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Abstract: In this paper, we establish the asynchronous computability theorem in d-solo system
by borrowing concepts from combinatorial topology, in which we state a necessary and sufficient
conditions for a task to be wait-free computable in that system. Intuitively, a d-solo system allows as
many d processes to access it as if each were running solo, namely, without detecting communication
from any peer. As an application, we completely characterize the solvability of the input-less tasks in
such systems. This characterization also leads to a hardness classification of these tasks according to
whether their output complexes hold a d-nest structure. As a byproduct, we find an alternative way
to distinguish the computational power of d-solo objects for different d.

Keywords: distributed computing; asynchronous computability; solo model; solvability;
combinatorial topology

1. Introduction

Asynchronous computability, which means the solvability of tasks in asynchronous, failure-prone
distributed systems, has been an active topic ever since 1985 when the well known FLP impossibility
theorem was established [1]. There is a long line of work that deals with this topic for numerous tasks
in different systems under various failure models [2–10]. However, only a pinch of results exist that
characterize the asynchronous computability of general, rather than specific, tasks.

Such efforts date back to 1988, when Biran et al. [11] established a graph-theoretical sufficient and
necessary condition for the solvability of distributed tasks in message-passing systems. Their method
applies only if there is at most one crash failure of the process. Breakthrough was made in 1993 by three
independent teams [5,6,12], among which Herlihy and Shavit [6] presented a topological framework
for studying the asynchronous computability of general tasks in share-memory or message-passing
systems with t ≥ 1 crash failures. This framework was then extended to a complete characterization of
wait-free solvability of distributed tasks in shared-memory systems, namely, a task is solvable if and
only if its specification is topologically compatible in some sense [7]. The characterization was further
generalized in two directions. One direction is generalization to systems with arbitrary communication
objects (not just shared-memory of message passing) [1,13], to arbitrary resilience (rather than one
or n failures) [6,8,14], to arbitrary synchrony [15,16], or to Byzantine failures that may do the most
malicious harm on the system [9,17,18]. The other direction is to characterize the relative hardness of
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distributed tasks in asynchronous shared-memory systems: two tasks are reducible to each other if
and only if they are equivalent in a topological manner [19–22].

Closely related to computability is the concept of decidability, which means whether there is an
efficient procedure to decide the solvability of a family of tasks in a system model. It was initiated by
Herlihy and Rajsbaum in [19] and continued in [20,23], where shared-memory and communication
objects of consensus number more than one are considered.

The above-mentioned works mainly assume simple communication objects such as
shared-memory and message passing. The two objects were generalized by Herlihy et al. in 2014 [24]
into a spectrum of d-solo objects, where d is a positive integer ranging over the set {1, . . . , n + 1} and n
is the number of processes. Roughly speaking, a d-solo communication object allows up to d processes
to run solo, that is none of them gets information from any peer process. The d-solo execution comes
from a real-life distributed computing decision scenarios, the robot gathering problem [25–28]. A robot
gathering problem of a set of n asynchronous robots requires that robots can move to meet in a given
area of some space (e.g., [29,30]) which depends on their initial positions. Since the initial position of a
robot constitutes its input value and crash-prone robots may appear asynchronously in the space in the
Look–Compute–Move model which corresponds to a wait-free snapshot shared-memory model [31]
where robots can take snapshots of the graph where they are located [32], and a robot cannot view the
positions of all other robots instantaneously in reality, for one robot looks in one direction, it could
be that the other robot just moved out of the corresponding region, then it is possible that two robots
don’t see each other during the execution of their Look–Compute–Move, which is a situation similar
to d-solo executions.

It is not hard to see that shared-memory and message passing lie at the extremes of the spectrum
with d = 1 and d = n + 1, respectively. Then a question naturally arises: is it possible to generalize the
asynchronous computability theory from the extremes to the whole spectrum?

To date, little has been known about the answer, except for the progress made by Herlihy et al. [10].
However, Herlihy et al. [10] only investigated the solvability of colorless tasks, which belong to a
rather constrained class of distributed tasks introduced by Borowsky et al. in [33]. The mission of our
paper is to extend their work to general tasks, so as to completely answer the question.

Our contribution lies in three aspects. First, we fully characterize the asynchronous computability
of distributed decision tasks on d-solo systems for arbitrary 1 ≤ d ≤ n + 1. The characterization
is in terms of a topological property of the task’s specification, strengthening the bridge between
topology and computing. Second, as an application, we derive a simple necessary and sufficient
condition for the solvability of input-less tasks in d-solo systems. input-less tasks were proposed by
Gafni et al. in [23]. They are among the simplest distributed tasks, and play a critical role in research
on distributed computability and decidability. Third, we identify a hierarchy of input-less tasks,
which exactly differentiates the computational power of d-solo objects for different d. This provides
an alternative to the more sophisticated agreement-like tasks constructed by Herlihy et al. [10].

2. Asynchronous Computability Theorem in d-Solo Models

2.1. Computational Model of Distributed Computing

In this subsection, we review briefly review some concepts of distributed computing. For details,
please refer to [6,7,13,15,19,20,23,34].

