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Abstract: We consider the problems of state feedback and static output feedback preview controller
(PC) for uncertain discrete-time multiple-input multiple output (MIMO) systems based on the
parameter-dependent Lyapunov function and the linear matrix inequality (LMI) technique in this
paper. First, for each component of a reference signal, an augmented error system (AES) containing
previewed information is constructed via the difference operator and state augmentation technique.
Then, for the AES, the state feedback and static output feedback are introduced, and when considering
the output feedback, a previewable reference signal is utilized by modifying the output equation.
The preview controllers’ parameter matrices can be achieved from the solution of LMI problems.
The superiority of the PC is illustrated via two numerical examples.

Keywords: AES; PC; MIMO discrete-time system; state feedback and output feedback; parameter
dependence

1. Introduction

In the field of control, there are many effective control methods, for example, optimal control [1],
learning control [2], tracking control [3], and repetitive control [4] and so on. In many practical problems,
future information is always known completely or partially, such as a vehicle driving path, scheduled
flight route of an aircraft, and machining rules of a machine tool. Preview control can fully utilize
the future values of these previewed signals to improve the control performance [5,6]. The preview
control was first proposed by Sheridan in 1966 [7], and Bender [8] applied preview control theory to a
vehicle suspension system. The field of preview control has attracted researchers and has been studied
since the 1970s (see, the papers [9–13]). For a linear constant preview control system, LQR-based
design methods have been most widely studied, e.g., [14–20]. However, the presence of an unknown
disturbance or uncertain system model can cause degraded performance or even loss of closed-loop
stability. To deal with this problem, robust preview control has received considerable attention [21–27].
In recent years, the integration of preview control and other control methods has attracted much
attention. For example, in [28,29], the analysis and design problems of preview repetitive control for
discrete system have been investigated. A fault-tolerant control theory was combined with preview
control in [30,31]. In [32], the preview control concept was added to the Lipschitz non-linear system to
consider the preview tracking control problems. Of course, preview control has attracted researchers
for its applications in varied areas, e.g., wind turbine blade-pitch control [33], autonomous vehicle
guidance [34], robotics [35], and so on.

With the rapid development of computer, electronics and information technology, industrial
systems are becoming larger and more complex. Therefore, it is more interesting to consider the control
problem of MIMO systems. For example, the preview control problem of MIMO systems was studied
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in [36] by combining linear quadratic optimal theory with the AES method. However, the dimension
of an AES is high and the calculation is complex. In addition, through numerical simulations, we find
that the preview control effect is not ideal when the reference signal is a vector, as in [11,13,15,36,37].
The components of the reference signal influence each other, and the influence is often negative.
However, for a high-dimensional reference signal, the AES constructed in [11,13,15,36,37] not only has
a high dimension, but the component signals also share the same preview length.

In this paper, robust PC design methods are proposed for MIMO discrete systems. First,
the construction of an AES including previewable signals is carried out. Then, sufficient conditions of
closed-loop systems and the PC design methods are proposed. The main contributions of our preview
control scheme are summarized as follows: (i) The AES of a MIMO uncertain discrete-time system
is successfully constructed from a new perspective. It not only constructs a lower-dimensional error
system, but it also provides optional preview lengths. (ii) Our desired PC design method can avoid
the negative influence of reference signal components on each other, and then effectively improve
the tracking performance. (iii) Our design additionally allows the system output matrices to be
non-common and have uncertainties. Finally, the simulation results clearly validate the superiority of
the proposed PC.

Notation. A > 0: symmetric and positive definite matrix A. AT denotes the matrix transposition
of A. The symbol ∗ denotes the entries of matrices implied by symmetry. sym(A) means A + AT. I and
0: identity matrix and zero matrix of appropriate dimensions, respectively.

