λ , (1 ≤ k ≤ 2)}. We now define a function G(λ; z) = F q(λ; z) − z for

any given q ∈ N. As a consequence, G(λ; z) establishes a bivariate rational function of z and λ on C.
Since the rational function G(λ; z) has a finite number of zeros z = ξ(λ), that is, the fixed points of
F q(λ; z) for any given q ∈ N, we can find a λ for any periodic-point z = ξ(λ) being approached by the
long-term critical orbit of F (λ; ω).

To debate the stability of the q-periodic point ξ(λ), we first consider the case for q = 1. Due to
the fact that F (λ; 0) = 0 and F (λ; ∞) = ∞, we find that 0 and ∞ are the fixed points as well as
super-attractors in view of Proposition 1-(d). In this case, regions of corresponding λ-values are
respectively colored in cyan and magenta in the parameter space P in Figure 1. For the fixed point
ξ(λ) = 1, we have F (λ; 1) = 1 and |F ′(λ; 1)| < 1 for λ in the yellow region of P in Figure 1.
For the λ-dependent fixed points ξ(λ) ∈ {ξ(k)λ , 1/ξ

(k)
λ , (1 ≤ k ≤ 2)}, we find F (λ; ξ

(k)
λ ) = ξ

(k)
λ and

F (λ; 1/ξ
(k)
λ ) = 1/ξ

(k)
λ for 1 ≤ k ≤ 2.

ℛ2
fℛ3

f

ℛ1
f

-5.5 -4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5

-5.

-4.

-3.

-2.

-1.

0.

1.

2.

3.

4.

5.

Figure 1. Parameter space P with three red fixed components R
f
i , (1 ≤ i ≤ 3).

Let us zoom in on the three regions indicated by the dotted rectangles in Figure 1 so that the red
fixed components denoted by R

f
1 , R

f
2 , and R

f
3 arranged in order of their area size are clearly visible as

magnified in Figure 2.
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1/3

1/4

1/5

1/6

1/7

1/8

1/9

1/2

1/10

0/1

-5.15 -5.05 -4.95 -4.85 -4.75 -4.65 -4.55 -4.45 -4.35

-0.4

-0.3

-0.2

-0.1

0.

0.1

0.2

0.3

0.4

(a) Red fixed component R
f
1

3.8 3.85 3.9 3.95 4. 4.05 4.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(b) Red fixed component R
f
2

-1.85 -1.845 -1.84 -1.835 -1.83 -1.825

-0.0125

-0.0075

-0.0025

0.0025

0.0075

0.0125

(c) Red fixed component R
f
3

Figure 2. Three Red fixed components R
f
i , (1 ≤ i ≤ 3).

The three attracting regions (hyperbolic components) R
f
i , (1 ≤ i ≤ 3) related to the fixed points

ξ(λ) are extensively investigated in Section 5.1. The boundaries of R
f
i will be comprised of six

piecewise analytic branches associated with ξ
(k)
λ and 1/ξ

(k)
λ for 1 ≤ k ≤ 2. We next consider the case

for q ≥ 2. Observe that the attracting fixed point ξ(λ) maintains its stability for λ in the red region
R

f
i . As λ crosses the finite boundary of R

f
i , that is, the fixed point ξ(λ) loses its stability, but other

attracting q-periodic points with

F q(λ; ξ(λ)) = ξ(λ),
∣∣∣∣ d
dz
F q(λ; z)

∣∣∣∣
z=ξ(λ)

< 1, for q ≥ 2

begin to emerge along the boundaries of R
f
i . Hyperbolic components of λ-values for these q-periodic

points are painted according to the color chart in Figure 5 of Reference [13]. Some of q-periodic
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components in P are indicated by arrow numbers. If λ is chosen in such a q-periodic component,
then the orbit of critical point ω attracts to a q-periodic point of F . To generate the λ-parameter plane
P , Mathematica software has been used with 16-digits of precision for real and complex numbers.
The desired convergence criterion for a q-periodic orbit was 10−6 after maximum 3000 iterations.

It is evident that proper components of P can be found to select best members of a family (2)
locating the desired roots z = 0 or z = ∞ with acceptable numerical stability, provided λ-parameters
belong to such components.

According to Lemma 3.5 in Reference [29] and Theorem 5.2 in Reference [13], the parameter space
P is symmetric about its horizontal axis.