A distributed system consists of n + 1 sequential processes Π = {p0, p1, . . . , pn} and some
communication objects through which the processes communicate. Without loss of generality,
assume that each process proceeds round by round. We further assume that the system is asynchronous
and that up to n processes may fail by crashing. In any execution, each process starts with a
private input value, and if non-faulty, ends with a private output value after a finite sequence of
communications and local computations. A task is a specification of eligible outputs with regard to the
inputs, which intuitively models a coordination problem.
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Now, we recall the d-solo communication object COd[r] proposed by Herlihy et al. [24],
where integers 1 ≤ d ≤ n + 1 and r ≥ 1 stand for the solo-dimension and the round number,
respectively. Roughly speaking, COd[r] only allows processes in round r to communicate, and up to d
of the processes can run in solo, i.e., each gets no information from its peers. The behavior of COd[r] is
depicted as follows. Let (Π0, . . . , Πz) be an ordered pairwise-disjoint partition of a non-empty subset
Π′ ⊆ Π, such that |Π0| ≤ d and Πi 6= ∅ for any 1 ≤ i ≤ z. It represents the following communication
result: each process pj ∈ Π′ reaches round r and invokes COd[r] on some value vj, and the invocation
returns vj to pj if pj ∈ Π0, while it returns {vl |pl ∈

⋃
0≤k≤i Πk} if pj ∈ Πi with i > 0. Intuitively, Π0 is

the set of processes that run in solo in round r. For more detail, refer to the literature [10].
A protocol is a distributed program consisting of the processes. A protocol is said to solve a

task if the outputs of each execution conform with the specification of the task. Full-information
protocols are widely studied, where each process keeps communicating without local computation
until it decides. Full-information protocols play a key role in distributed computing, because they
are universal in the sense that a task is solvable if and only if it can be solved by a full-information
protocol. When processes communicate via d-solo object COd, a full-information protocol has the form
illustrated in Table 1. Here, decidablei(·) is a boolean function indicating whether or not the process pi
can make a decision based on the local state lsi, and δi(·) returns pi’s decision value. What we need to
know is that pi makes a decision and δi(·) returns just once if it can decide.

Table 1. Process pi for a full-information protocol.

(01) ri ← 0, lsi ← initial local state;
(02) loop forever
(03) ri ← ri + 1;
(04) viewi ← COd[ri].communicate(i, lsi);
(05) lsi ← (lsi, viewi);
(06) if decidablei(lsi) then output δi(lsi) end if
(07) end loop

2.2. Topology Model of Distributed Computing

In this subsection, we review concepts of combinatorial topology briefly, and then we model
distributed computing systems in terms of combinatorial topology. One can refer to [34–37] for
further details.

2.2.1. Simplicial Complex and Simplicial Map

An abstract simplicial complex K, or complex for short, is a collection of non-empty subsets of a
finite set. The complex is required to be closed under containment, meaning that if α ∈ K, then all
non-empty subsets of α are included in K. A member of K is called a simplex. Given two simplexes
α, β ∈ K, we say that α is a f ace of β if α ⊆ β, and we say that α is a proper f ace of β if α ⊂ β.
Define the dimension of a simplex α to be dim(α) , ||α|| − 1, where ||α|| stands for the cardinal
number of the set α. The dimension of a simplicial complex is the highest dimension among its
simplexes. We simply call an n-dimensional simplex α an n-simplex, and use the superscript form αn

to indicate the dimension when needed. The notation is likewise defined on complexes. Any 0-simplex
of a complex K is called a vertex of K, and we use V(K) to denote the set of vertices of K. A n-complex
K is said to be pure, if any simplex α ∈ K is a face of some n-simplex β ∈ K. By default, we only
consider pure complexes in this paper. Any complex K′ ⊆ K is called a subcomplex of K. Given a pure
n-complexK, any (n− 1)-simplex α which is a face of a unique n-simplex is called a boundary simplex,
and the subcomplex consisting of all boundary simplexes and their faces is called the boundary of K,
denoted by ∂(K).

To ease understanding, one can equivalently view abstract simplicial complex K through the
geometric lens which we call geometric simplicial complex. Bijectively map V(K) to an arbitrary set of
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affinely independent points in an Euclidean space. Each simplex naturally corresponds to the convex
hull spanned by the images of its vertices. Seeing Figure 1, a vertex is 0-simplex, a line segment is a
1-simplex, a triangle is a 2-simplex and a tetrahedron is a 3-simplex. Putting the convex hulls together,
we get a geometric realization |K| of K. Nevertheless, hereunder, we still adopt the definition of the
abstract simplicial complex.

Figure 1. Low dimensional simplexes.

Given complexes K and K′, a map µ : V(K) −→ V(K′) is said to be a simplicial map from K to
K′ if it map every simplex in K to a simplex in K′. A map Ψ : K −→ 2K

′
is called a carrier map from

K to K′. Given a simplicial map µ and a carrier map from K to K′, we say that µ is carried by Ψ if
ψ(α) ∈ Ψ(α) for any simplex α ∈ K.

Let K and K′ be two complexes, we say that K is isomorphic to K′ if there exist simplicial maps
f : K −→ K′ and g : K′ −→ K such that the compositions g ◦ f and f ◦ g are both identity maps.

Let K be a simplicial complexes and C be a finite set. We say K is C-chromatic if there is a map
χ : V(K) −→ C such that χ(u) 6= χ(v) for any vertices u, v of a common simplex. We call χ a C-coloring
of K and use χ(α) to denote the set of colors of the vertices of a simplex α. Suppose complexes K and
K′ have C-colorings χ and χ′, respectively. A map µ : V(K) −→ V(K′) is called color-preserving if
χ(v) = χ′(µ(v)) for any v ∈ V(K).

For any integer n ≥ 0, we will use [n] to stand for the set {0, 1, 2, . . . , n}.
Let α be an n-simplex and χ be a C-coloring of α. The standard chromatic subdivision of α, denoted by

Ch(α), is the n-complex Ch(α) constructed as follows:

1. V(Ch(α)) = {(c, S) : S is a face of α, c ∈ χ(S)};
2. Any set of vertices {(c0, S0), (c1, S1), . . . , (cm, Sm)} is a simplex of Ch(α) if and only if both the

following conditions are satisfied for any i 6= j ∈ [m]:

• ci 6= cj, and either Si ⊆ Sj or Sj ⊆ Si;
• If ci ∈ χ(Sj) then Si ⊆ Sj.

Note that Ch(α) has a natural C-coloring: color any vertex (c, S) in c. Hence Ch(α) is also
C-chromatic.

Figure 2 illustrates the barycenter subdivision which has a detailed description in [37], and the
standard chromatic subdivision of a 2-simplex, viewing through the geometric lens.

