
mathematics

Article

A Note on Superspirals of Confluent Type

Jun-ichi Inoguchi 1,*,† , Rushan Ziatdinov 2,† and Kenjiro T. Miura 3,†

1 Institute of Mathematics, University of Tsukuba, Tsukuba 305-8571, Japan
2 Department of Industrial Engineering, Keimyung University, Daegu 704-701, Korea; ziatdinov@kmu.ac.kr or

ziatdinov.rushan@gmail.com
3 Department of Mechanical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan;

miura.kenjiro@shizuoka.ac.jp
* Correspondence: inoguchi@math.tsukuba.ac.jp
† These authors contributed equally to this work.

Received: 13 April 2020; Accepted: 6 May 2020; Published: 11 May 2020
����������
�������

Abstract: Superspirals include a very broad family of monotonic curvature curves, whose radius
of curvature is defined by a completely monotonic Gauss hypergeometric function. They are
generalizations of log-aesthetic curves, and other curves whose radius of curvature is a particular case
of a completely monotonic Gauss hypergeometric function. In this work, we study superspirals of
confluent type via similarity geometry. Through a detailed investigation of the similarity curvatures
of superspirals of confluent type, we find a new class of planar curves with monotone curvature in
terms of Tricomi confluent hypergeometric function. Moreover, the proposed ideas will be our guide
to expanding superspirals.

Keywords: superspiral; hypergeometric function; log-aesthetic curve; similarity geometry; aesthetic
shape modeling; CAD

1. Introduction

Log-aesthetic curves (LAC) were proposed a decade ago to meet the requirements of industrial
design to produce visually pleasing shapes. Followed by the discovery of superspirals, curves with
monotonic curvature are now considered as an excellent tool for generating highly-smooth shapes
which are useful in computer aided design and styling. Such non-polynomial curves are determined
in terms of complex special functions and can be precisely computed in modern computer algebra
systems and programming languages.

LAC form a one-parameter family of curves parametrized by the slope [1,2]. The LAC of slope 1 is
the logarithmic spiral. As a generalization of logarithmic spiral, the second named author introduced
a new class of fair curves—the superspiral of confluent type [3]. The superspiral of confluent type is
a planar curve whose radius of curvature is a Kummer’s hypergeometric function of confluent type
(see (6)). The family of superspirals of confluent type is fairly large and includes logarithmic spirals
as a particular example. However it is unclear how to describe the distribution of superspirals of
confluent type in the whole family of those. In particular, the location of the logarithmic spiral in
the whole family is not clear. To overcome these difficulties, we use a new framework “similarity
geometry” for the study of aesthetic curves developed in our previous works [4,5]. The usage of the
log-aesthetic curve for practical design is still limited and we should extend its formula to obtain
various curves to solve practical design problems, such as Gn Hermite interpolation, deformation and
smoothing; data-point fitting; and blending plural curves [5]. We should explore other types of curves
in a systematic way via similarity geometry.

In this paper we give an explicit Formula (13) of similarity curvature for superspirals of confluent
type. The formula (Equation(13)) clarifies the precise location of logarithmic spiral in the whole family
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of superspirals of confluent type. The present study implies that planar curves whose radii of curvature
are Tricomi’s hypergeometric function of confluent type are new candidates of fair curves in industrial
shape design. We close this paper by exhibiting some pictures of those curves.

2. Preliminaries

Let us consider a Riccati differential equation [6]:

dz
dx

= p(x) + 2q(x)z + r(x)z2, (1)

where q(x) 6= 0 and r(x) 6= 0. Assume that we know a particular solution u(x) to Equation (1).
After a substitution

z = u +
1
y

,

Equation (1) turns into
dy
dx

+ 2y(q(x) + r(x)u(x)) = −r(x). (2)

Hence by solving linear ordinary differential equation (ODE) (2), we obtain a general solution in
the form of

y (x) =
(∫

r(x) exp
[

2
∫

f (x)dx
]

dx + C
)
× exp

[
−2

∫
f (x)dx

]
, (3)

where f (x) = q(x) + r(x)u(x) and C is an integral constant.
The Kummer confluent hypergeometric function [7] is defined by

1F1(a, c; x) =
∞

∑
n=0

(a)n

(c)nn!
xn, (4)

where (a)n = a(a + 1) · · · (a + n− 1) for n > 0. For avoiding the case of (c)n = 0, we assume that
c /∈ Z≤0. For the case of a = c, Equation (4) becomes

1F1(a, a; x) =
∞

∑
n=0

(a)n

(a)nn!
xn =

∞

∑
n=0

1
n!

xn = ex.

The confluent hypergeometric function 1F1(a, c; x) can be also denoted as M(a, c, x).

Definition 1. The Tricomi confluent hypergeometric function U(a, c, x) [7] is defined by

U(a, c, x) =
Γ(1− c)

Γ(a + 1− c) 1F1(a, c, x) +
Γ(c− 1)

Γ(a)
x1−c

1F1(a + 1− c, 2− c, x),

where Γ(x) is Gamma function [7].