4.2. Bifurcation Points along a Red Fixed Component R f

Suppose that a point λ(t) on a piecewise analytic curve in the complex plane satisfies relation:

λ(t) = x(t) + iy(t), x, y ∈ R for t ∈ [ti, t f ] ⊂ R.

An exemplary curve consisting of such points λ is sketched in Figure 3 along with attracting
q-periodic satellite [17] components denoted by Cq and identified by numbers q ∈ N. Observe that
λ′(t) = dλ

dt represents a tangential vector at a parametric location t ∈ [ti, t f ]. We extensively pursue
the case when λ(t) traces a boundary curve of a typical red fixed component R f as t ∈ [ti, t f ] varies.
For convenience of notation, we let ∂R f denote the finite boundary of R f , and write Fλ(z) ≡ F (λ; z)
for simple treatment of derivatives.

1 12

3

4

q

λ

t

Figure 3. Bifurcation geometry along the boundary of a typical fixed component.

Let λ be an osculating point ∈ ∂R f where the λ-dependent critical orbit of F approaches an
attracting (hyperbolic) q-periodic point ξ. We find that the q-periodic point ξ is dependent upon
parameter t, since the boundary ∂R f depends on t ∈ [ti, t f ]. Hence, we express ξ = |ξ|e i t with
t ∈ [0, 2π).

Given q ∈ N, the q-periodic point ξ satisfies the following set of two equations at the common
boundary point λ ∈ ∂R f ⋂ ∂Cq as shown in Figure 3.{

F q
λ (ξ) = Fλ(ξ) = ξ,

d
dzF

q
λ (z)|z=ξ = αq, with α = F ′λ (ξ).

(14)
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Solving for λ from the fixed point relation Fλ(ξ(t)) = ξ(t) via (4), we are able to obtain:

λ(t) = H(ξ(t)) = H(F q
λ (ξ(t))), (15)

where H(z) is a rational function in z in view of (4) and differentiable at points except at a finite
number of poles. This λ will trace a curve in the complex plane as parameter t varies. Hence, by the
chain rules, we find the desired derivative at the fixed point ξ:

dλ

dt
=

dH(z(t))
dz

· dz
dt

∣∣∣
z= ξ

=
dH(F q

λ (z(t))
dz

· dz
dt

∣∣∣
z= ξ

=
dH(z(t))

dz
· αq · dz

dt

∣∣∣
z= ξ

, (16)

from which we have αq = 1 in view of the fact that F q
λ (ξ) = ξ. Accordingly, Equation (14) reduces to:{

Fλ(ξ) = ξ,
d
dzF

q
λ (z)|z=ξ = 1.

(17)

Since dλ
dt represents a tangent line at a location t, Equation (16) states the common tangent line of

∂R f and ∂Cq. The discussion thus far leads us to the notion of `/q–bifurcation point below.

Definition 2. Let q ∈ N be given. If λ ∈ ∂R f ⋂ ∂Cq and α(λ) = ei2π`/q, with ` ∈ {0, 1, 2, · · · , q− 1}
and (`, q) = 1 for ` 6= 0, then λ is called the `/q–bifurcation point of R f or `/q–root point of Cq.

By solving α(λ) = ei2π`/q for λ, we are able to find the `/q-bifurcation point λ = λ`,q in terms
of ` and q, provided that a set of coprime values of (`, q) are given. If q = 1 then ` = 0 must occur
and gives λ`,q = 1, which is the fold(saddle-node) bifurcation point in the sense of local bifurcations
discussed in Section 2. At this kind of fold bifurcation point, another fixed component different from
R f might arise or the same fixed component as R f itself merge together due to the connectedness
of the component. In the latter case, such a fold bifurcation point λ`,q = 1 might be a cusp-like
point where R f itself becomes a primitive component. If (`, q) = (1, 2), then λ`,q = −1 becomes the
flip (period-doubling) bifurcation point. If q > 2 and ` 6= 0, then λ`,q becomes the Neimark-Sacker
(secondary Hopf) bifurcation point.