Figure 2. Once barycenter subdivision and once standard chromatic subdivision of a 2-simplex β.
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2.2.2. Task Formalization

Formally, a distributed task T on n+ 1 processes can be modeled as a triple (I ,O, ∆), where I and
O are pure n-complexes and ∆ is a carrier map from I to O. ∆ is dimension-preserving in the sense
that for any α ∈ I , ∆(α) is a pure complex of dimension dim(α). The n-simplexes in the input complex
I are such {(0, u0), . . . , (n, un)} where ui ranges over the input domain of process pi. Likewise for O,
except that the values range over the output domains. With any vertex (i, x) colored by the color i,
both I and O are [n]-chromatic complexes. ∆ must satisfies that χ(v) = χ(∆(v)) for any 0-simplex
v ∈ I . Consider m-simplices α = {(i0, u0), . . . , (im, um)} ∈ I and β = {(i0, v0), . . . , (im, vm)} ∈ O.
Then, β ∈ ∆(α) means when only processes pi0 , . . . , pim participate in an execution, if each pij gets
input uj, it is eligible that each pij ends with output vj for j ∈ [m].

Example 1. As shown in Figure 3, it is a standard input-less 2-task T = (I2,O2, ∆), in which the left part
of this Figure represents the input complex I2 and the right part represents the output complex. The carrier
map ∆ is illustrated by the dash arrows. Specifically, it maps each vertex A, B, C to a0, b0, c0, each 1-simplex
{u, v} to {∆(u), ∆(v)}, and the 2-simplex toO. Intuitively, this means that if some process does not participate,
the participating ones have a unique output; otherwise, any outputs characterized by O are eligible.

Figure 3. A standard input-less 2-task.

2.2.3. Protocol Complex

Consider a full-information protocol P as shown in Table 1. Fix an input simplex α. In an
execution, if each process pi finishes round k with local state lsi, the global state of P at the end of
round k in this execution is modeled as the simplex β = {(i, lsi) : 0 ≤ i ≤ m}, m ≤ n. We say that
β is reachable from α by P . All such simplexes, together with all their faces, constitute the k-round
protocol complex of P reachable from α, denoted by P k(α). Let k be the last round before making
decision. Then complex P(I) , ⋃

α∈I P k(α) is called the protocol complex of P .

Example 2. Figure 4 illustrates the geometric view of the 1-round protocol complex of the full-information
protocol on three processes. The dots are colored yellow, black and green to stand for the processes p0, p1 and p2.
Consider the communication objects COd with d = 1, 2, 3, respectively. An arrow represents that the destination
process has received the value communicated via COd by the source process. Each filled triangle represents a
2-simplex, modeling a reachable global state. The collection of all the 2-simplexes in the left part of the Figure 4
represents 1-round protocol complex when the communication object is 1-solo. The middle part of Figure 4
shows the extra 2-simplexes that appear when the communication object changes from 1-solo to 2-solo. Hence,
the simplexes in the middle and those in the left part of this figure form the 1-round protocol complex when
d = 2 in COd. If we further increase d to 3, one more 2-simplex appears, as illustrated in the right part of
Figure 4, which represents an execution in which all of the three processes run in solo. Putting all the simplexes
together, we get the 1-round protocol complex when CO3 is used.
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Figure 4. All possible execution (filled 2-simplexes) for three processes.

2.3. Chromatic Join

In this subsection, we mainly define a chromatic complex, a chromatic join, which can describe
the execution of d-solo model accurately. Then we introduce a simple property of the complex.

Given two sets X0 and X1 with no intersection, call X0 ∗ X1 the join of X0 and X1 if X0 ∗ X1 ,
X0 t X1.

Let α be a chromatic simplex. Consider a non-empty set S ⊆ V(Ch(α)). Define the
low-dimensional part L(S) , {(c, T) ∈ S : dim(T) = 0}, and the high-dimensional part H(S) ,
S \ L(S). We say that S is compatible if both the following conditions hold:

• For any (c, T) 6= (c′, T′) ∈ S, c 6= c′;
• {u} ∗ H(S) is a simplex in Ch(α) for any u ∈ L(S).

Roughly speaking, S, if compatible, stands for the global state resulted from a 1-round execution
of the full-information protocol, where processes in L(S) run in solo.

Definition 1. Given a chromatic simplex α and an integer d ≥ 1, the chromatic d-join of α is defined to be

Dd(α) , {S ⊆ V(Ch(α)) : S is compatible, ||L(S)|| ≤ d}.

Remark 1. We can regard S as a join L(S) ∗ H(S) of L(S) and H(S) that are subsets of V(Ch(α)) for any
element S ∈ Dd(α);

In the definition of chromatic d-join, S can be such that ||L(S)|| ≤ 1. This implies that Ch(α) ⊆ Dd(α).

Now we extend the definition to complexes. Suppose K is a chromatic n-complex. Its chromatic
d-join is defined to be Dd(K) ,

⋃
α∈K Dd(α).

Lemma 1. Dd(K) is a chromatic simplicial complex.

Proof of Lemma 1. We first show that Dd(K) is closed under containment and intersection.
Let β be any simplex in Dd(K), then there is a simplex α ∈ K such that β = L(S) ∗ H(S) in which

S is in Dd(α). Suppose β′ is any face of β. There are three cases: V(β′) ⊆ L(S) or V(β′) ⊆ H(S),
or V(β′) ∩ H(L) 6= ∅ and V(β′) ∩ H(S) 6= ∅. It is not hard to show that in each case of them, we can
regard β′ as a d-join of a subset of L(S) and a subset of H(S). It follows that β′ is in Dd(α), and it is
also in Dd(K).

Let γ be any another simplex in Dd(K). If the intersections of γ and β is not empty set, then it
must be a common face of them. By the upper argument, we know that it is also in Dd(K).

Then label each vertex (c, T) ∈ V(Dd(K)) with c. From the definition of Dd(K), it is obvious that
this labeling is a coloring map of Dd(K).

