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Abstract: The ever-increasing complexity of industrial and engineering problems poses nowadays
a number of optimization problems characterized by thousands, if not millions, of variables.
For instance, very large-scale problems can be found in chemical and material engineering, networked
systems, logistics and scheduling. Recently, Deb and Myburgh proposed an evolutionary algorithm
capable of handling a scheduling optimization problem with a staggering number of variables:
one billion. However, one important limitation of this algorithm is its memory consumption, which is
in the order of 120 GB. Here, we follow up on this research by applying to the same problem
a GPU-enabled “compact” Genetic Algorithm, i.e., an Estimation of Distribution Algorithm that
instead of using an actual population of candidate solutions only requires and adapts a probabilistic
model of their distribution in the search space. We also introduce a smart initialization technique and
custom operators to guide the search towards feasible solutions. Leveraging the compact optimization
concept, we show how such an algorithm can optimize efficiently very large-scale problems with
millions of variables, with limited memory and processing power. To complete our analysis, we report
the results of the algorithm on very large-scale instances of the OneMax problem.

Keywords: compact optimization; discrete optimization; large-scale optimization; one billion
variables; evolutionary algorithms; estimation distribution algorithms

1. Introduction

In recent years, several application domains have shown a constantly growing need for efficient
optimization algorithms capable of handling problems with a very large number of decision variables,
i.e., problems in the order of thousands, or even millions, of variables. Nowadays, this kind of problems
occurs for instance in network optimization, logistics, and scheduling: examples of such problems are
resource allocation, vehicle routing, and production scheduling, to name a few.

Of note, most of these industrial problems can be formulated in terms of (Mixed) Integer Linear
Programming (MILP), and as such can be solved by popular commercial or open-source solvers
such as CPLEX [1], Gurobi [2], or glpk [3]. While these solvers are guaranteed to find the optimal
solutions, when it comes to solve problems with a very large number of variables, they hit a roadblock.
As reported in [4], even on some Linear Programming problems, these solvers are not able to find a
feasible solution in feasible time: the so-called “curse of dimensionality”.

A valid alternative to overcome this issue is represented by meta-heuristics, namely stochastic
search algorithms which trade optimality guarantees off for better scalability and numerical complexity.
Among these, Evolutionary Algorithms (EAs) and Swarm Intelligence—such as Particle Swarm
Optimization (PSO)—have especially attracted a great research attention, due to their flexibility and
attributed general-purposedness. This is demonstrated by a rich literature in the field, not to mention
the various benchmarks and competitions dedicated to Large-Scale Global Optimization (LSGO) [5].
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However, perhaps also because these benchmarks focus on continuous optimization, most of the
attempts in this area are limited to the continuous domain, with few exceptions. The most notable of
these is represented by a recent work by Deb and Myburgh [4,6], who reported to have broken for the
first time the “billion-variable barrier” on an ILP problem concerning metallurgy casting scheduling.
This achievement was obtained with a Genetic Algorithm dubbed PILP (Population-Based Integer
Linear Programming), consisting of two populations (parent and offspring) of 60 solutions each. As the
authors reported, the flip side of this method is its memory consumption, which with one billion
variables is in the order of 120 GB of RAM: despite the low-cost availability of RAM to date, this is a
fairly large amount of memory resources.

This leads us to the motivation of our work. The main research question we try to answer here is:
Is it possible to reach at least comparable results to those reported by Deb and Myburgh, with less memory?.
Secondly, we try to assess if there is a trade-off between memory consumption and time to solve the
problems. As working case, we consider a scenario where one needs to solve very large-scale problems
with the additional constraint to save as much as possible the available RAM, while trying to use only
one GPU. This memory-constraint scenario further exacerbates the difficulty of solving very large-scale
problems, and as such our research question is quite challenging.

A possible answer to our question comes from a concept known as “compact optimization” [7].
Compact optimization is a way of designing stochastic search algorithms belonging to the class of
Estimation of Distribution Algorithms (EDAs) [8]. As EDAs, compact optimization algorithms are
essentially meta-heuristics that make use of an explicit probabilistic model of the distribution of the
solutions in the search space. During the search, new candidate solutions are sampled from the
distribution and evaluated; then the model is updated depending on the feedback from the search
process itself, such that the next sampling process will be biased towards the most promising areas
of the search space. The distinctive feature of compact optimization algorithms [7] with respect to
the more general class of EDAs is that they purposely employ a simplistic probabilistic model that
handles each variable separately. This model is usually referred to as “Probability Vector” (PV), and its
structure and cardinality depend on the problem dimensionality (n) and variable type (binary, integer,
or continuous). For instance, in binary problems, the PV simply consists of an n-dimensional vector of
probabilities (i.e., each ith element of PV, i ∈ {1, 2, . . . , n}, represents the probability in [0, 1) that the
corresponding ith variable is sampled as 0). In continuous optimization, compact algorithms usually
employ n independent truncated Gaussian Probability Distribution Functions (one per variable), and as
such the PV consists of two n-dimensional vectors, µ and σ, namely means and standard deviations,
one per each truncated Gaussian PDF. In this case, sampling involves calculating the inverse of the
corresponding Cumulative Distribution Function (see [7] for details).

In the past decade, the compact optimization paradigm has steadfastly advanced. Originally
devised mainly as a tool for binary optimization [9,10], many compact algorithms intelligence
have been proposed lately, although most of them are meant for continuous optimization only.
These include real-valued compact Genetic Algorithm (cGA) [11] (and the similar “Selfish Gene”
Algorithm [12]), compact Differential Evolution (cDE) [13,14] and its many variants [15–21], compact
Particle Swarm Optimization (cPSO) [22], compact Bacterial Foraging Optimization (cBFO) [23], and,
more recently, compact Teaching Learning Optimization (cTLBO) [24], compact Flower Pollination
Algorithm (cFPA) [25], compact Firefly Algorithm (cFA) [26], and compact Artificial Bee Colony
(cABC) [27,28]. In terms of applications, these algorithms have been successfully applied to a broad
range of memory-limited cases, such as embedded control of robots [29–32], intrinsic evolvable
hardware [33], neural network training [34], and topology control in Wireless Sensor Networks [35].

Obviously, the use of a limited-memory probabilistic model that completely replaces a population
comes at a cost. The first drawback concerns the lack of a population, which in turn poses a
number of problems in terms of exploration efficiency and loss of diversity: these issues are in
fact implicitly addressed by having a sufficiently large number of—possibly diverse—candidate
solutions at any given time during the search process, which is the main reason for the success of
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population-based algorithms [36]. This is by definition impossible in compact algorithms, even though
various mechanisms such as re-initialization of the PV or partial restarts [37,38] have been proposed to
partially alleviate this problem and prevent premature convergence.

The second drawback comes from the fact that compact algorithms treat all variables as
independent. This is not the case of all problems though: most optimization problems are indeed
non-separable, i.e., they are characterized by mutual dependencies between variables. These can
be captured only by multivariate distributions, similar to the Covariance Matrix used in CMA-ES
for continuous optimization [39]. However, due to quadratic space and time complexity, using such
distributions in very large-scale problems is not be feasible, unless iterative transformation matrices
are used [40]. In discrete optimization, a possible solution is to use approximations of the objective
function [41], although the research in this field has been so far rather limited. Notwithstanding these
limitations on separability, compact algorithms have proven successfully at solving even non-separable
problems, especially at large dimensionalities [7]. One possible explanation for this—somehow
surprising—result was given by Caraffini et al. [42], who collected evidence on the fact that the
correlation between pairs of variables appears, from the perspective of a stochastic search algorithm,
to consistently decrease when the problem dimensionality increases. In other words, non-separable
problems in high dimensionalities can be tackled as if they are separable. In [42], the authors
conjectured that this effect is due to fact that in high dimensionalities only a very restricted portion of
the decision space can be explored: because of this “localness” of the search, the best strategy to make
use of the available budget is to exploit any improvement along each variable, which is in accordance
with the most popular and successful methods for large-scale optimization.