We now conveniently denote the closed boundary curves of R
f
i by Bi for 1 ≤ i ≤ 3. Tables 1–3

list typical values of λ`,q for 1 ≤ q ≤ 10 on B1, B2 and B3, respectively and some of them on B1 as well
as three of them on each Bi are indicated by arrow lines in Figures 2 and 4. The 0/1-bifurcation point
is the one where the red fixed component is budded from itself or from other fixed component; its
location is found to be λ0,1 = −4.4 for B1, λ0,1 = 3.82843 for B2 and λ0,1 = −1.82843 for B3. It turns out
that R

f
2 and R

f
3 are respectively regarded as primitive components, while R

f
1 is a satellite component

budded from a yellow fixed component.
Moreover, coprime pairs of (`, q) give us the number of bifurcation points λ`,q as the length |Fn|

of the Farey [30] sequence Fn of order n. Theorem 4 in Reference [31] directly gives |Fn|:

|Fn| = 1 +
n∑

j=1

φ(j), (18)

with φ(j) as Euler’s totient function.
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Table 1. Typical λ`,q along B1 at t = 2π`
q , with λ1(t) for t ∈ [0, 2π].

`
q 0 1 2 3 4 5 6 7 8 9

1 −4.4
2 −4.97983

3
Å
−4.85312
0.238499

ã∗ Å
−4.85312
−0.238499

ã
4

Å
−4.71655
0.287269

ã Å
−4.71655
−0.287269

ã
5

Å
−4.626

0.281336

ã Å
−4.93245
0.158109

ã Å
−4.93245
−0.158109

ã Å
−4.626
−0.281336

ã
6

Å
−4.56717
0.26127

ã Å
−4.56717
−0.26127

ã
7

Å
−4.5278
0.239065

ã Å
−4.77871
0.27466

ã Å
−4.95541
0.115933

ã Å
−4.95541
−0.115933

ã Å
−4.77871
−0.27466

ã Å
−4.5278
−0.239065

ã
8

Å
−4.50048
0.218276

ã Å
−4.90667
0.191651

ã Å
−4.90667
−0.191651

ã Å
−4.50048
−0.218276

ã
9

Å
−4.48088
0.199791

ã Å
−4.66632
0.287502

ã Å
−4.965

0.0911344

ã Å
−4.965
−0.0911344

ã Å
−4.66632
−0.287502

ã Å
−4.48088
−0.199791

ã
10

Å
−4.46641
0.183634

ã Å
−4.80225
0.265997

ã Å
−4.80225
−0.265997

ã Å
−4.46641
−0.183634

ã
(
−4.85312
0.238499

)∗
≡ −4.85312 + i 0.238499, i =

√
−1.

Table 2. Typical λ`,q along B2 at t = 2π`
q , with λ2(t) for t ∈ [0, π] and λ3(t) for t ∈ (π, 2π).

`
q 0 1 2 3 4 5 6 7 8 9

1 3.82843
2 3.96186

3
Å

3.8970
−0.0839938

ã Å
3.8970

0.0839938

ã
4

Å
3.84416
−0.0776421

ã Å
3.84416

0.0776421

ã
5

Å
3.82177
−0.0579666

ã Å
3.93609
−0.0621221

ã Å
3.93609

0.0621221

ã Å
3.82177

0.0579666

ã
6

Å
3.81391
−0.041611

ã Å
3.81391

0.041611

ã
7

Å
3.81205
−0.0299945

ã Å
3.86568
−0.0850286

ã Å
3.94837
−0.0468236

ã Å
3.94837

0.0468236

ã Å
3.86568

0.0850286

ã Å
3.81205

0.0299945

ã
8

Å
3.81253
−0.0219917

ã Å
3.9228

−0.0728581

ã Å
3.9228

0.0728581

ã Å
3.81253

0.0219917

ã
9

Å
3.81382
−0.016453

ã Å
3.83031
−0.0677754

ã Å
3.95361
−0.0372162

ã Å
3.95361

0.0372162

ã Å
3.83031

0.0677754

ã Å
3.81382

0.016453

ã
10

Å
3.8153

−0.0125579

ã Å
3.87498
−0.0860643

ã Å
3.87498

0.0860643

ã Å
3.81530

0.0125579

ã
Red-highlighted values are evaluated at t ∈ [0, π].

Table 3. Typical λ`,q along B3 at t = 2π`
q , with λ3(t) for t ∈ [0, π] and λ2(t) for t ∈ (π, 2π).