Throughout this paper, whenever coloring of Dd(K) is mentioned, it always means the labeling
in the proof.
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Inductively, we define the s-fold chromatic d-join Ds
d(K) , Dd(Ds−1

d (K)), for any positive integer
s. Particularly, if s = 0, we set D0

d(K) , K.
From Lemma 1, we note that Ds

d(α) is chromatic simplicial complex for any given chromatic
simplex α, then we can regard Ds

d as a carrier map. On this ground, we define the carrier of a simplex
in Ds

d(α).

Definition 2. Given a chromatic simplicial complex K, consider an arbitrary simplex that β ∈ Dd(K). Let τ

be the minimal simplex in K such that β ∈ Dd(τ). Then τ is called β’s carrier in K under carrier map Dd,
denoted by carrier(β,K). Inductively, we can define the carrier of β ∈ Ds

d(K), that is, carriers(β,K) =

carriers−1(carrier(β,Ds−1(K)),K).

Suppose β = L(S) ∗ H(S), then carrier(β,K) = L(S) if H(S) = ∅, otherwise, there must be a
vertex (c, T) ∈ H(S) such that for any vertex (c′, T′) ∈ H(S), T′ ⊆ T, then carrier(β,K) = T.

The next lemma indicates that the d-join Ds
d(·) preserves some connectedness property.

Lemma 2. Let K, K′ be two [n]-chromatic n-complexes. If there is a color-preserving simplicial map
f : Dk

d(K) −→ K′ for non-negative integers k and d, there is a color-preserving simplicial map g :
Dk+1

d (K) −→ K′.

Proof of Lemma 2. Let α = {(i, vi)}i∈[n] be any n-simplex of Dk
d(K). Since f is color-preserving

simplicial map, then f (α) is a chromatic n-simplex of K′ with the same colors of α. Let gα be a
point-to-point map from V(Dd(α)) to V( f (α)) such that

gα((i, Tri )) = f ((i, vi))

for any (i, Tri ) ∈ V(Dd(α)), i, ri ∈ [n]. We only need to check that gα is simplicial map from Dd(α)

to K′.
Let β is any n-simplex of Dd(α), since Dd(α) is chromatic complex by Lemma 1, then we can

assume that β = {(i, Tri )}i∈[n]. It follows that

gα(β) = gα({(i, Tri )}i∈[n])

= {gα((i, Tri ))}i∈[n]

= { f ((i, vi))}i∈[n]

= f ({(i, vi)}i∈[n])

= f (α)

which is an n-simplex in K′. Since β is chosen arbitrarily, then gα is a color-preserving simplicial map
from Dd(α) to K′.

Assume α′ is another n-simplex of Dk
d(K) and τ is the common face of α and α′, then

Dd(α) ∩Dd(α
′) = Dd(α ∩ α′)

= Dd(τ)

It follows that gα(Dd(τ)) is equal to gα′(Dd(τ)) by former argument. As a result, all such maps
agree on their intersections. We just constructed

g = tα∈Dk
d(K)

gα
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then g is a color-preserving simplicial map such that for any simplex β of Dk+1
d (K), g(β) is equal to

gβ′(β), where β′ is carrier(β,Dk
d(K)). Note that α is arbitrary and Dk+1

d (K) is Dd(Dk
d(K)), it follows

that g is a color-preserving simplicial map from Dk+1
d (K) to K′.

Remark 2. Let us explain the relation of maps gα and g. Since we have shown that gα is a simplicial map for
any α in Dk

d(K), then it is a “linear” map [38], which makes that the images of the intersection under gα and gβ

are the same if α has an intersection with β. Then we can regard g as an attaching map of all pieces gα.
By this lemma, we know that if there is a color-preserving simplicial map from Dk

d(K) to K′, then there
also exists a color-preserving simplicial map from Dk′

d (K) to K′ for any integer k′ ≥ k.

2.4. Main Theorem

In this subsection, we first show the connection between protocol complex and chromatic d-join
of the input complex, and then we prove one of main theorems.

Lemma 3. When the input complex is I , the protocol complex P1(I) of any 1-round full-information protocol
in d-solo model is exactly the chromatic d-join Dd(I).

Proof of Lemma 3. The basic strategy of the proof is to show that there exists a one-to-one
correspondence between the set of protocol complexes on I of any protocol P with 1-round and
the once chromatic d-join of I in Definition 1, where I is the input complex colored by χ with colors [n].
Roughly speaking, we firstly show that given an input simplex of I and an execution of the protocol
P arbitrarily, the output complex is a subcomplex of Dd(I). Secondly, we need to show that given any
simplex O of Dd(I), there must exist an execution and an input simplex such that there is a possible
output which corresponds to O.

Consider any maximal input n-simplex I = {x0, x1, . . . , xn} in I as an initial global state,
where xi = (i, vi), i ∈ [n] in which i and vi stand for the ID and the input value of a participating
process pi. Let Π = {pi}i∈[n] be the set of processes that are coming from I. Consider any execution ε of
protocolP with 1-round in d-solo object COd. From the behavior of object COd, ε factly gives a sequence
of all processes along the order that run COd, denoted by pt0 � pt1 � · · · � ptn , where tj, j ∈ [n].
That is if pti � ptj then process pti runs object COd before ptj or both of them run concurrently.
Define an ordered partition of Π by this sequence, denoted by {π0, π1, . . . , πq}, such that all processes
in πj run object COd concurrently and processes in πi run object COd before processes in πj for
0 ≤ i < j ≤ q. It follows that processes that executing solo appear only in π0. Let π0 be an empty
set if there is no process that runs solo. Note that at most d processes run solo, then 0 ≤ |π0| ≤ d.
Assume that all processes of Π finishing ε have returns, denoted by

S = {(i, li)|pi ∈ πj, 0 ≤ j ≤ q}

Note that if pi ∈ π0, process pi only see itself then li = {(i, vi)} which is a 0-dimensional face of I,
and if pi ∈ πs, 0 < s ≤ q, process pi will see all processes that run before and concurrently, then

li = {(j, vj)|pj ∈ πr, r ≤ s}

is a non-zero dimensional face of I. By the definition of standard chromatic subdivision, (i, li) ∈
V(Ch(I)) for any (i, li) ∈ S, then S ⊆ Ch(I).