In this paper, we build on this conjecture and question if, in practice, GPU-enabled cGAs are a
viable solution for solving even very large-scale optimization problems. In particular, we focus
on the casting scheduling ILP problem tackled by Deb and Myburgh in [4,6] and evaluate the
efficacy of a GPU-enabled compact Genetic Algorithm on it. To complete our analysis, we also assess
the performance of the cGA on the OneMax benchmark problem [43], both on the original binary
formulation, as well as a continuous and an integer formulation with 16 discrete values (reported in
Appendix A), on which we evaluate the time consumption of each element of the algorithm. It is worth
noting that, apart from [4,6], only few works have tried to apply Evolutionary Algorithms to very
large-scale problems: in [44], a one-billion variable noisy binary OneMax problem is tackled with a
parallel implementation of cGA on a cluster of 256 CPU cores, with a very weak “relaxed convergence”
criterion requiring each variable to reach a fixed-proportion correct value (probability 0.501). In [45],
random embeddings are used as a form of dimensionality reduction applied to Bayesian optimization,
and tested on a two-variable real-parameter problem embedded into a one-billion variable vector (in
which all but two variables have no effect on the fitness). As for a GPU-enabled cGA, thus far the
only attempt was made by Iturriaga and Nesmachnow [46], who tested the algorithm on the binary
OneMax problem, with and without noise. However, even though their experiments were scaled up to
one billion variables, they did not consider the presence of constraints, nor they tackled ILP problems.
Therefore, here we advance with respect to the previous literature by: (1) extending the analysis on the
OneMax performed in [46], also in the light of the new hardware available (more specifically, Iturriaga
and Nesmachnow [46] used 8 CPU cores (Intel Xeon @ 2.33 GHz with 8 GB RAM) in multi-threading,
with 4 Tesla C1060 GPUs (each with 4GB GDDR3, 240 cores @ 610 MHz). Here, we use one CPU core
(Intel i9-7940x @ 3.10 GHz with 64 GB RAM), with one Titan XP GPU (with 12 GB GDDR5X, 3840 cores
@ 1405 Mhz)); and (2) applying, for the first time, a cGA to the very large-scale industrial ILP problem
taken from [4,6]. Overall, the main contributions of this work can be summarized as follows:

• We adapt the binary compact Genetic Algorithm in order to handle integer variables, represented
in binary form.

• We present a fully GPU-enabled implementation of the compact Genetic Algorithm, where all the
algorithmic operations (sampling, model update, solution evaluation, and comparison) can be
optionally executed on the GPU.
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• We apply the proposed GPU-enabled compact Genetic Algorithm to the OneMax benchmark
problem and the casting scheduling ILP problem described in [4,6], in various dimensionalities.

• For the ILP problem, we include in the compact Genetic Algorithm custom (problem-specific)
operators and a smart initialization technique inspired by Deb and Myburgh [4] that, by acting on
the PV, guide the sampling process towards feasible solutions.

• We show that on the OneMax problem our proposed GPU-enabled compact Genetic algorithm
obtains partial improvements with respect to the results reported in [46]; on the casting scheduling
problem, we obtain at least comparable–and in some cases better—results with respect to those
in [4,6], despite a much more limited usage of computational resources.

The remaining of this paper is organized as follows. In the next section, we describe the
formulation of the OneMax and the casting scheduling problems. In Section 3, we introduce the
details of the proposed GPU-enabled compact Genetic Algorithm and its various versions. Then,
in Section 4, we present the numerical results on the two problems. Finally, in Section 5, we provide
the conclusions and highlight possible future research directions.

2. Problem Formulations

Let us introduce the two problems we use in our experimentation. It should be noted that both
problems are scalable, i.e., they can be instantiated in any number of variables. In our experiments,
we scaled both problems at various dimensionalities, up to one billion variables.

2.1. OneMax

The first problem we used in our experiments is the binary OneMax benchmark function, also
called BitCounting [43]. This problem consists in finding a Boolean vector x such that:

Maximize f (x) =
n

∑
i=1

xi (1)

where xi is the ith element of x, i = {1, 2, . . . , n}, and n = |x|. The optimum of this function corresponds
to a vector x∗ whose all bits are set to one, f (x∗) = n.

In our experiments, we further extended the original binary formulation of the OneMax problem
to account for discrete values (xi ∈ {0, 1, . . . , 15}∀i) and for continuous variables (xi ∈ [0, 1]∀i). In the
first case, the optimum is a vector where all variables are set to 15, and its fitness is 15× n. In the
second case, the optimum is the same as in the original binary OneMax formulation. We report these
additional results in Appendix A.

2.2. Casting Scheduling Problem

The second problem we consider is the casting scheduling ILP problem defined in [4,6], formulated
as follows:

Maximize f (x) =
1
H

H

∑
i=1

1
Wi

N

∑
j=1

wjxi,j (2)

Subject to:
N

∑
j=1

wjxi,j ≤Wi for i ∈ {1, 2, . . . , H} (3)

H

∑
i=1

xi,j = rj for j ∈ {1, 2, . . . , N} (4)

where each variable xi,j is in {0, 1, . . . , 15}. The goal is to find the optimal scheduling to cast batches of
N distinct objects in H heats. The production of each ith heat is bound by the corresponding crucible
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size Wi. Each jth object has a weight, wj, and must be produced in a certain number of copies, rj.
However, the total amount of metal required for one batch of copies of the same object does not
necessarily result equal to the size of the crucible in the ith heat, Wi. For this reason, a desired efficiency
η is set. This is done by finding the minimum number of heats, H, such that ∑H

i=1 ηWi ≥ M, where M
is the total amount of metal required for all batches, M = ∑N

j=1 rjwj. Note that the problem must
consider both the fact that the metal molten in one heat cannot be greater than the crucible capacity and
that an exact number of objects is required. Therefore, the problem has N × H variables, H inequality
constraints, see Equation (3), and N equality constraints, see Equation (4).

To allow the cGA to handle the constraints, we follow the penalty-based approach described
in [4,6], by subtracting to the fitness function described in Equation (2) the following quadratic penalty
factor, calculated from the constraint violations:

P(x) =

 N

∑
j=1

(
H

∑
i=1

xij − rj

)2

+
H

∑
i=1

〈
1

Wi

N

∑
j=1

wjxij − 1

〉2
 (5)

where 〈·〉 indicates that the penalty is summed only if the corresponding inequality constraint is
violated. Consequently, the cGA should be applied to maximize F(x) = f (x)− R× P(x), where R is
a penalty multiplier. However, as suggested in [4,6] and further verified by us, optimal solutions in
terms of fitness F(x) can be obtained simply by minimizing the penalty factor, i.e., argmax(F(x)) =
argmin(P(x)). Note that, while the range of F(x) is (− inf, η], the function P(x) takes values in [0,+ inf).
For this reason, we minimize Equation (5) until it reaches the value 0, which corresponds to f (x) = η

in Equation (2).

3. Proposed Algorithms

To better highlight the changes required to the original cGA [9] to make it run on a GPU and handle
integer values, we present here separately two versions of the GPU-enabled cGA, namely a binary
cGA and a discrete cGA, the latter being an evolution of the first. Their general structure is similar,
and is shown in Algorithm 1. Note that the only parameter of both algorithms is virtualPopulation,
which affects the dynamics of the algorithm [7]. In a nutshell, the differences between the two
algorithms are: (1) the different type of variables (binary vs integer); and (2) the introduction of
problem-specific operators in the discrete cGA. Furthermore, for the binary cGA, we present three
different versions, i.e., synchronous and asynchronous with sub-problem size 1 and 100 (where
“sub-problem” indicates a set of variables handled by one GPU thread). In the following, we describe
the details of the GPU implementation of each function used in Algorithm 1 for the various versions of
the cGA.