`
q 0 1 2 3 4 5 6 7 8 9

1 −1.82843
2 −1.83917

3
Å
−1.83458

0.00661529

ã Å
−1.83458
−0.00661529

ã
4

Å
−1.83031

0.00658919

ã Å
−1.83031
−0.00658919

ã
5

Å
−1.82823
0.0051694

ã Å
−1.83742

0.00468664

ã Å
−1.83742
−0.00468664

ã Å
−1.82823
−0.0051694

ã
6

Å
−1.82739

0.00383164

ã Å
−1.82739
−0.00383164

ã
7

Å
−1.82712

0.00282147

ã Å
−1.83213

0.00697452

ã Å
−1.83826

0.00348905

ã Å
−1.83826
−0.00348905

ã Å
−1.83213
−0.00697452

ã Å
−1.82712
−0.00282147

ã
8

Å
−1.82709

0.00209933

ã Å
−1.83648

0.00557375

ã Å
−1.83648
−0.00557375

ã Å
−1.82709
−0.00209933

ã
9

Å
−1.82716
0.0015872

ã Å
−1.82906

0.00591232

ã Å
−1.83862
0.0027589

ã Å
−1.83862
−0.0027589

ã Å
−1.82906
−0.00591232

ã Å
−1.82716
−0.0015872

ã
10

Å
−1.82727

0.00122085

ã Å
−1.83288

0.00696914

ã Å
−1.83288
−0.00696914

ã Å
−1.82727
−0.00122085

ã
Red-highlighted values are evaluated at t ∈ [0, π].
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8

-4.51 -4.505 -4.5 -4.495 -4.49

0.21

0.215

0.22

0.225

0.23

(a) λ1,8 ∈ ∂R
f
1

 9

-4.673 -4.668 -4.663 -4.658

0.285

0.29

0.295

0.3

(b) λ2,9 ∈ ∂R
f
1

10

-4.81 -4.805 -4.8 -4.795

0.261

0.266

0.271

0.276

(c) λ3,10 ∈ ∂R
f
1

 5 

3.925 3.9375 3.95

0.05

0.0625

0.075

(d) λ3,5 ∈ ∂R
f
2

 6 

3.806 3.81 3.814 3.818

0.036

0.04

0.044

0.048

(e) λ5,6 ∈ ∂R
f
2

 7 

3.946 3.948 3.95 3.952 3.954

0.044

0.046

0.048

0.05

0.052

(f) λ4,7 ∈ ∂R
f
2

 2 

-1.846 -1.844 -1.842 -1.84 -1.838

-0.004

-0.002

0.

0.002

0.004

(g) λ1,2 ∈ ∂R
f
3

 3 

-1.8375 -1.835 -1.8325

0.005

0.0075

0.01

(h) λ1,3 ∈ ∂R
f
3

 4 

-1.831 -1.8305 -1.83 -1.8295 -1.829

0.006

0.0065

0.007

0.0075

0.008

(i) λ1,4 ∈ ∂R
f
3

Figure 4. Typical bifurcation points λ`,q of q-periodic components occurring on ∂R
f
j .

5. Constructing Boundary Equations of Red Fixed Components R f

5.1. Establishing Parametric Equations of ∂R f

We establish a boundary equation for such an attracting red fixed component R f
i associated with

a typical λ-dependent fixed point ξ given by a root of T(λ; ξ) = 0. During the course of development,
we will show the existence of three red fixed components R f , each boundary of which consists of two
analytic branches forming a piecewise smooth closed curve. Details of such a boundary curve along
with the location of bifurcation points will be discussed in the next section.

Consulting (5) and (6), we find that the fixed point ξ satisfies a set of equations with λ ∈ ∂R f

as follows: 
T(λ; z)

∣∣
z=ξ

=
2∏

k=1

(z2 + ckz + 1)
∣∣
z=ξ

= 0,

∣∣ 2z3(z+1)2Qλ(z)
qλ(z)2

∣∣ =
∣∣F ′λ(z)∣∣z=ξ

= 1,

(19)
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where ck are the two roots being dependent on λ from (7); moreover, for preferable algebraic treatments,
expressions Q(λ; z), q(λ; z) and F (λ; z) are written as Qλ(z), qλ(z) and Fλ(z) in order. We reconstruct
the second equation of (19) with a real parameter t ∈ [0, 2π):