2. Problem Formulation

Consider the uncertain discrete-time system{
x(k + 1) = A(θ)x(k) + B(θ)u(k),

y(k) = C(θ)x(k) + D(θ)u(k),
(1)

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rq are respectively the state vector, input control vector,
and output vector.

y(k) =
[

y1(k) y2(k) · · · yq(k)
]T

, Ci(θ), and Di(θ) represent the i (i = 1, 2, · · · , q) row of
matrices C(θ) and D(θ), respectively. Then, we can have

yi(k) = Ci(θ)x(k) + Di(θ)u(k) (2)

A1: The uncertain matrices are given by

[
A(θ) B(θ) C(θ) D(θ)

]
=

s∑
j=1

θ j
[

A j B j C j D j
]

(3)

where A j, B j, C j, and D j ( j = 1, 2, · · · , s) are matrices with appropriate dimensions. θ =[
θ1 θ2 · · · θs

]T
∈ Rs is the parameter vector and satisfies

θ ∈ Θ :=

θ ∈ Rs

∣∣∣∣∣∣∣∣θ j ≥ 0, ( j = 1, 2, · · · , s),
s∑

j=1

θ j = 1

 (4)

A2: Let r(k) =
[

r1(k) r2(k) · · · rq(k)
]T
∈ Rq be the reference signal. Assume that the

component reference signal ri(k) (i = 1, 2, · · · q) is available from current time k to k + hi. The future
values are assumed not to change beyond k + hi, namely,

ri(k + j) = ri(k + hi), ( j ≥ hi + 1)
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where hi is the preview length.

Remark 1. It should be noted that A2 is an assumption about ri(k) (i = 1, 2, · · · , q) rather than r(k). There are
two advantages of A2: (1) Each component ri(k) can have its own preview length hi instead of sharing one
preview length h. (2) It can avoid the negative effects of other signals.

The objective is to design preview controller such that

(i) The output tracks the reference signal without steady-state error, that is,

lim
k→∞

ei(k) = 0 (5)

where ei(k) = yi(k) − ri(k).
(ii) The closed-loop system is robustly stable and exhibits acceptable transient responses for all θ ∈ Θ.

3. Derivation of AES

Here, we derived an AES that contains previewed information. Employing the difference operator
∆ as:

∆δ(k) = δ(k + 1) − δ(k) (6)

and applying the difference operator to (1) and (2), one obtains:{
∆x(k + 1) = A(θ)∆x(k) + B(θ)∆u(k),
∆yi(k) = Ci(θ)∆x(k) + Di(θ)∆u(k).

(7)

Considering (5)–(7), it is obtained that:

ei(k + 1) = ei(k) + Ci(θ)∆x(k) + Di(θ)∆u(k) − ∆ri(k) (8)

It follows from (6) and (8) that:

x̃i(k + 1) = Ãi(θ)x̃i(k) + B̃i(θ)∆ui(k) + G∆ri(k) (9)

where

x̃i(k) =
[

ei(k)
∆x(k)

]
, Ãi(θ) =

[
I Ci(θ)
0 A(θ)

]
, B̃i(θ) =

[
Di(θ)
B(θ)

]
, G =

[
−1
0

]
From A1, Ãi(θ) and B̃i(θ) can be given by:

Ãi(θ) =


I

s∑
j=1

θ jCi
j

0
s∑

j=1
θ jA j

 =
s∑

j=1

θ j

 I Ci
j

0 A j

 = s∑
j=1

θ jÃi, j (10)

B̃i(θ) =


s∑

j=1
θ jDi

j

s∑
j=1

θ jB j

 =
s∑

j=1

θ j

 Di
j

B j

 = s∑
j=1

θ jB̃i, j (11)

Note that, in (10) and (11), Ci
j and Di

j represent the i row of matrices C j and D j, respectively,
where i ∈

{
1, 2, · · · , q

}
, j ∈ {1, 2, · · · , s}.
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From A2, ri(k), ri(k + 1), · · · , ri(k + hi) are available at time k. Defining

xri(k) =



∆ri(k)
∆ri(k + 1)

...

...
∆ri(k + hi)


, AR,i =



0 1 0

0
. . . . . .

...
. . . . . .