Algorithm 1 Binary cGA: general structure.

1: procedure CGA(problemSize, virtualPopulation)
2: PV← vector of size problemSize, with values 0.5
3: elite← generateTrial(PV)
4: fitnessElite← evaluate(elite)
5: while ! stopCriteriaMet() do
6: trial← generateTrial(PV)
7: fitnessTrial← evaluate(trial)
8: winner← compete(fitnessTrial, fitnessElite)
9: PV← updatePV(winner, PV, trial, elite, virtualPopulation)

10: if winner == 1 then . trial is better
11: elite← trial
12: fitnessElite← fitnessTrial
13: end if
14: end while
15: return elite
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3.1. Binary cGA

We developed in total three versions of the binary cGA, which we refer to as “cGA-Base”,
“cGA-A100”, and “cGA-A1”, respectively. Each version follows the structure of Algorithm 1.
A summary of the variables and functions used in these binary cGAs is reported in Table 1.
The differences among the three versions are in the parallelization process, in particular in the evaluate()
and updatePV() functions. cGA-Base operates synchronously, evaluating solutions atomically and,
as result, performing updatePV() considering all variables. The two other versions are based on the
asynchronous cGA presented in [46], in which the problem is divided into sub-problems of the same
size, which are processed asynchronously. In cGA-A100 and cGA-A1, we consider sub-problems
sizes of 100 and 1, respectively. Overall, the three versions of the binary cGA differ not only in terms
of performance (as we show in the next section), but also in terms of the resources used, which are
summarized in Table 2. Let us now analyze in detail the implementation of the three binary cGA
versions. For each function used in the cGAs, we specify if it is specific for the OneMax problem or not.
If another problem were to be solved, those functions would need to be changed.

Table 1. Variables and functions used in the binary cGAs.

Name Description

problemSize Problem dimensionality (scalar)
virtualPopulation Virtual population (scalar)
PV Probability Vector (vector)
trial Solution sampled from PV (vector)
elite Best solution found so far (vector)
fitnessTrial Fitness of trial (scalar or vector)
fitnessElite Fitness of elite (scalar or vector)
winner Flag(s) indicating if trial (1) or elite (0) is better (scalar or vector)

generateTrial() Sample trial from PV (return a solution)
evaluate() Evaluate a solution (return its fitness)
compete() Compare two solutions (return winner)
updatePV() Update PV (return PV)

Table 2. Data type and size for the binary cGAs.

cGA-Base cGA-A100 cGA-A1
Data Type Size Type Size Type Size

PV Float32 problemSize Float32 problemSize Float32 problemSize
trial Bool problemSize Bool problemSize Bool problemSize
elite Bool problemSize Bool problemSize Bool problemSize

fitnessTrial Int32 1 Int8 problemSize/100 Int32 1
fitnessElite Int32 1 Int8 problemSize/100 Int32 1

winner Int32 1 Bool problemSize/100 - -

3.1.1. Binary cGA-Base

In this version of the binary cGA, the parallelization occurs at variable level, i.e., each ith variable
is handled by a separate GPU thread. The functions in Table 1 are implemented as follows.

- generateTrial(): This function samples, for each variable, a random number in [0, 1), and compares
it to the corresponding element of PV. If the random number is greater than the element of PV,
then the relative variable of trial is set to 1; otherwise, it is set to 0. Each variable is handled by a
separate GPU thread.

- compete(): This function compares fitnessTrial and fitnessElite, and sets winner to 1 (0) if
trial is better (worse) than elite. This operation is performed without GPU-parallelization.

- evaluate(): This function loops through all the variables of the argument and sums 1 if the ith
variable is set to 1. This operation is performed without GPU-parallelization, since its output (the
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fitness of the argument) depends on all variables.
Note: This function is specific for the OneMax problem.

- updatePV(): This function biases PV towards the winner between trial and elite, i.e., it makes
more probable that the next trial will be more similar to the winner, increasing or decreasing each
element of PV accordingly (see Algorithm 2). Each variable is handled by a separate GPU thread.

Algorithm 2 Binary cGA-Base: updatePV().

1: procedure UPDATEPV(winner, PV, trial, elite, virtualPopulation)
2: for i in 1 . . .problemSize do . each iteration in a separate GPU thread
3: if winner == 1 then . trial is better
4: if trial[i] == 1 then
5: if trial[i] 6= elite[i] then
6: PV[i]← PV[i] - 1/virtualPopulation
7: end if
8: else
9: if trial[i] 6= elite[i] then

10: PV[i]← PV[i] + 1/virtualPopulation
11: end if
12: end if
13: else . elite is better
14: if elite[i] == 1 then
15: if trial[i] 6= elite[i] then
16: PV[i]← PV[i] - 1/virtualPopulation
17: end if
18: else
19: if trial[i] 6= elite[i] then
20: PV[i]← PV[i] + 1/virtualPopulation
21: end if
22: end if
23: end if
24: end for
25: return PV

3.1.2. Binary cGA-A100

In contrast with the cGA-Base, in this case, there is not a one-to-one relation between variables
and GPU threads. Instead, each GPU thread handles a single sub-problem, in this case of 100 variables,
in particular in the evaluate(), compete() and updatePV() functions. On the contrary, generateTrial()
is implemented as in the cGA-Base (i.e., with parallelization at variable level). Furthermore, as it is
necessary to save the partial fitness and winner for each sub-problem, in this case fitnessTrial,
fitnessElite, and winner are vectors of size problemSize/100 (as shown in Table 2), to allow
asynchronous updates. The evaluate(), compete(), and updatePV() functions are implemented
as follows.

- evaluate(): This function evaluates the argument by processing each sub-problem independently
on the GPU threads. Each thread takes a portion of the argument and calculates its partial fitness.
The operations executed by each thread, illustrated in the outer for loop in Algorithm 3, can be
parallelized since each sub-problem operates over disjoint portions of the argument. The function
getSubProblem() returns the ith sub-problem, i.e., a vector of 100 variables. Note that in this case
evaluate() returns a vector, fitness, rather than a scalar. The partial result of each sub-problem is
stored by each GPU thread in the corresponding position of fitness.
Note: This function is specific for the OneMax problem.

- compete(): This function operates over the vectors fitnessTrial and fitnessElite returned
by the evaluate() shown in Algorithm 3. As shown in Algorithm 4, each separate GPU thread
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simply checks the winner on its sub-problem, i.e., it operates on a single index of fitnessTrial,
fitnessElite, and winner, which are all vector of size problemSize/100.
Note: This function is specific for the OneMax problem.

- updatePV(): This function is implemented similarly to the evaluate(). As shown in Algorithm 5,
each GPU thread loads its portion of data, composed by both corresponding sub-problem of
elite and trial and the relative portion of winner and PV. After that, the procedure is similar to
the one described in the cGA-Base (see Algorithm 2), with the only difference being that in this
case the for loop in Algorithm 2 is performed within the same GPU thread and not in parallel.
The ancillary function setPartialPV() updates PV with the result of the partial pPV.
Note: This function is specific for the OneMax problem.

Algorithm 3 Binary cGA-A100: evaluate().

1: procedure EVALUATE(solution)
2: fitness← vector of size problemSize/100, with values 0
3: for i in 1 . . .problemSize/100 do . each iteration in a separate GPU thread
4: partialSolution← solution.getSubProblem(i)
5: for j in 1 . . .100 do
6: if partialSolution[j] == 1 then
7: fitness[i]← fitness[i] + 1
8: end if
9: end for

10: end for
11: return fitness

Algorithm 4 Binary cGA-A100: compete().