F ′λ(z)
∣∣
z=ξ

=
2 z3(z + 1)2Qλ(z)

qλ(z)2

∣∣
z=ξ

= e i t. (20)

To make notations short, let us write ξ = z, ck = c, and compute λ from (7) in terms of c:

λ = λ(c) =
c2 − 5c + 8

c− 3
for c 6= 3, (21)

which defines a branch curve of ∂R f . It is our interest to express λ in terms of the parameter t. By use
of the symbolic Mathematica commands PolynomialQuotient and PolynomialRemainder described in
Section 3.3.4 of Reference [32], we find:®

2z3(z + 1)2Qλ(z) = (z2 + cz + 1) ·Ωq(z) + Ωr(z),
qλ(z)2 = (z2 + cz + 1) ·Θq(z) + Θr(z),

(22)

where Ωq(z) and Θq(z) are 9- and 6-degree polynomials in order; Ωr(z) = 2(18− 7c− 4c2 + c3)δ(z)
and Θr(z) = −4(c− 2)δ(z) with δ(z) = ( c−2

c−3 )
2[c3 − 2c + (1− 3c2 + c4)z

]
.

Due to the fact that (z2 + cz + 1) = 0, relation (20) directly yields:

F ′λ(ξ) =
Ωr(z)
Θr(z)

= − c3 − 4c2 − 7c + 18
2(c− 2)

= e i t, 0 ≤ t < 2π, c 6= 2, (23)

where c = ck for k ∈ {1, 2} can be expressed in terms of λ from (7). Since F ′λ(ξ) is not explicitly
dependent on fixed points ξ themselves but only on coefficient c, the stabilities of all four fixed points
ξ found from T(λ; ξ) = 0 remain equal to one another. This kind of favorable dependence on c clearly
reduces the possible lengthy algebraic work required for each fixed point.

Evidently, three roots C1(t), C2(t), C3(t) of c = ck(t) can be found for each k ∈ {1, 2} in terms of
t ∈ [0, 2π) from the cubic equation of (23):

C1(t) = 1
3

Å
4− σ− 37−6e i t

σ

ã
,

C2(t) = 1
6

Å
8 + σ(1− i

√
3) + (1+i

√
3)(37−6e i t)

σ

ã
,

C3(t) = 1
6

Å
8 + σ(1 + i

√
3) + (1−i

√
3)(37−6e i t)

σ

ã
,

(24)

with σ =
(
53− 18e i t + 3

√
6
√
−886 + 421e i t − 68e 2i t + 4e 3i t

)1/3.
Further refined computations readily offer:

C1(t) = C1(2π − t), for t ∈ [0, π],

C2(π + t) = C3(2π − t), for t ∈ (0, π),

C3(π − t) = C2(2π − t), for t ∈ (0, π),

(25)

where η reveals the complex conjugate of η. We say the points t at which a complex function f (z) is
not analytic on C are called singular points or singularities of f (z). Preferably, the continuity relations
hold at the singular points t = 0 and t = π:

C2(0) = C3(2π−), C2(π) = C3(π+), C3(0) = C2(2π−), C3(π) = C2(π+), (26)

where a+ and b− imply the respective limits from the above of a and the below of b.
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In view of (21) and (24), we can express three λ-values at C1(t), C2(t) and C3(t).
Denoting λj(t) = λ(Cj(t)) for t ∈ [0, 2π) leads us to the parametric expression for each j ∈ {1, 2, 3}
as follows:

λ1(t) = − µ2+5µ+8
µ+3 , µ = 37−e i t−4σ+σ2

3σ ,

λ2(t) = 1
12
[
− 8 + (1− i

√
3)(2σ− τ)− 72(1+i

√
3)

5(1+i
√

3)−2σ+τ

]
, τ = (1−i

√
3)(37−6e i t)

σ ,

λ3(t) =
288−30ρ+ρ2

6(ρ−18) , ρ = σ(1 + i
√

3) + τ + 8.

(27)

The result of Equation (27) suggests that the number of the red fixed components is three
and enables us to construct the three boundaries of R f parametrically as t ∈ [0, 2π) varies.
Indeed, Cj(t) and λ(Cj(t)) have also singular points at t = 0 and t = π.