Let L(S) be equal to {(i, li) ∈ S : dim(li) = 0} and let H(S) be complementary set of L(S) in S,
then for any (i, li) ∈ L(S) and any (j, lj), (r, lr) ∈ H(S), we have

li ⊂ lj ⊆ lr or li ⊂ lr ⊆ lj
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It follows that S is compatible. Note that ||L(S)|| ≤ d, then S is a d-join and in Dd(I) by
Definition 1. If not all processes have returns, that is, some processes may be faulty, then the
returns S̃ is a subset of S, for all processes participate and deposit their initial local state in object COd.
Then S̃ is also a d-join and in Dd(I). Since I and ε are arbitrary, then P1(I) ⊆ Dd(I).

On the contrary, given any m-simplex α′ = {(j, Tj)}j∈A′ of Dd(I). Suppose α = carrier(α′, I),
then Tj is a face of α for any j ∈ A′. Let A = χ(α), then A′ ⊆ A. Let Π = {pi|i ∈ A} and let
Π′ = {pi|i ∈ A′}, then Π′ ⊆ Π.

Since α′ is a d-join, then it is compatible and it has form L(α′) ∗ H(α′) with ||L(α′)|| ≤ d,
where L(α′) and H(α′) are the low-dimensional part and the high-dimensional part of α′. And then
for any vertex u ∈ L(α′), {u} t H(α′) is a face of Ch(α). It follows that we can give a partition of the
set of classes over all processes of Π′, denoted {π0, π1, . . . , πs}, such that, if (i, Ti) ∈ L(α′) then we put
pi into π0; and for any two processes (c, Tc), (j, Tj) ∈ H(α′), if Tc = Tj then we put them in a same
class πt with 0 < t ≤ s, and if Tc ⊂ Tj we put pc and pj into πsc and πsj such that 0 < sc < sj ≤ s.

Next, we will give an ordered partition of Π by Π′. Step 1. For any one pi ∈ π1, check (i, Ti), if

dim(Ti) = ||π0||+ ||π1|| − 1

do nothing; if
dim(Ti) > ||π0||+ ||π1|| − 1

that is, there exists at least one process that is in {px|x ∈ χ(Ti)} but not in Π′, then put

{px|x ∈ χ(Ti)} − (π0 ∪ π1)

together as a new class π00 between π0 and π1. Step 2. For any one pj ∈ πt, 2 ≤ t ≤ s, check (j, Tj), if

dim(Tj) =
t−1

∑
i=0

(||πi||+ ||πi0 ||) + ||πt|| − 1

then do nothing; if

dim(Tj) >
t−1

∑
i=0

(||πi||+ ||πi0 ||) + ||πt|| − 1

that is, there exists at least one process that is in {px|x ∈ χ(Tj)} but not in Π′, then put

{{px|x ∈ χ(Ti)} − ∪t−1
x=0(πx ∪ πx0)} ∪ πt

together as a new class π(t−1)0
between πt−1 and πt. After checking all elements of this partition of Π′,

we will get a new partition {π0, π00 , π1, π10 π20 , π2, . . . , πs−1, πs0 , πs}. It is easy to show that this is a
partition of Π, because α is the carrier of α′ and there must be a vertex (i, Ti) in Q such that Ti = α by
Definitions 1 and 2.

By this ordered partition, we can construct an execution β such that when all processes finish
the execution, the reachable simplex is α′. Without loss of generality, we assume |π0| 6= 0. Step 1.
Let all the processes in π0 access object COd firstly such that all processes have returns and return
their inputs, denoted this collection of executions by β0; Step 2. Let all the processes in π00 access
object COd concurrently after π0, such that none of them has return, which represents that all of them
are crash, denoted this collection of executions by β00 ; Step 3. Along with this ordered partition, do the
similar steps as step 1 and step 2, denoted these ordered collections of executions by β(j−1)0

, β j for
1 < j ≤ s. Let

β = β0β00 β1β10 · · · βs0 βs
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be the composite of all executions, such that for each process in execution βx0 there is no return, and for
each process in execution βx there must be a return. If for some πi or πj0 is an empty set, it needs just
omit the corresponding executions in β. As a result, α′ is a reachable simplex under execution β.

For any face of α, we just take the composite of the subset of corresponding executions. Since α is
arbitrary, it follows that Dd(I) is a subset of P1(I). From upper arguments, we can see that P1(I) is
equal to Dd(I).

Corollary 1. When the input complex is I , the protocol complex P s(I) of any s-round full-information protocol
in d-solo model is exactly the s-fold chromatic d-join Ds

d(I).

Proof of Corollary 1. Given arbitrary execution ε of protocol P with s rounds, we can model ε as
a sequence ε1ε2 · · · εs of executions, such that each process runs a protocol with at most one round
in execution εi. Then each return of a process after executing εi is an input value of this process in
execution εi+1, by Lemma 3 and Definition 1, P s(I) is equal to the s-fold chromatic d-join Ds

d(I).

Theorem 1. A decision n-task T = (I ,O, ∆) has a wait-free protocol in d-solo model if and only if there is an
integer k ≥ 0 and a color-preserving simplicial map µ : Dk

d(I) −→ O such that for any simplex α ∈ I and
β ∈ Dk

d(α), µ(β) ∈ ∆(α).

Proof of Theorem 1. From the Figure 5, we know that the protocol P solves the task (I ,O, ∆) iff there
exists a simplicial color-preserving decision map δ : P k(I) −→ O such that for every simplex Sr ∈ I ,
and every simplex S̃r ∈ P k(Sr), 0 ≤ r ≤ n, δ(S̃r) ∈ ∆(Sr).