1: procedure COMPETE(fitnessTrial, fitnessElite)
2: winner← vector of size problemSize/100
3: for i in 1 . . .problemSize/100 do . each iteration in a separate GPU thread
4: if fitnessTrial[i] > fitnessElite[i] then
5: winner[i]← 1
6: else
7: winner[i]← 0
8: end if
9: end for

10: return winner

Algorithm 5 Binary cGA-A100: updatePV().

1: procedure UPDATEPV(winner, PV, trial, elite, virtualPopulation)
2: for i in 1 . . .problemSize/100 do . each iteration in a separate GPU thread
3: pTrial← trial.getSubProblem(i)
4: pElite← elite.getSubProblem(i)
5: pPV← PV.getSubProblem(i)
6: pPV← updatePV(winner[i], pPV, pTrial, pElite, virtualPopulation) . Algorithm 2
7: PV[i].setPartialPV(i,pPV)
8: end for
9: return PV

3.1.3. Binary cGA-A1

In principle, this version can be obtained simply by setting the sub-problem size equal to 1
in cGA-A100. However, in this way, the size of winner, fitnessTrial, and fitnessElite would
match the problem size, thus increasing the memory usage. For this reason, we decided to embed
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the operations of evaluate() and compete() into the updatePV() function, thus removing the need for
the winner vector and reducing the fitnessTrial and fitnessElite vectors to a scalar. As for the
parallelization process, in this case, each GPU thread handles a single variable, as it happens in the
cGA-Base. The generateTrial() function is implemented as in the cGA-Base. The updatePV() function
is implemented as follows, and replaces Lines 7–13 in Algorithm 1.

- updatePV(): This function includes, in this case, also the operations performed in evaluate() and
compete() and results quite simpler than the previous cases. The process is shown in Algorithm 6.
Since PV is updated only when the variables of trial and elite are different, each GPU thread
checks if one of the two variables is set to 1 and the other to 0. Consequently, PV is only reduced,
which increases the probability of sampling 1. Finally, if the relative element of trial is set to 1,
each GPU thread adds 1 to the fitnessTrial variable to calculate the total fitness. Note that in
this case there is no need for using winner, which reduces the memory consumption.
Note: This function is specific for the OneMax problem.

Algorithm 6 Binary cGA-A1: updatePV().

1: procedure UPDATEPPV(PV, trial, elite, virtualPopulation, fitnessElite)
2: for i in 1 . . .problemSize do . each iteration in a separate GPU thread
3: if trial[i] == 1 and elite[i] == 0 then
4: PV[i]← PV[i] - 1/virtualPopulation
5: end if
6: if trial[i] == 0 and elite[i] == 1 then
7: PV[i]← PV[i] - 1/virtualPopulation
8: end if
9: if trial[i] == 1 then

10: fitnessTrial← fitnessTrial + 1 . thread-safe sum
11: end if
12: end for
13: if fitnessTrial > fitnessElite then . trial is better
14: elite = trial
15: fitnessElite = fitnessTrial
16: end if
17: return PV, elite, fitnessElite

3.2. Discrete cGA

The discrete version of the cGA can be seen as an evolution of the binary cGA, specifically adapted
to handle integers and include problem-specific mechanisms to solve the casting scheduling problem
taken from [4,6]. As for the integer handling, the idea is to represent, quite straightforwardly, integer
variables in binary format, and then use a binary cGA to evolve the resulting bit-string. For the
casting scheduling problem, we consider integer variables in the interval {0, 1, . . . , 15}, and represent
each variable with 4 bits. In addition to that, we implement on the GPU the problem-specific smart
initialization, crossover and mutation operators described in [4]. We further improve the initialization
mechanism in order to adapt it to the cGA paradigm. A summary of the variables and functions
used in the discrete cGA is reported in Table 3. The overall structure of the algorithm is shown in
Algorithm 7. In the following, we describe the main implementation details of the discrete cGA.
Note that, unless indicated differently, all operations are fully parallelized on the GPU, maintaining a
one-to-one mapping between GPU threads and variables as described in the cGA-Base.
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Table 3. Variables and functions used in the discrete cGA.

Name Description

N Number of objects (scalar)
W Crucible sizes (vector)
η Desired efficiency (scalar)
H Number of heats to achieve (η) (scalar)
copies Copies to be cast for each object (vector)
weights Weights (vector)
virtualPopulation Virtual population (scalar)
PV Probability Vector (vector)
trial Solution sampled from PV (vector)
elite Best solution found so far (vector)
copiesTrial Copies cast by trial (vector)
heatsTrial Available space in the heats of trial (vector)
fitnessTrial Fitness of trial (scalar)
fitnessElite Fitness of elite (scalar)
winner Flag indicating if trial (1) or elite (0) is better (scalar)

estimateH() Estimate the value of H based on η, copies, weights and W (return H)
smartInitialization() Initialize elite and PV (return elite and PV)
initializeElite() Initialize elite (return elite)
inhibitor() Blocks the unusable elements of PV (return PV)
initializePV() Initialize PV (return PV)
generateTrial() Sample trial from PV and apply to it mutations and crossover
newTrial() Sample trial from PV (return trial and heatsTrial)
mutationOne() Repair trial with respect to the equality constraints
mutationTwo() Repair trial with respect to the inequality constraints
crossover() Operate a heat-wise crossover between trial and elite
evaluate() Evaluate a solution (return its fitness)
compete() Compare two solutions (return winner)
updatePV() Update PV (return PV)

Algorithm 7 Discrete cGA: specific structure for the cast scheduling problem.

1: procedure CGA(N, copies, weights, W, η, virtualPopulation)
2: PV, elite, H← smartInitialization(copies, weights, W, η)

. calls estimateH(),
. initializeElite(), mutationOne(), mutationTwo(), evaluate(),

. inhibitor() and initializePV()
3: while ! stopCriteriaMet() do
4: trial, heatsTrial, copiesTrial← generateTrial(PV)

. calls newTrial(), crossover(), mutationOne() and mutationTwo()
5: fitnessTrial← evaluate(heatsTrial, copiesTrial)
6: winner← compete(trial, elite)
7: PV← updatePV(winner, PV, trial, elite, virtualPopulation)
8: if winner == 1 then
9: elite← trial

10: fitnessElite← fitnessTrial
11: heatsElite← heatsTrial
12: end if
13: end while
14: return elite

- smartInitialization(): This function performs the initialization process, divided into three steps.
Firstly, the function estimateH() estimates the value H to get an efficiency equal to η, as described
in Section 2.2. This value is also used to define the size of elite and PV. Secondly, an elite of
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size N × H is created in initializeElite(), repaired by the two mutations, and evaluated. Finally,
PV is created, with a size of 4× N × H and processed as described in initializePV() below.

o initializeElite(): This function initializes the elite as described in [4], i.e., creates the elite
by creating N vectors of size H, which are initialized respecting as much as possible the
number of copies required for each object. This operation is GPU-parallelized through two
steps: firstly, a vector of random numbers is created, and a correction factor is calculated;
and, secondly, the correction is applied to the vector. After this, to repair any possible
violated constraint, the elite is passed to the two mutation operators mutationOne() and
mutationTwo(), and finally evaluated by evaluate(). The implementation of these functions is
shown below.

o initializePV(): This function initializes the PV such that it generates solutions that satisfy
the inequality constraints, and which are biased towards the elite. This initialization is
performed in two functions. The first function, shown in Algorithm 8, blocks the PV values
for the variables which, if set to 1, would cause the violation of an inequality constraint.
For example, if the crucible size is 600 kg and an object weights 200 kg, obviously no more
than three copies can be cast for that object without a penalty: in this case, the inhibitor
blocks (i.e., sets to NaN) the third and fourth bit of the variable, preventing it from assuming
values greater than 3 for that object. This operation is GPU-parallelized, with each thread
checking a single element of PV. The second function aims at modifying the PV values to
produce solutions closer to the elite. This operation is done by setting each PV element to
0.25 if the bit of the corresponding element in the elite is 1, and 0.75 otherwise, unless that
element is blocked by inhibitor(), as shown in Algorithm 9.