Since λk(t) in (21) is a function of c which is piecewise analytic with such singularities, we shall
have same properties given by (25) and (26) with letter Cj replaced by λj. In light of this observation
along with the symmetry of P , we characterize the three closed boundary curves Bj of R f as
Bj = {β j(t), t ∈ [0, 2π)} for (1 ≤ j ≤ 3), with

β1(t) = λ1(t) for t ∈ [0, 2π), β2(t) =

{
λ2(t), t ∈ [0, π],

λ3(t), t ∈ (π, 2π),
β3(t) =

{
λ3(t), t ∈ [0, π],

λ2(t), t ∈ (π, 2π).
(28)

Any of β j(t) is generally comprised of piecewise analytic arcs with singularities at t = 0 and
t = π. The functions β j(t), (1 ≤ j ≤ 3) are plotted for t ∈ [0, 2π) in Figure 5. Let Bj be a closed plane

curve traced by β j(t) for t ∈ [0, 2π), which represents the boundary of j-th red fixed component R
f
j .

The symmetry of P clearly reflects the symmetry of Bj with respect to the horizontal axis. The blue
arcs correspond to ones with t ∈ [0, π].

-4.9 -4.8 -4.7 -4.6 -4.5 -4.4
Re λ

-0.3

-0.2

-0.1

0.1

0.2

0.3

Im λ

t1

t2

(a) B1

3.85 3.90 3.95
Re λ

-0.05

0.05

Im λ

t1

(b) B2

-1.838 -1.836 -1.834 -1.832 -1.830 -1.828
Re λ

-0.006

-0.004

-0.002

0.002

0.004

0.006

Im λ

t1

(c) B3

Figure 5. Boundary curves of the three red fixed components R f .

5.2. Geometric Features of Boundaries Bj

In this section, various typical geometric features, including curvatures, perimeters and bounding
areas of the closed boundary curves Bj, will be treated from a perspective of Euclidean planar curves.
Let xj(t) = <(λj(t)) and yj(t) = =(λj(t)) respectively denote the real and imaginary part of λj(t).
By elaborate computing with approximately 10 digits of accuracy, we obtain the arc lengths of Bj:

|ıB1| =
∫ 2π

0

»
x′1(t)

2 + y′1(t)
2dt ≈ 1.8170393896,

|ıB2| =
∫ π

0

»
x′2(t)

2 + y′2(t)
2dt + lim

ε→0

∫ 2π−ε

π+ε

»
x′3(t)

2 + y′3(t)
2dt ≈ 0.5312573924,

|ıB3| =
∫ π

0

»
x′3(t)

2 + y′3(t)
2dt + lim

ε→0

∫ 2π−ε

π+ε

»
x′2(t)

2 + y′2(t)
2dt ≈ 0.04299949400,

(29)
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as well as the bounding area Aj enclosed by Bj:
A1 = 2

∫ π
0 y2(t) x′2(t)dt ≈ 0.262733068875.

A2 = 2
(
|
∫ π

t1
y2(t)x′2(t)dt| − |

∫ t1
0 y2(t)x′2(t)dt|

)
≈ 0.020812361489, with t1 = 0.87751899915.

A3 = 2
∣∣ ∫ π

t1
y3(t)x′3(t)dt−

∫ t1
0 y3(t)x′3(t)dt

∣∣ ≈ 0.00013612636360, with t1 = 0.822062652525.

The curvatures of Bj calculated when t = π
4 , π

3 , π
2 , 2π

3 , 3π
4 , and the average curvatures are shown

in Table 4. In addition, the bounding areas and perimeters are listed together with them in Table 4.
The following lemma immediately follows from the geometric properties listed in Table 4.

Lemma 3. The shapes of boundary curves Bi have the following characterizations.
(i) B1 is not a circle. (ii) Neither B2 nor B3 is a cardioid.

Remark 3. Consider a circle T = {(ac + rc cos t, rc sin t), t ∈ [0, 2π)} osculating at the topmost point (ac, rc)

of B1, with ac = −4.6900936467, and rc = 0.28847354384. Let ρ1(t) = |β1(t)− ac| be the distance from the
center (ac, 0) of T to a point β1(t) at a location t. Then by elaborate computations, we have ρ1(t) ≥ rc for all
t ∈ [0, 2π) and find T is completely inscribed in B1.