Suppose there exists a protocol that solves task T. By Corollary 1, the protocol complex is equal to
Dk

d(I). Let µ = δ, which shows the necessity of the theorem.
For sufficiency, suppose Sr is any r-simplex in I , apply algorithm as Table 1 in d-solo model and

after k-round, any output simplex will agree on a simplex in Dk
d(S

r). By hypothesis, there exists a
simplicial map µ : Dk

d(S
r) −→ O. Then a process that chooses vertex v in Dk

d(S
r) then chooses as its

output the value labeling µ(v). That is to say, this algorithm can solve this task.

Figure 5. Commutative diagram.

Remark 3. This theorem gives the topological characterization, he span that is a pair of a chromatic join and a
color-preserving simplicial map, of the wait-free solvability of a given decision task in d-solo systems, which we
can use to give us theoretical help in hardware design or early warning.

Corollary 2. Let T = (I ,O, ∆) be a decidsion n-task, if T is not solvable in d1-solo model then it is also
unsolvable in d2-solo model for d1 ≤ d2.

Proof of Corollary 2. Suppose T is solvable in d2-solo model, then there is a color-preserving simplicial
map µ from Dk

d2
(I) to O for some integer k by Theorem 1. Note that Dk

d1
(I) is a subcomplex of Dk

d2
(I)

for d1 ≤ d2, then the restriction of µ on Dk
d2
(I) is a carrier and color preserving simplicial map from

Dk
d1
(I) to O, by Theorem 1, T is solvable in d1-solo model, which is a contradiction.
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3. Application

A standard input-less n-task T = (I ,O, ∆) is a task of n + 1 processes. Specifically, I is a pure
complex having only one n-simplex, implying that each process has no input; O has a subcomplex L
which is isomorphic to the boundary of an n-simplex. If less than n + 1 processes participate in an
execution, the output simplices must lie in L, otherwise, any simplex in O is eligible. For simplicity,
we can use T = (O, L) to stand for T = (I ,O, ∆). A standard input-less 2-task can be seen in Figure 3.

By Gafni and Koutsoupias in [23], we know that 2-task T is solvable in wait-free iterated
immediately snapshot model if and only if L is contractible (i.e., there exists a continuous map
from a 2-dimensional disk to |O| such that it maps the boundary of this disk to |L|) in O whose
n + 1-dimensional homotopy group can be represented. However, we will see that it is not true in
d-solo model, that is to say, it is too weak to derive the solvability of task T from the condition in which
L is just contractible in O.

In this subsection, we mainly investigate the solvability of any standard input-less task, that is
giving the necessary and sufficient conditions of solvability to these tasks, which also implies the
classification of these tasks along their solvability in d-solo model. But before this, we need introduce
the other topology space.

Intuitively, the standard chromatic subdivision of an n-simplex τ is an evolution of its barycentric
subdivision, in which we need add the least new vertices in all but 0-dimensional faces of τ, such that
each face is divided into more than one small pieces and each one is a chromatic simplex with the same
colors and dimension of that face. However, in the next definition, we introduce a special chromatic
subdivision in which the added vertices only appears in a face with its dimension at least k.

Definition 3. Let α be an [n]-chromatic simplex and k be a non-negative integer. The k-type chromatic
subdivision of α, denoted by Ek(α), is a complex obtained from Dk(α) by removing simplices having any vertex
(c, T) with 1 ≤ dim(T) < k.

Remark 4. If n < k, then Ek(α) = α, that is, there is no any operation on α. If k = 0, 1 then Ek(α) is equal to
Ch(α) that is standard chromatic subdivision of α.

We can inductively define the s-fold k-type chromatic subdivision Es
k(α) of α with that Es

k(α) =

Ek(Es−1
k (α)) for any positive integer s. Similarily, if X is an [n]-chromatic n-complex, we can get the

s-fold k-type chromatic subdivision of X, denoted by Es
k(X) ,

⋃
α∈X Es

k(α). In addition, if s = 0,
set E0

k(X) = X. The Figure 6 is an example that shows 1- type and 2-type chromatic subdivisions of
a 2-simplex.

Figure 6. Once 1-type and 2-type chromatic subdivision of 2-simplex α.

By definition, Es
k(X) is a subcomplex of Ds

k(X). Hence, if there is a simplicial map from Ds
k(X)

to some chromatic complexes Y, there is a simplicial map from Es
k(X) to Y for a given chromatic

complexes Y. The next lemma implies the situation vice versa, which is usually not right for a pair of
general simplicial complexes.
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Lemma 4. Let X and Y be [n]-chromatic n-simplexes. For any integers k > 0 and s ≥ 0, there exists a
color-preserving simplicial map from Ds

k(X) to Es
k(Y).

Proof of Lemma 4. We will show that by induction. Suppose X = {(i, vi)}i∈[n] and Y = {(i, wi)}i∈[n].
When s = 0, D0

k(X) = X and E0
k(Y) = Y, let ψ0 : X −→ Y that takes (i, vi) to (i, wi). When s = 1,

assume V(Dk(X)) = {(it, Srt)}t∈[n] and V(Dk(Y)) = {(it, S′rt)}t∈[n], it, rt ∈ [n]. Let ψ1 be a
point-to-point map from V(Dk(X)) to V(Ek(Y)) ⊆ V(Dk(Y)) such that

ψ1((it, Srt)) =


(it, ψ0((it, vit))) if dim(Srt) < k

and (it, vit) ∈ Srt

(it, S′rt) if dim(Srt) ≥ k

We will show that ψ1 is a color-preserving simplicial map. Suppose τ is an arbitrary n-simplex in
Dk(X), then it is a k-join, that is, it is compatible and ||L(τ)|| ≤ k, then there are at most k vertices in τ

such that dim(S) < k for each vertex (c, S) of them. By former Equation, ψ1(τ) ⊆ V(Ch(Y)). Note that
ψ1 is color-preserving and there are at most k vertices in ψ1(τ) such that dim(S̃) = 0 for each vertex
(c, S̃) of them, then ψ1(τ) is compatible and ||L(ψ1(τ))|| ≤ k, and then ψ1(τ) ∈ Dk(Y). Since each
vertex of ψ1(τ) has form (it, (it, wit)) with dim((it, wit)) = 0, or (it, S′rt) with dim(S′ti

) ≥ k, then there
is no vertex (c, S̃) in ψ1(τ) such that 1 < dim(X′) < k, and then ψ1(τ) ∈ Ek(Y). Since τ is arbitrary,
it follows that ψ1 is a color-preserving simplicial map.