- generateTrial(): This function is divided into four steps: generation of the trial, crossover and two
mutation operators to repair the trial. The problem-specific crossover and mutation operators
were implemented as described in [6]. In addition, we operated some modifications in order
to parallelize the operators on the GPU and save the information necessary to simplify the
successive calculation of the fitness. This information consists of two vectors, one of size H,
called heatsTrial, and one of size N called copiesTrial. The first one saves the available space
in the crucible for each heat, and it is created during newTrial() in two steps: firstly, the vector is
initialized with the crucible size; then, while trial is created, its values are decreased, as shown in
Algorithm 10. Moreover, heatsTrial is updated also during crossover and mutations, as shown
below. The second vector, copiesTrial, stores instead the total number of objects cast by the trial,
and is calculated during mutationOne() (see Algorithm 12). The other details of the four steps are
presented below.

o newTrial(): This function, as shown in Algorithm 10, is implemented such that each
GPU thread handles one variable of trial and its corresponding four values of PV. More
specifically, each thread samples 4 bits based on the corresponding probabilities of PV,
converts them to a value in {0, 1, . . . , 15}, and assigns this value to the corresponding variable
in trial. Finally, the element of heatsTrial relative to this variable is updated accordingly
to the value just assigned. Note that this last operation is implemented as thread-safe, as the
same heat can be updated asynchronously by different threads.

o crossover(): The function, as shown in Algorithm 11, is implemented such that each GPU
thread handles one variable of trial. The crossover operator compares each heat of trial
with the corresponding one in elite. If elite has a better heat (i.e., has a higher (lower) value
in case both trial and elite have negative (positive) heats), then all the elite variables
referred to that heat are assigned to trial, updating heatsTrial accordingly.
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o mutationOne(): The first mutation is meant to repair trial with respect to the equality
constraint (see Equation (4)). The procedure is divided into two steps, as shown in
Algorithm 12: firstly, the total number of copies cast by trial for each object, copiesTrial,
is calculated, with each GPU thread handling one variable of trial and performing a
thread-safe sum over copiesTrial. Next, for each object, if the copies required (stored in
copies) are less than the ones that are cast (stored in copiesTrial), this means that some
copies in excess should be removed from trial: to do that, first the heat with the greatest
inequality violation (i.e., the lowest value of heatsTrial, returned by argmin()) is found, then
the corresponding variable in trial is decreased by one, and heatsTrial and copiesTrial
are updated accordingly. On the other hand, if the copies required are more than the ones
that are cast, this means that some more copies should be added to trial: to do that, first
the heat with the lowest crucible utilization (i.e., the highest value of available space, stored
in heatsTrial, returned by argmax()) is found, then the corresponding variable in trial is
increased by one, and heatsTrial and copiesTrial are updated accordingly. This operation
is repeated until the equality constraint is satisfied. Note that the functions used to find the
two heats, i.e., argmin() and argmax(), are GPU-parallelized. Moreover, during the repair
process heatsTrial and copiesTrial vectors are updated in order to be reused later to
calculate the fitness.

o mutationTwo(): The second mutation tries to reduce the heats which use more space than the
one available in the crucible, as described in [4]. The procedure consists in finding two heats:
the one with the greatest inequality violation, and the one with the greatest available space.
After that, a random object is selected and removed from the first heat and added to the
second one, in order to preserve the total number of copies. These operations are repeated the
number of times indicated by the parameter iterationLimit. In the original version in [4],
this value was fixed during all the computation (set to 30), while, in our implementation,
due to the compact nature of the algorithm, we needed to double this value at each iteration,
starting from 30. This process leads to an exponential increase of the time of mutationTwo(),
as shown in the next section. As for the parallelization process, similar to mutationOne(), it
is obtained by loading trial into the GPU and then performing the argmin() and argmax()
operations parallelized with a one-to-one mapping between GPU threads and variables.

- evaluate(): This function evaluates the solution in a time-efficient way, using the information
already calculated during generateTrial(). The two penalty factors related to the inequality
and equality constraints (see Equations (3) and (4)) are determined, respectively, through the
heatsTrial and copiesTrial vectors, and added to fitnessTrial, as shown in Algorithm 13.
The total time required is O(H + N), and it is further decreased due to the parallelization over H
heats. Note that the second loop over N objects is not parallelized as N is typically much smaller
than H.

- updatePV(): This function is parallelized on the size of PV (one bit per GPU thread) and operates
similarly to Algorithm 2, with the only difference that each thread has to extract the relative bit
before performing the update.
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Algorithm 8 Discrete cGA: inhibitor().

1: procedure INHIBITOR(PV, W, weights, H)
2: for i in 1 . . . length(PV) do . each iteration in a separate GPU thread
3: bitIndex← i % 4 . index of the bit
4: objectIndex← (i/4) / H . index of the object
5: crucibleIndex← getCrucible(W,i,H) . index of the crucible
6: if 2bitIndex > W[crucibleIndex]/weights[objectIndex] then
7: PV[i]← NaN
8: end if
9: end for

10: return PV

Algorithm 9 Discrete cGA: initializePV().

1: procedure INITIALIZEPV(PV, elite)
2: for i in 1 . . . length(PV) do . each iteration in a separate GPU thread
3: index← i / 4 . index of variable
4: bitIndex← i % 4 . index of the bit
5: bitElite← getBin(elite[index], bitIndex)
6: if bitElite == 1 and PV[i] 6= NaN then . bit is not blocked by inhibitor()
7: PV[i]← 0.25
8: else
9: PV[i]← 0.75

10: end if
11: end for
12: return PV

Algorithm 10 Discrete cGA: newTrial().

1: procedure NEWTRIAL( PV, trial, weights)
2: for i in 1 . . . length(trial) do . each iteration in a separate GPU thread
3: heatsTrial← vector of size H initialized with the relative crucible size
4: num← 0
5: for j in 1 . . . 4 do
6: if PV[4× i+ j] 6= NaN then . bit is not blocked by inhibitor()
7: rnd← random(0,1)
8: if rnd ≥ PV[4× i+ j] then
9: num← num + j

10: end if
11: end if
12: end for
13: trial[i]← num
14: heatIndex← i % length(heatsTrial)
15: objectIndex← i / length(heatsTrial)
16: heatsTrial[i]← heatsTrial[i]-trial[i] × weights[objectIndex] . thread-safe sum
17: end for
18: return trial, heatsTrial
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Algorithm 11 Discrete cGA: crossover().

1: procedure CROSSOVER(trial, elite, heatsTrial, heatsElite, H)
2: heatsTrialTmp← vector of size H
3: for i in 1 . . . length(trial) do . each iteration in a separate GPU thread
4: heatIndex← i % length(heatsTrial)
5: if heatsElite[heatIndex] better than heatsTrial[heatIndex] then
6: trial[i]← elite[i]
7: heatsTrialTmp[heatIndex]← heatsElite[heatIndex]
8: else:
9: heatsTrialTmp[heatIndex]← heatsTrial[heatIndex]

10: end if
11: end for
12: heatsTrial← heatsTrialTmp
13: return trial, heatsTrial

Algorithm 12 Discrete cGA: mutationOne().