0 · · · · · · 0 1
0 · · · · · · 0 0


then, it can be obtained:

xri(k + 1) = AR,ixri(k) (12)

where xri(k) ∈ Rhi+1 and AR,i ∈ R(hi+1)×(hi+1).
Each component ri(k) can have its own preview length hi; therefore, hi can be selected appropriately

as needed.
Based on (8) and (12), we obtain:

x̂i(k + 1) = Âi(θ)x̂i(k) + B̂i(θ)∆ui(k) (13)

where

x̂i(k) =
[

x̃i(k)
xri(k)

]
, Âi(θ) =

[
Ãi(θ) Wi

0 AR,i

]
, B̂i(θ) =

[
B̃i(θ)

0

]
, Wi =

 G 0 · · · 0︸        ︷︷        ︸
hi


System (13) is the AES and the future information of ri(k) is added to System (13).
Based on (10) and (11), Âi(θ) and B̂i(θ) are written as:

Âi(θ) =


s∑

j=1
θ jÃi, j Wi

0 AR,i

 =
s∑

j=1

θ j

[
Ãi, j Wi
0 AR,i

]
=

s∑
j=1

θ jÂi, j (14)

B̂i(θ) =


s∑

j=1
θ jB̃i, j

0

 =
s∑

j=1

θ j

[
B̃i, j
0

]
=

s∑
j=1

θ jB̂i, j (15)

Remark 2. System (13) is the so-called AES. The future information of ri(k) is added to the AES (13) rather
than the future information of r1(k), r2(k), · · · , rq(k). The benefits of this treatment are: (i) the size of the AES
in this paper is smaller. Our proposed AES has 1 + n + (hi + 1) states, whereas the AES in refs. [5,10,11,26,27]
has q + n + (h + 1)q. (ii) Based on the theoretical analysis and numerical simulations, we found that, if we
added the future information of r(k) to the AES as usual, the control effect of the PC is poor.

4. PC Design

Consider the following system
x̂i(k) = Âi(θ)x̂i(k) (16)

Lemma 1. Lemma 1: System (16) is asymptotically stable, if there exists Pi(θ) > 0 and matrices F1i and F2i
with appropriate dimensions such that:

Ωi(θ) =

[
−Pi(θ) − F1iÂi(θ) − Âi(θ)

TF1i
T

∗

F1i
T
− F2iÂi(θ) Pi(θ) + F2i + F2i

T

]
< 0

(i = 1, 2, · · · , q)
(17)
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Proof. Consider the Lyapunov function

Vi(k) = x̂i(k)
TPi(θ)x̂i(k)

We have
∆Vi(k) = x̂i(k + 1)TPi(θ)x̂i(k + 1) − x̂i(k)

TPi(θ)x̂i(k) (18)

From (17), the following equation holds:

2
[
x̂i(k)

TF1i + x̂i(k + 1)TF2i
][

x̂i(k + 1) − Âi(θ)x̂i(k)
]
= 0 (19)

where F1i and F2i are matrices with appropriate dimensions.
Obviously, if (17) holds, then it can be concluded that ∆Vi(k) < 0, which implies that System (16)

is asymptotically stable. This completes the proof. �

4.1. State Feedback PC

The state feedback control is presented as follows:

∆ui(k) =

 s∑
j=1

γ jKi, j

x̂i(k)(i = 1, 2, · · · , q) (20)

where, Ki, j and γ j (i = 1, 2, · · · , s) are matrices and adjustable variables to be determined, and γ j ≥ 0,
s∑

j=1
γ j = 1. For convenience, we note that Ki(γ) =

s∑
j=1

γ jKi, j.

Substituting (20) into (13), we obtain:

x̂i(k + 1) =
[
Âi(θ) + B̂i(θ)Ki(γ)

]
x̂i(k) (21)

Theorem 1. If there exist matrices Xi(θ) > 0, Yi(γ), and Hi and scalars αi and βi such that

Πi(θ,γ) =
[
−αi

2Xi(θ) − sym(αiÂi(θ)Hi + αiB̂i(θ)Yi(γ)) ∗

−βiHi
T
− αi(Âi(θ)Hi + B̂i(θ)Yi(γ)) βi

2Xi(θ) − 2βiHi

]
< 0,

(i = 1, 2, · · · , q)
(22)

then System (21) is asymptotically stable.