Suppose that for t < s there is a color-preserving simplicial map ψt : Dt
k(X) −→ Et

k(Y).
Consider t = s. Let τ′ be arbitrary n-simplex of Dt′

k (X), where t′ = s − 1 < s. By assumption,
there exists a color-preserving simplicial map ψt′ from Dt′

k (X) to Et′
k (Y), then the restriction ψt′ |τ′ of

ψt′ on τ′ is also a color-preserving simplicial map from τ′ to Et′
k (Y).

Since X and Y are arbitrary, set X = τ′, Y = ψt′ |τ′(τ′), by the former argument, we know that
there is a color-preserving simplicial map gτ′ from Dk(τ

′) to Ek(ψt′ |τ′(τ′)). As all such maps agree on
their intersections, then we just constructed

g = t
τ′∈Dt′

k (X)
gτ′

It follows that g is a color-preserving simplicial map from Ds
k(X) to Ek(ψt′(Dt′

k (X))).
Note that ψt′(Dt′

k (X)) is a subset of Et′
k (Y), then Ek(ψt′(Dt′

k (X))) is a subset of Es
k(Y). Let I0 be an

inclusion map from Ek(ψt′(Dt′
k (X))) to Es

k(Y), then it is a color-preserving simplicial map. Let

ψs = I0 ◦ g

be the composite of I0 and g, then ψs is the color-preserving simplicial map from Ds
k(X) to Es

k(Y). By
now, we complete the induction.

Remark 5. Let us explain what is the construction map ψ1. Since X and Y are chromtatic n-simplexes,
then Dk(X) is isomorphic to Dk(Y). In other words, they are the same in topology. Because Ek(Y) is
a subcomplex of Dk(Y), then ψ1 can be regarded as a collapse map from Dk(Y) to its subcomplex Ek(Y)
essentially. That is to say ψ1 map a simplex to itself if the simplex is in both Dk(Y) and Ek(Y), otherwise ψ1

collapses the simplex to one of its vertices.

Corollary 3. Let X and Y be two arbitrary [n]-chromatic n-simplexes. If there is a color-preserving simplicial
map from Es

k(X) to Y for some non-negative integer s, there exists a color-preserving simplicial map from Ds
k(X)

to Y.
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Proof of Corollary 3. Assume ϕ is the color-preserving simplicial map from Es
k(X) to Y. By Lemma 4,

there is a color-preserving simplicial map ψ from Ds
k(X) to Es

k(X). Let

h = ϕ ◦ φ

be the composite of φ and ϕ, then h is a color-preserving simplicial map from Ds
k(X) to Y.

Suppose In be a [n]-chromatic simplex with ∂In = L0. Let F s
k be the collection of all

color-preserving simplicial maps that are from Es
k(In) to any [n]-chromatic complex Xn with a

subcomplex L′ which is isomorphic to L0, such that f (Es
k(L0)) = L′ for any f ∈ F s

k .

Definition 4. Ns
k , { f (Es

k(In))| f ∈ F s
k} is called s-length k-nest, while Nk , ∪∞

s=0N
s
k is called the k-nest.

Intuitively, the k-nest Nk is a space of images of all color-preserving simplicial maps that are
from s-fold k-type chromatic subdivision of a chromatic n-simplex to any chromatic n-complex for all
non-negative integer s.

We say that a chromatic n-complex K holds k-nest structure which is bounded by a subcomplex
L′ means that there exists a subcomplex K′ of K with boundary L′, such that K′ is isomorphic to an
element M ∈ Nk.

Observation For the spectral sequence about nests N0 = N1,N2, . . . ,Nn, if 1 ≤ i < j ≤ n, Ni is larger
than Nj, that is, there is at least one element in Ni but not in Nj.

In fact, we can always construct an element that is in Ni but not in Nj for 1 ≤ i < j ≤ n. A simple
example shows that the left complex of the Figure 7 is in N1 but not in N2.

Figure 7. The complex in the left does not hold 2-nest structure, while the complex in the right holds
2-nest structure. But both of them hold 1-nest structure.

Example 3. There are two chromatic 2-complexes in Figure 7 with color {P, Q, R}. The left one denoted by F,
and the right one denoted by F′. Each vertex has form Ct, where C and t stand for color and some state of that
vertex. The boundaries of them are the outer bold and black segments, denoted by L. There is no difficulty to
show that F′ holds 2-nest structure, because we only take s = 1, X = I2 which is a chromatic 2-simplex with
color {P, Q, R}, then there is a natural color-preserving simplicial from E2(I2) to F′. However, for F, we can
never find an integer s such that there is a color-preserving simplicial from Es

2(I2) to F. But they all hold 1-nest
structure, because, L is always contractible and E1 is the standard chromatic subdivision operation. Then there
always exists a large enough integer s such that there is a color-preserving simplicial from Es

1(I2) to F and F′ by
Lemma 2 of [23].

Theorem 2. Let T = (O, L) be a standard input-less n-task. Then it is solvable in d-solo model if and only if
O holds d-nest structure that is bounded by L.