1: procedure MUTATIONONE(trial, heatsTrial, copies, weights, N)
2: copiesTrial← vector of size N
3: for i in 1 . . . length(trial) do . each iteration in a separate GPU thread
4: objectIndex← i/H . index of the object
5: copiesTrial[objectIndex]← copiesTrial[objectIndex]+ trial[i] . thread-safe sum
6: end for
7: for j in 1 . . . length(copies) do
8: while copiesTrial[j] 6= copies[j] do . loop until equality is satisfied
9: if copies[j] < copiesTrial[j] then

10: minHeatIndex← argmin(heatsTrial) . each heat in a separate GPU thread
11: trial[j× H + minHeatIndex]← trial[j× H + minHeatIndex] - 1
12: heatsTrial[minHeatIndex]← heatsTrial[minHeatIndex] + weights[j]
13: copiesTrial[j]← copiesTrial[j] - 1
14: end if
15: if copies[j] > copiesTrial[j] then
16: maxHeatIndex← argmax(heatsTrial) . each heat in a separate GPU thread
17: trial[j× H + maxHeatIndex]← trial[j× H + maxHeatIndex] + 1
18: heatsTrial[maxHeatIndex]← heatsTrial[maxHeatIndex] - weights[j]
19: copiesTrial[j]← copiesTrial[j] + 1
20: end if
21: end while
22: end for
23: return trial, heatsTrial, copiesTrial
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Algorithm 13 Discrete cGA: evaluate().

1: procedure EVALUATE(copiesTrial, heatsTrial, copies, weights, W, penalty)
2: fitnessTrial← 0
3: for i in 1 . . . H do . each iteration in a separate GPU thread
4: crucibleIndex← getCrucible(W,i,H) . index of the crucible
5: if heatsTrial[i] < 0 then
6: fitnessTrial← fitnessTrial + (heatsTrial[i]/W[crucibleIndex])2

7: end if
8: end for
9: for j in 1 . . . N do

10: if copiesTrial[j] 6= 0 then
11: fitnessTrial← fitnessTrial + (copiesTrial[j]− copies[j])2

12: end if
13: end for
14: return fitnessTrial

4. Results

We discuss now the performance of the binary and discrete cGA implementations described in
the previous section. Firstly, we compare the three binary cGAs (cGA-Base, cGA-A100, and cGA-A1)
with the cGA presented in [46] on the OneMax problem. Then, we compare the discrete cGA with
the PILP algorithm presented in [4,6]. We provide the code publicly as Colab notebooks (https:
//drive.google.com/drive/folders/1k6KWtR9ceuW7HneLptK3TlMpfjqaNMBT?usp=sharing).

4.1. OneMax

We performed the experiments on the OneMax problem using the Google R©Colab service,
which provides a machine powered by an Intel R©XeonTM4 CPU @ 2.20 GHz, 25 GB RAM, with an
NVIDIA R©P100 GPU. For each algorithm presented, we tested four dimensionalities, varying the
size of the problem from one million to one billion variables. For each algorithm and problem size,
we performed 10 runs, with a virtual population of 100. Each run ended either when it reached
the optimal fitness, or after a predetermined maximum number of iterations (note that in the cGA
one iteration corresponds to one solution evaluation). This last parameter was set to 5000 for all
the dimensionalities, except for the case with one billion variables, where it was set to 1600 for the
cGA-Base and cGA-A100 and 500 for the cGA-A1. A summary of the results, in comparison with
the results taken from [46], is shown in Table 4 for the synchronous cGAs, and in Table 5 for the
asynchronous cGAs.

Table 4. Synchronous binary cGAs: comparison on the OneMax problem (mean across 10 runs, std.
dev. in parentheses). The symbol ‘-’ indicates data not provided in [46].

cGA-Sync [46] cGA-Base [Ours]
1M 8M 32M 1B 1M 8M 32M 1B

Time (s) 600 (-) 10,680 (-) 49,140(-) 348,000(-) 52.022 (1.552) 256.923(2.169) 969.419 (5.971) 9085.140 (1136.925)
Fitness (%) 82.5 (-) 79.1(-) 74.1(-) 62.3 (-) 51.192 (0.0570) 50.750(0.0194) 50.634(0.0053) 50.525 (0.0012)
Iterations 50,000 (-) 50,000 (-) 50,000 (-) 50,000 (-) 5000 (0) 5000 (0) 5000 (0) 1600 (0)

Table 5. Asynchronous binary cGAs: comparison on the OneMax problem (mean across 10 runs, std.
dev. in parentheses). The symbol ’-’ indicates data not provided in [46].

cGA-Async [46] cGA-A100 [Ours] cGA-A1 [ours]
1M 8M 32M 1B 1M 8M 32M 1B 1M 8M 32M 1B

Time (s) 324 (-) 7560 (-) 35,400 (-) 315,060 (-) 58.745 (0.837) 177.476 (2.249) 789.158 (3.314) 6798.995 (1155.062) 9.913 (0.269) 66.898 (1.513) 286.802 (3.452) 2278.10 (18.273)
Fitness (%) 91.0 (-) 82.6 (-) 77.8 (-) 66.8 (-) 99.317 (0.0293) 95.785 (0.174) 92.548 (0.145) 66.968 (0.163) 100 (0.0) 100 (0.0) 100 (0.0) 99.946 (9.946e-5)
Iterations 50,000 (-) 50,000 (-) 50,000 (-) 50,000 (-) 5000 (0) 5000 (0) 5000 (0) 1600 (0) 986.6 (33.242) 1208.5 (19.448) 1357.7 (17.257) 500 (0)

Our cGA-Base shows only marginal improvements with respect to the cGA-sync from [46].
One possible explanation for this is the different value of virtual population used in [46], which however
is not reported in the paper. However, as it is quite improbable that a compact genetic algorithm

https://drive.google.com/drive/folders/1k6KWtR9ceuW7HneLptK3TlMpfjqaNMBT?usp=sharing
https://drive.google.com/drive/folders/1k6KWtR9ceuW7HneLptK3TlMpfjqaNMBT?usp=sharing
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can converge in very large-scale problems [44], our result can be considered satisfactory. In contrast
with these results, our asynchronous versions show much better results, in terms of both computing
time and fitness. In particular, the cGA-A100 obtains better results in all four dimensionalities, with
execution times from 9 to 46 times smaller than the times reported in [46] (also due to more recent GPU
hardware). The cGA-A1, as expected, shows even better behavior, solving the problem in roughly
1300 iterations for the first three dimensionalities, and reaching 99.9% in only 500 iterations for the one
billion-variable problem. The fitness trend of the three binary cGAs is shown in Figure 1, where it can
be seen that, while the synchronous cGA suffers from premature convergence, the asynchronous cGAs
do not, and are able to reach high-quality solutions in both versions of the algorithm, although with a
very different convergence profile: the cGA-A100 shows an almost-linear behavior, while the cGA-A1
has an exponential convergence.
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Figure 1. Best fitness value per iteration (mean ± std. dev. across 10 runs per algorithm) for the three
binary cGAs on the OneMax problem in four different dimensionalities.

We complete our analysis on the OneMax problem with a profiling of the various functions used
in the cGAs. The results for the cGA-A100 are shown in Figure 2, where it can be noted that the time
distribution on the four problem dimensionalities is approximately the same, with the updatePV() and
generateTrial() functions requiring most of the time, roughly 50% and 30%, respectively. The remaining
20% is divided between evaluate() and compete(). Similar considerations apply to the cGA-Base
and cGA-A1, with some caveats: Firstly, as described in the previous section, the compete() function
in the asynchronous algorithms is more expensive than in the cGA-Base. Secondly, in the cGA-A1
the operations of compete() and evaluate() are embedded into updatePV(), causing an increase of
this function in terms of execution time. Interestingly, these results are quite different from the ones
described in [46], where up to 70% of the time is spent in the trial generation phase, while in our setup
most of the time is spent to update the probability vector.
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Figure 2. Time profiling (mean ± std. dev. across 10 runs) for the cGA-A100 on the OneMax problem
in four different dimensionalities.
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4.2. Casting Scheduling Problem

We performed the experiments on the casting scheduling problem on a Linux workstation
powered by an Intel R©CoreTMi9-7940x CPU @ 3.10GHz, 64GB RAM, with an NVIDIA R©Titan XP
GPU. The code was tested on Ubuntu 19.10 (kernel GNU/Linux 5.3.0-40-generic x86_64), CUDA 10.1,
and Python3 with the Numba library used to write the GPU kernel for the parallelization process.