Let us define two cardioids H` = {(a` + ρ`(1 + cos t) cos t, ρ`(1 + cos t) sin t), t ∈ [0, 2π)}
and Hr = {(ar + ρr(1 − cos t) cos t, ρr(1 − cos t) sin t), t ∈ [0, 2π)}, where a` = 3.82842712474,
ρ` = 0.066715120853, ar = −1.82842712474, ρr = 0.0053728797175. In view of geometric properties
in Table 4,H` andHr respectively resemble B2 and B3 with exactly the same diametral chords. The curves of T ,
H` andHr are evidently shown in Figure 6.
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-0.05

0.05
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0.004
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(c)Hr

Figure 6. Plane curves T ,H` andHr closely resembling the boundaries of red-fixed components R f .

Table 4. Some Geometric characteristics of Plane Curves Bi and T ,H` andHr.

PC
GP Ab: Lp: κ(t): Curvature

Bounding Area Perimeter π
4

π
3

π
2

2π
3

3π
4 κ

B1 0.2627330688 1.8170393896 3.44989 3.43720 3.43430 3.4522 3.46289 3.44730
T 0.2614338703 1.8125327322 3.46652 3.46652 3.46652 3.46652 3.46652 3.46652
B2 0.02081236148 0.5312573924 24.98557 19.53529 14.53345 12.47003 11.92695 16.69026
H` 0.02097440675 0.5337209668 12.16806 12.98094 15.89834 22.48365 29.37631 18.58150
B3 0.0001361263636 0.04299949400 289.93697 229.64877 174.87643 152.23274 146.18980 198.57694
Hr 0.0001360364744 0.04298303774 364.76611 279.17989 197.40999 161.18458 151.09107 230.72633

GP: Geometric properties, PC: Plane curves, κ: Mean value of κ.

6. Conclusions

In the previous study in Reference [13], the only yellow fixed component related to λ-free strange
fixed point z = 1 had a circle as its boundary curve, which described branching phenomena without
difficulties. On the other hand, in the present study, the formation of the red fixed component R f is
more complicated because the strange fixed point z = z(λ) (given by the roots of degree-4 polynomial
T(λ; z) in (6)) depends on λ, and thus the analysis of the desired bifurcation phenomena requires a
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higher level of tools. One such tool is to introduce a suitable parameter, say, t, to represent a curve
on the complex plane. The expression λ(t) = x(t) + iy(t), given at the beginning of Section 4.2,
will be very helpful in describing the branching phenomena occurring in the λ-parameter plane P .
In particular, it has enabled us to draw some geometric properties of R f observed in P .

Through the Möbius-conjugacy map applied to f (z) = (z− a)m(z− b)m, we have studied the
long-term orbit behavior of a λ-family of fourth-order multiple-root finders in P . We have theoretically
formulated the boundary equation of the red fixed hyperbolic component R f , by representing a point
λ(t) with parameter t ∈ [0, 2π). The boundaries of R f have not turned out to be known geometric
figures. In fact, they have proven to be neither circles nor cardioids. The number of R f is 3 higher than
that of the yellow fixed component studied in Reference [13]. Equating the derivative of a q-periodic
point to that of a λ-dependent fixed point at the common osculating point λ between R f and q-periodic
components have induced the relation Fλ

′(ξ)
q
= 1, which has enabled us to successfully locate the

bifurcation points λ`,q directly from Fλ
′(ξ) = ei 2π`/q with ` and q defined in Definition 2. With λ

selected in the magenta or cyan region of P , iterative scheme W f in (2) stably converges to the desired
root. However, members of the family with λ selected in other regions would exhibit unfavorable
numerical behavior.

According to Proposition 1-a, T(λ; z) is composed of factors of the form (z2 + ckz + 1)
for k = 1, 2, · · · . Therefore, if the order of the governing equation (for instance, (7)) for the coefficients ck
is not greater than 4, that is, the order of T(λ; z) is not greater than 8, then it is possible to find the exact
λ-dependent strange fixed point z = z(λ). Otherwise, the bifurcation phenomena will be resolved
neither theoretically nor computationally. As our future study, we will challenge to investigate the
bifurcation phenomena of the period-2 orange components shown in Figure 2 and locate the desired
global bifurcation points by a theoretical formulation of the desired boundary equation, provided the
order of T(λ; z) is hopefully not greater than 8.
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