Mathematics 2020, 8, 757 14 of 18

Proof of Theorem 2. For necessity. Assume T is solvable and In is an input n-simplex, then there is a
color-preserving simplicial map µ : Ds

d(In) −→ O, which maps Ds
d(∂In) to L for some non-negative

integer s by Theorem 1. Note that Es
d(In) is a chromatic subcomplex of Ds

d(In), then the restriction of µ

on Es
d(In), denoted µ′, is also a color-preserving simplicial map from Es

d(In) to O, which takes Es
d(∂In)

to L. It follows that µ′(Es
d(In)) ∈ Nd, which implies that O holds d-nest structure.

For sufficiency. Suppose O holds d-nest structure which is bounded by L, then there exists
an integer s and a subcomplex O0 with boundary complex L, such that there is a color-preserving
simplicial map f from Es

d(In) toO0, which takes Es
d(∂In) to L. By Corollary 3, there is a color-preserving

simplicial map ψ from Ds
d(In) to O0, which takes Ds

d(∂In) to L. It follows that T is solvable by
Theorem 1.

Remark 6. Even though Theorem 1 can be used to characterize the solvability of an input-less n-task in
d-solo model, we find that it is difficult to describe the protocol complex and to find out the map δ. While,
sometimes, we can check whether the output complex of the task holds d-nest structure or not easily. As a result,
theorem 2 is an effective way to the characterization of solvability of tasks (at least for standard input-less task)
in d-solo model.

Corollary 4. The power of computability of d-solo wait-free model is strictly getting weaker when d
becomes bigger.

Proof of Corollary. Consider standard input-less n-task T = (O, L). Let d0, d1 be two positive integers
and d0 < d1. Note that d1-nest structure Nd1 does indeed a proper subset of d0-nest structure Nd0 ,
then there does exist an element that is in Nd0 but not in Nd1 . Assume O is that element, then O holds
d0-nest structure that is bounded by L but not holds d1-nest structure. It follows that T is solvable in
d0-solo model but is not solvable in d1-solo model by Theorem 2. As a result, the power of computation
of d1-solo is strictly weaker than the power of the computation of d0-solo.

4. Discussion

It seems that our result, Theorem 1, is just some minor improvements of previous studies of
Herlihy M. et al. [6,7,13,24] when someone catches a glimpse of them. Actually, that is not the case.
In [6,7], the Asynchronous Computability Theorem (ACT) characterizes the tasks that can be solved in
share-memory models, that is to say, it is the case when d = 1. While in [13,24] ACT characterizes the
tasks that can be solved in message-passing models, which is the case when d = n + 1. d-solo models,
as a bridge that links share-memory models with message-passing models, which is introduced by
Herlihy M. et al. [24], where they just characterized a kind of special tasks, colorless tasks, that can
be wait-free solvable. However, all the previous results are based on one of the central results of
topology which is the Simplicial Approximation Theorem [37]. That theorem establishes what is a
“discrete version” of a continuous map. What a pity, this theorem cannot be used in a d-solo model
when d > 1, because it is no longer the case that the diameter of the simplices in a subdivision is
reduced. Our results bypass the Simplicial Approximation Theorem, and the span that is a pair of
a protocol complex and a simplicial map δ is constructed based on the topological structure of the
protocol complex itself. At the same times, our ACT will be appropriate not just for colorless tasks but
for arbitrary decision tasks. From these views, our result is a great improvement.

In addition, the topological framework itself holds the potential applications in real life, such
as the information safety [39,40], the public safety networks [41,42], the big data analytics [43,44]
and so on. Let us take the information safety as an example. Consider the realistic scenario [45]
of communication of information among a Trade Associations that consists of thousands of trading
partners. The information, which is asynchronous, must be transmitted and delivered timely in an
exchange process. One practical problem is that how can we use it to design an information exchange
system which is as safe and efficient as possible [39,45]. Since we have obtained the computability
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of the d-solo models, we can choose the corresponding d according to the actual demand. The other
is that how to do application development of a given information exchange system. Such as how to
detect the defects of the system and make early warning [46]. Some traditional ways may cost large
mount of time or money and sometimes a result hardly convinces many people. Luckily, it seems to be
easy, at least on a theoretical level, if we use the topological framework to construct a mechanism and
then to analyze it. From this point, our framework has a far-reaching impact on the production and
living. Furthermore, there should be more and more researchers who take part in the research that
how to apply topological framework to real-life better.

Lastly, the chromatic join of a given chromatic complex itself is very interesting and it
provides a way to generate a new chromatic complex from the original complex. Though the
geometrical properties of the generated chromatic complex look more complicated than the original,
their topological properties are similar. Roughly, if an input complex is isomorphic to an n-sphere,
then the chromatic join of an input complex is isomorphic to a wedge sum of n-spheres, and the bigger
d the more number of n-spheres in the wedge sum. So our research has a potential value to the studies
of topology itself, especially in simplicial homotopy theory.

5. Conclusions

In this work, we develop an elegant theory, the Asynchronous Computability Theorem in arbitrary
solo systems when we focus on just full-information protocol and crash-failure models, which can
be used to characterize the computability of a given decision task in that systems. Later, we derive
a simple necessary and sufficient conditions for the solvability of input-less tasks in d-solo systems.
It is a fly in the ointment that we maybe concentrate little on the topological properties of the k-folds
chromatic join d-join Dk

d(·) themselves and do not pay much attention to the general protocols and the
byzantine models, because it seems that those properties are a little contribution to our main result,
and the general protocols complexes or the byzantine models are quite complicated and are beyond the
scope of our small paper. However, the byzantine failure model [9,17,18] and general protocol [47] play
an important part in theoretical computer science, especially in distributed systems. So there are more
meaningful research we should do in future work. Such as, how do we describe the protocol complexes
of general protocols in d-solo systems clearly. What’s the characterization of solvability of a decision
tasks in that d-solo systems for the byzantine failure model? In addition, there is a little discussion
on the practical application of our framework in this work. While the potential of applications and
prospects are enormous, so there is much work we should do in that aspect in the future.
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