Similar to the OneMax case, we ran 10 independent runs of the discrete cGA for three different
dimensionalities (100k, 1M, and 10M variables), with η = 0.997 and the input parameters indicated
in Table 6. The virtualPopulation and the iterationLimit are set to 100 and 30, respectively. Of
note, all the runs terminated successfully, finding the optimal solution corresponding to P(x∗) = 0.
A summary of the results in comparison with the results taken from [4] is shown in Table 7.

Table 6. Parameters used for the casting scheduling problem. Note that the crucible size, W, and the
weights are in common for all the problem dimensionalities, therefore the only parameter that changes
across dimensionalities is the number of copies per object.

W {500, 650}
Size Object id 1 2 3 4 5 6 7 8 9 10

weights 79 66 31 26 44 35 88 9 57 22

100K 12560 12,562 12,517 12,567 12,562 12,172 12,076 12,052 12,017 12,012
1M copies 125,600 125,620 125,170 125,670 125,620 121,720 120,760 120,520 120,170 120,120
10M 1255980 1,256,200 1,251,700 1,256,700 1,256,200 1,217,200 1,207,600 1,205,200 1,201,700 1,201,200

Table 7. Casting scheduling problem: number of solution evaluations to reach the optimum, number
of heat updates, and execution times (mean across 10 runs, std. dev. in parentheses). The results for the
PILP algorithm are taken from Table 6 in [4]; the symbol ‘-’ indicates data not provided.

Algorithm Size Solution evals. Heat Update Total Time (s) initialization() (s) generateTrial() (s) evaluate() (s) compete() (s) update() (s)

discrete
cGA [ours]

100K 20.2 (9.249) 431,027.2 (145,724.751) 360.703 (114.444) 5.711 (2.827) 354.707 (114.993) 0.0636 (0.0958) 0.0431 (0.0813) 0.173 (0.266)
1M 18.1 (7.687) 3,300,602.6 (28,057.973) 2538.747 (405.0527) 38.757 (9.796) 2499.556 (398.775) 0.0444 (0.0396) 0.0230 (0.031) 0.358 (0.315)
10M 29.3 (14.423) 33,720,256.6 (867,688.014) 29,785.986 (6790.176) 460.459 (136.859) 29,322.144 (6679.297) 0.177 (0.0883) 0.0910 (0.0626) 3.101 (1.367)

PILP [4]
100K 1032 (17) 8,807,564 (167,494) 26 (0.6) - - - -
1M 1080 (35) 91,345,801 (2,048,330) 308 (9) - - - - -
10M 1104 (35) 976,903,439 (19,038,115) 4207 (124) - - - - -

It should be noted that our implementation requires only a few tens of solution evaluations to solve
the problem (slightly more than 50 in the 10M case), while PILP for the same problem dimensionalities
needs above 1000 evaluations. This reflects also in an average number of heat updates (i.e., how many
times a variable is modified by the two mutation operators), which is from 10 to 300 times lower
than PILP, due to the lower number of trials processed. Additionally, it is important to consider the
much smaller amount of memory used with respect to the population-based PILP algorithm: while
discrete cGA needs only 18.8× problemSize bytes (More specifically: 4× problemSize float32 (for
PV), 2× problemSize int8 (for trial and elite), and 0.2 int32 (for heats).) to save PV, trial, elite
and its respective heats vector, PILP requires 2× 60× problemSize bytes, where 60 is the population
size, excluding some additional memory needed to store the fitness values and other data structures.

As for the time needed to solve the problem, our algorithm results from one to two orders of
magnitude slower than PILP. This is mainly due to the lack of a population, which we compensated
with an exponential increase of the parameter iterationLimit in mutationTwo(). As can be seen in
Table 7, the majority of time is spent for the generateTrial() function, particularly for the execution of
the mutation operators. As shown in Figure 3, during the first iterations, the execution times for the
two mutations is dominated by mutationOne(), but eventually it is mutationTwo() that requires more
time. However, it can be seen that the time per iteration of mutationTwo() remains almost constant as
the problem dimensionality increases. Therefore, the time increase of mutationTwo() is only caused by
the increasing number of iterations required. Overall, it seems then that there is a trade-off between
memory consumption (more memory is needed to store more solutions, which allow a better search
with fewer iterations needed to repair them) and time to converge (with limited memory, more time is
needed to repair the trial generated at each iteration of the cGA).
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For completeness, we report the fitness trend of the discrete cGA in Figure 4. The behavior is
similar to the one described in [4], with the entire evolution that can be divided into three phases: in the
initial galloping phase, the fitness rapidly decreases; then follows a consolidation phase, where new
solutions have small improvements; and, lastly, the final solution is created in the culmination phase.
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Figure 3. Execution time per iteration (mean across 10 runs) for the two mutation operators on the
casting scheduling problem in three different dimensionalities.
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Figure 4. Best fitness value per iteration (mean ± std. dev. across 10 runs) on the casting scheduling
problem in three different dimensionalities.
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Effect of the Smart PV Initialization

As discussed in the previous section, for the casting scheduling problem, we introduced a smart
initialization mechanism aimed at reducing the fitness of the first trial and also avoiding generating
unfeasible solutions. To assess the effect of the smart initialization on the algorithmic performance,
we compared the effect of inhibitor() and initializePV() with that of a random initialization. As shown
in Figure 5, these two functions lead to generate trials that are five times better (in terms of fitness)
than those generated by random initialization, indicated as initialization(). This provides the algorithm
a “head start” that as seen before allows converging in a very limited number of iterations.
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Figure 5. Casting scheduling problem: fitness of trials generated using different PV initialization
strategies (mean ± std. dev. across 1000 trials). Here, initialization() indicates a random initialization of
PV. Note that in these experiments the mutation operators are not applied, thus any violated constraint
is not repaired. While it seems that initializePV() alone is enough to generate good trials at the
beginning of the algorithm, inhibitor() blocks the bits also during the evolution.

5. Conclusions

In many application domains, there is a constant demand for ever more efficient optimization
techniques. This is especially true for large-scale optimization problems, for which one usually needs
large computational resources—in terms of processing power and memory—to obtain a reasonable
solution in feasible time. However, in some cases, the available computational resources might be
scarce, or should be reserved to other applications. Therefore, it is of great interest to find a trade-off
between efficient optimization and resource consumption.

In this study, we tackled very large-scale optimization problems (of up to one billion variables),
in both discrete and continuous domains, with special constraints on processing power and memory.
In particular, we questioned if it is possible to solve these kinds of problems by fitting efficiently the
search algorithm into one GPU. To do that, we considered a compact Genetic Algorithm (cGA) and
we adapted it to make it work on the GPU, by splitting the problem and letting multiple GPU cores
work in parallel on different sub-problems. We considered two different sub-problem sizes (1 and
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100). In addition, we implemented both asynchronous and synchronous schemes, depending on the
possibility of updating the best solution as soon as an improvement is found on one sub-problem.

To test the proposed algorithm, we considered binary, integer, and continuous optimization
problems. In particular, we first benchmarked the algorithm on the OneMax problem in binary,
integer (16 values) and continuous settings. Then, we considered an industrial casting scheduling
problem recently presented by Deb and Myburgh [6]. Overall, our numerical results show that:
(1) compact optimization techniques are a viable solution for solving very large-scale problems even
with limited resources; and (2) they are especially suitable for GPU-parallelization. On the other
hand, compact algorithms have some implicit limitations deriving from the fact that they lack a
population of candidate solutions, hence being in general less efficient at exploring the search space
compared to population-based algorithms. Therefore, to use these algorithms properly in practical
applications—without sacrificing too much the optimization performances—it is recommended to
couple them with problem knowledge. To show this, here we demonstrated how a base version of the
cGA can be customized, for the specific case of the scheduling problem, with a smart initialization of
the probability vector (that is, the probabilistic model used in the compact algorithm) aimed at guiding
the search towards feasible solutions, as well as problem-specific mutation and crossover operators
aimed at repairing constraint violations, adapted from [6]. Furthermore, we adapted the cGA to handle
variables of different kinds, as well as equality and inequality constraints.