The functions M(a, c, x) and U(a, c, x) are the fundamental solutions of Kummer’s confluent
hypergeometric differential equation [8]:

When a = c 6∈ Z≤0, we get

U(a, a, x) = Γ(1− a) ex + Γ(a− 1)x1−a
1F1(1, 2− a, x). (5)

Definition 2. The Whittaker M-function and W-function [8] are defined by

M(µ, ν, z) =e−z/2 zν+ 1
2 1F1(ν− µ +

1
2

, 2ν + 1; z),

W(µ, ν, z) =e−z/2 zν+ 1
2 U(ν− µ +

1
2

, 2ν + 1; z).
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It can be seen that M(µ, ν, z) and W(µ, ν, z) are sometimes denoted as Mν,µ(z) and Wν,µ(z) in
various textbooks; e.g., [9] (pp. 339–351).

The M-function and W-function are the fundamental solutions to the Whittaker differential equation:

d2y
dz2 +

(
−1

4
+

µ

z
+

1
4 − ν2

z2

)
y = 0,

which is a modified form of the confluent hypergeometric equation. Thus the general solution to the
Whittaker differential equation is expressed as

y = a1 M(µ, ν, z) + a2 W(µ, ν, z)

if 2µ 6∈ Z (see [10]).
Suppose that p(θ) is a superspiral [3] of confluent type with radius of curvature

ρ(θ) = 1F1(a, c; λθ). (6)

Then ρ satisfies the hypergeometric differential equation of confluent type:

θ
d2ρ

dθ2 = aλρ− (c− λθ)
dρ

dθ
, (7)

As we have mentioned in the preceding section, the general solution of this ODE includes two
parameters (integral constants). Equation (5) implies that the general solution of (7) is given by

ρ(a, c, α, β, λ, θ) = α 1F1(a, c, λθ) + β(λθ)1−c
1F1(a + 1− c, 2− c, λθ), α, β ∈ R. (8)

Here we recall the notion of similarity curvature from [4,5].

Definition 3. The similarity curvature S(θ) of a planar curve p(θ) parametrized by tangent angle θ is

S(θ) = − 1
ρ(θ)

dρ

dθ
(θ).

Note that planar curves are determined by the similarity curvature uniquely up to similarity
transformations. The similarity curvature S(θ) of a superspiral p(θ) of confluent type satisfies the
following Riccati equation:

dS
dθ

= S2 − aλ

θ
− c− λθ

θ
S. (9)

It should be remarked that the above Riccati equation is of first order; thereforem its general
solution contains one parameter (integral constant).

The general solution to the Riccati Equation (Equation (9)) is

S(a, c, α, β, θ) = − 1
ρ(a, c, α, β, θ)

d
dθ

ρ(a, c, α, β, θ). (10)

One can see that the similarity curvature S is expressed by the Kummer confluent hypergeometric
function and Tricomi confluent hypergeometric function (see [5] (p. 257)).

Hereafter we investigate planar curves determined by the similarity curvature (10). We know
that 1F1(a, c, λθ) and (λθ)1−c

1F1(a + 1− c, 2− c, λθ) are fundamental solutions to (7). The former
solution is nothing but the radius of curvature of the superspiral of confluent type (6). In other words,
The similarity curvature of a superspiral of confluent type (6) is S(a, c, 1, 0, θ).

The curvature monotonicity is the fundamental property for planar curves to be aesthetic or
fair [11]. Here we examine two particular cases, α = 0 and β = 0.
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1. The case wherein β = 0.

The general solution (8) turns into ρ(a, c, α, β, λ, θ) = α 1F1(a, c, λθ), which is a completely monotonic
function for c > a > 0 for λθ ∈ (0,−∞) [12]. Therefore we can consider this class of curves as
fair curves.

2. The case in which α = 0.

Let us take in the account Lemma 1 (e.g., [13]) below to find the monotonicity conditions for
this case. The monotonicity conditions for 1F1(a − c + 1, 2 − c, λθ) are a < 1, c < a + 1 for
λθ ∈ (0,−∞) (Theorem 5 in [12]). Now we apply Lemma 1 to f (θ) = (λθ)1−c with α = 1− c ≥ 1
and g(θ) = 1F1(a− c + 1, 2− c, λθ) with β = 1; then ρ(a, c, 0, β, λ, θ) is monotonic if 1− c + 1 ≤ 1;
i.e., c = 1. Therefore, the sufficient monotonicity condition for this case is c = 1 and 0 < a < 1 for
λθ ∈ (0,−∞).

Lemma 1 ([13]). Let f (x) and g(x) be operator monotone functions. Then the following functions are also
operator monotonous:

(i) f (x)αg(x)β for α, β ≥ 0 such that α + β ≤ 1;

(ii) f
(

x−1)−1.

Additionally, we are interested in the case a = c for which we have

ρ(θ) = exp(λθ).

More precisely, the radius of curvature function is defined as ρ(a, a, 1, 0, θ). The planar curve p(θ)
with the radius of curvature ρ(a, a, 1, 0, θ) is a log-aesthetic curve of slope 1 with similarity curvature
S = −λ; i.e., it is a logarithmic spiral.