In future works, we aim to further extend cGAs by hybridizing them with other single-solution
optimization algorithms, such as simulated annealing [47], and applying gradient-based methods to
perform local search, in a memetic fashion. Furthermore, we will consider the use of decomposition
techniques (either problem-aware or problem-agnostic) and restart mechanisms such as the re-sampled
inheritance introduced in [37,38]. Another intriguing possibility would be to integrate compact
algorithms with a quantum annealer, to obtain a hybrid quantum-classical optimizer. Finally, it will
be interesting to apply these algorithms to other domains, e.g. for training deep neural networks,
in Wireless Sensor Networks applications [48], or to solve very large-scale instances of TSP and other
“NK landscape” problems, as recently discussed in [49,50].
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Appendix A. Additional Results on OneMax Problem

Appendix A.1. Discrete OneMax

We present here additional results obtained with the discrete cGA on a discrete version of the
OneMax problem. For this analysis, we used the general version of the discrete cGA presented in
Section 3.2, where we removed all the problem-dependent operations implemented for the casting
scheduling problem, namely the smartInitialization(), crossover(), mutationOne() and mutationTwo()
functions. The algorithm obtained has a structure similar to Algorithm 1, but it is able to handle
integers variables. Similar to the casting scheduling problem, we considered integer variables in the
interval {0, 1, . . . , 15}.

- Results: We performed 10 runs on four dimensionalities, setting the virtualPopulation to 100.
The maximum number of iterations was set to 5000 for problem instances up to 32M variables and
1000 for the 1B case. All experiments were executed on the Google R©Colab service. The results
obtained, reported in Table A1, are similar to the results reported in Section 4.1 for the binary
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OneMax problem, although times are (up to) twice as big. The main reason for this time increase is
the fact that in this case the algorithm handles 4 bits per variable in the newTrial() and updatePV()
functions, instead of just one as in the binary cGA.

Table A1. Results of the cGA on the discrete and continuous OneMax problem.

Discrete cGA Continuous cGA
1M 8M 32M 1B 1M 8M 32M 1B

Time (s) 72.463 (2.038) 395.806 (3.985) 1958.932 (485.963) 13,143.343 (3201.053) 156.647 (1.487) 985.936 (118.716) 3366.755 (20.297) 20,895.186 (4131.433)
Fitness (%) 50.926 (0.0250) 50.658 (0.008) 50.579 (0.002) 50.515 (0.0005) 50.870 (0.039) 50.102 (0.024) 50.034 (0.0072) 50.0055 (0.0003)
Iterations 5000 5000 5000 1000 5000 5000 5000 1000
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Figure A1. Best fitness value per iteration (mean ± std. dev. across 10 runs per algorithm) for the cGA
on the discrete OneMax problem in four different dimensionalities.

Appendix A.2. Continuous OneMax

We also implemented a GPU-enabled continuous cGA, based on the original algorithm proposed
in [11], with some modifications. As a benchmark, we considered the OneMax problem where all
variables can take real values in [0, 1], instead of binary values. The main difference with respect to
the binary and discrete cGAs is the sampling procedure and the update of PV. As briefly mentioned
in Section 1, the continuous cGA uses for each variable a truncated Gaussian PDF, and to sample
new value it calculates the inverse of the corresponding CDF. Therefore, the probability vector in this
case consists of 2 vectors which describe the mean µ and standard deviation σ of the Gaussian PDFs
(see [7] for details). As for the parallelization process, we implemented a scheme similar to the binary
cGA-Base, using a one-to-one mapping between variables and GPU threads, both for the operations in
common with the cGA-Base and for the functions described below.

- Algorithm: The main modifications we added to the original cGA scheme illustrated in
Algorithm 1 include mutation and crossover operators, inspired by Differential Evolution (DE) [13],
and an adaptive restart mechanism. All these mechanisms are problem-independent.

o Mutation: The value of each variable is obtained by sampling three values from the relative
Gaussian PDF, and then combining them as in the rand/1 DE [13]:

x[i] = sample(µ[i], σ[i]) + F× (sample(µ[i], σ[i])− sample(µ[i], σ[i])) (A1)

where F is a parameter, and sample() is the procedure to sample from the Gaussian PDF.
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o Crossover: We implemented two different strategies, based on the binomial and exponential
crossover used in DE. Both are based on a parameter CR ∈ (0, 1), but their behavior is
different. In the binomial crossover, each variable in a trial copies with probability CR the
corresponding variable from the elite. In the exponential crossover, starting from a random
position, the variables of the trial are copied from the elite, until a random number p ∈ [0, 1)
is greater than CR.

o Restart: The adaptive restart mechanism partially restarts the evolution by resetting the σ

values trough two parameters. The first parameter, invariant, controls when to apply the
restart, which can occur for two reasons: either if for invariant consecutive iterations the
trial does not improve the elite, or if the trial improves it but the improvement (i.e., the
difference between its fitness and that of the elite) is less than 1.0. The second parameter
regulates the portion of variables involved, i.e., each variable as a probability resetPR to be
reset. Finally, the new value of σ after each restart changes dynamically during the evolution
process: in particular, it starts from 10, it is doubled every time a restart occurs and it is
halved every time there are invariant iterations without a restart.

- Results: We tested separately the different behavior of the two crossover strategies, the impact
of three different algorithm configurations (base, i.e., without DE-mutation and crossover; with
mutation and crossover; and with mutation, crossover and restart), and how the algorithm scales.
For this analysis, we used the parameters shown in Table A2. All the experiments were executed
on the Google R©Colab service.

o Crossover strategies: We tested the two crossover strategies over 5000 iterations on the
continuous OneMax problem with 1M variables. As shown in Figure A2, the two crossover
strategies show a similar behavior, although the exponential crossover tends to reach a
plateau earlier than the binomial crossover.

o Algorithm configurations: In this case as well, the different configurations were tested over
5000 iterations on the continuous OneMax problem with 1M variables, using the binomial
crossover. As shown in Figure A3, the restart greatly enhances the algorithm’s performance,
avoiding premature convergence and also increasing the fitness achieved. It is important to
consider that the parameters involved in the restart procedure must be chosen carefully in
order to avoid making the search ineffective.

o Scalability: As shown in Figure A4, the results are similar, in terms of behavior, to the binary
and discrete cases, shown earlier in Figures 1 and A1. However, the final fitness values are
slightly worse. This is mainly due to two reasons: firstly, the continuous domain leads to
smaller fitness increases; and, secondly, the chosen restart parameters seem to work well in
the 1M case, but not on larger dimensionalities. It is also of note that the total execution time
results from two to four times bigger than the equivalent binary and discrete cases.

Table A2. Parameter settings for the cGA applied to the continuous OneMax problem.

Parameter Value

virtualPopulation 100
F 0.7
CR (binomial) 0.5
CR (exponential) 0.9
invariant 300
resetPR 0.5
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Figure A2. Best fitness value per iteration (mean ± std. dev. across 10 runs) for the cGA with two
different crossover operators on the continuous OneMax problem in 1M dimensions.
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Figure A3. Best fitness value (mean± std. dev. across 10 runs) for the cGA with different configurations
on the continuous OneMax problem in 1M dimensions.
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Figure A4. Best fitness value per iteration (mean ± std. dev. across 10 runs per algorithm) for the cGA
on the continuous OneMax problem in four different dimensionalities.
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