Under the choice a = c, the Ricatti equation (9) becomes

dS
dθ

= S2 − aλ

θ
− a− λθ

θ
S. (11)

One can check that S = −λ (i.e., a log-aesthetic curve) is a particular solution to (11). The general
solution is represented as

S(a, a, α, β, θ) = − 1
ρ(a, a, α, β, θ)

d
dθ

ρ(a, a, α, β, θ),

where
ρ(a, a, α, β, θ) = α eλθ + β(λθ)1−a

1F1(1, 2− a, λθ)

is a general solution to the ODE (7) with a = c. Let us look for the general solution to (11). Suppose that

S = −λ +
1
y

.

Then y satisfies

y′ − a + λθ

θ
y = −1. (12)

First, we consider a homogeneous ODE

y′ − a + λθ

θ
y = 0

associated to (12). The general solution to this homogeneous ODE is given by
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y = Aeλθ θa,

where A is a constant. We use the Lagrange’s method of variation of constants [14] to solve this ODE.
Assuming that

y = A(θ)eλθθa

is a solution to (12), and then substituting y = A(θ)eλθθa into the linear ordinary differential equation
(ODE) (12), we get the 1st order ODE:

A′(θ) eλθθa = −1.

The general solution of this ODE is given by Whittaker M-function as

A(θ) = − 1
λ(1− a)

θ−a(λθ)a/2e−λθ/2 M(−a/2,−a/2 + 1/2, λ) + C,

where C is an integral constant.
Hence the solution y = A(θ)eλθθa to (12) contains two parameters a and (integral constant) C.
Finally, the general solution S to (11) is given by

S(θ; a, C) = −λ

(
1 +

1− a
(λθ)a/2 eλθ/2M(−a/2,−a/2 + 1/2, λ) + Cθa eλθ

)
. (13)

After defining a = 1 in the general solution, we get the log-aesthetic curve with S = −λ.
Equation (13) shows the location of logarithmic spiral in the family of superspirals of confluent type.

3. Conclusions

The log-aesthetic curve of slope 1 is characterized as a superspiral of confluent type determined
by ρ(1, 1, 1, 0, θ) = exp(λθ) and it has the similarity curvature S = −λ. The family of superspirals of
confluent type determined by ρ(a, a, α, β, θ) contains log-aesthetic curve of slope 1. It is strictly larger
than the set of log-aesthetic curves of slope 1. The superspirals of confluent type with ρ(a, a, α, β, θ)

satisfies the differential equation
dS
dθ

= S2 − aλ

θ
− a− λθ

θ
S,

whose general solution of the above equation is denoted by S(a, a, α, β, θ). The log-aesthetic curve of
slope 1 is characterized as S(1, 1, α, β, θ) = −λ.

The solutions of (9) define a large class of planar curves, even if a = c. Kummer’s equation (7) has
2-dimensional solution space which is spanned by 1F1(a, c; λθ) and (λθ)1−c

1F1(a− c + 1, 2− c; λθ).
The solution 1F1(a, c; x) defines the superspiral of confluent type. On the other hand, the solution
(λθ)1−c

1F1(a− c + 1, 2− c; λθ) induces another family of planar curves.
It would be interesting to investigate planar curve determined by ρ(θ) = (λθ)1−c

1F1(a− c + 1, 2−
c; λθ) or ρ(θ) = U(a, c, λθ).

We exhibit some pictures of planar curves with radius of curvature ρ(θ) = U(a, c, λθ).
See Figures 1–7.

In our future works on monotone curvature curves, we plan to apply generalized hypergeometric
function, pFq(a1, . . . , ap; b1, . . . , bq; z), the Meijer G-function which includes most of the known special
functions as particular cases, and the Fox H-function, which is a generalization of the Meijer G-function.
Moreover, Lemma 1 will allow us to expand the family of superspirals and add more degrees of freedom
to curves.
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Figure 1. (a) Curve with ρ(θ) = U(0, 1, θ), 0 ≤ θ ≤ 2π, (b) curvature.
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Figure 2. (a) Curve with ρ(θ) = U(0.1, 0.1, θ), 0 ≤ θ ≤ 2π, (b) curvature.
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Figure 3. (a) Curve with ρ(θ) = U(0.1, 0.5, θ), 0 ≤ θ ≤ 2π, (b) curvature.
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Figure 4. (a) Curv with ρ(θ) = U(0.1, 0.8, θ), 0 ≤ θ ≤ 2π, (b) curvature.
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Figure 5. (a) Curve with ρ(θ) = U(1, 1.5, θ), 0 ≤ θ ≤ 2π, (b) curvature.
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Figure 6. (a) Curve with ρ(θ) = U(2, 1.5, θ), 0 ≤ θ ≤ 2π, (b) curvature.
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Figure 7. (a) Curve with ρ(θ) = U(5, 1.5, θ), 0 ≤ θ ≤ 2π, (b) curvature.
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