Proof. For the closed-loop System (21), from Lemma 1 we know that, if there exists Pi(θ) > 0, F1i and
F2i with appropriate dimensions satisfies:[

−Pi(θ) − sym(F1i(Âi(θ) + B̂i(θ)Ki(γ))) ∗

F1i
T
− F2i(Âi(θ) + B̂i(θ)Ki(γ)) Pi(θ) + F2i + F2i

T

]
< 0 (23)

To obtain LMI conditions [38,39], let

F1i = aiRi, F2i = −biRi (24)

where ai , 0 and bi , 0. Then, by applying a congruence transformations by diag
{
F1i
−1, F2i

−1
}

to

(23) and denoting Ri
−T = Hi, Ri

−TPi(θ)
−1Ri

−1 = Xi(θ), Ki(γ)Ri
−T = Yi(γ), αi = 1/ai, and βi = 1/bi,

we arrive at the condition in Theorem 1. �
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Theorem 2. Given scalars αi and βi, if there exist matrices Xi, j > 0, Yi,d, and Hi such that:

Πi
j,d < 0i, j, d : i ∈

{
1, 2, 3, · · · , q

}
, j, d ∈ {1, 2, 3, · · · , s} (25)

then System (21) is robustly stabilizable via (20), and the control input is given by

∆ui(k) = Ki(γ)x̂i(k) =
s∑

d=1

γdYi,dHi
−1x̂i(k) (26)

In (25),

Πi
j,d =

[
−αi

2Xi, j − sym(αiÂi, jHi + αiB̂i, jYi,d) ∗

−βiHi
T
− αi(Âi, jHi + B̂i, jYi,d) βi

2Xi, j − 2βiHi

]

Proof. Multiplying (25) by θ jγd for 1 ≤ j ≤ s and 1 ≤ d ≤ s and summing them, according (14) and (15),
we obtain

Πi(θ,γ) =
s∑

j=1

s∑
d=1

θ jγdΠi
j,d (27)

and, thus, (25) can imply Πi(θ,γ) < 0. From (22), Theorem 2 holds. �

If the system model parameter can be available, the state feedback for System (20) to be designed

∆ui(k) =

 s∑
j=1

θ jKi, j

x̂i(k) (28)

The matrices Ki, j ( j = 1, 2, · · · , s) are gain matrices, and we let Ki(θ) =
s∑

j=1
θ jKi, j.

Applying (28) to System (13) yields

x̂i(k + 1) =
[
Âi(θ) + B̂i(θ)Ki(θ)

]
x̂i(k) (29)

Based on Theorems 1 and 2, the following corollaries are presented.

Corollary 1. The System (29) is asymptotically stable if there exist matrices Xi(θ) > 0 and Yi(θ) and scalars
αi and βi ∈ (0, 2), such that:

Πi(θ) =

[
−αi

2Xi(θ) − sym(αiÂi(θ)Xi(θ) + αiB̂i(θ)Yi(θ)) ∗

−βiXi(θ) − αi(Âi(θ)Xi(θ) + B̂i(θ)Yi(θ)) (βi
2
− 2βi)Xi(θ)

]
< 0,

(i = 1, 2, · · · , q)
(30)

Proof. In Theorem 1, let F1i(θ) = aiPi(θ), F2i(θ) = biPi(θ), Pi(θ)
−1 = Xi(θ), Ki(θ)Xi(θ) = Yi(θ),

αi =
1
ai

, βi =
1
bi

, then (30) can be obtained. �

Corollary 2. For known scalars βi ∈ (0, 2) and αi, if there exist matrices Xi,d > 0 and Yi,d such that

Πi
j,d + Πi

d, j < 0, j ≤ d : j, d ∈ {1, 2, 3, · · · , s}, i ∈
{
1, 2, 3, · · · , q

}
(31)

then the System (29) is asymptotically stable, and the control input is given by

∆ui(k) =

 s∑
d=1

θdYi,d


 s∑

d=1

θdXi,d

−1

x̂i(k) (32)
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In (31),

Πi
j,d =

[
−αi

2Xi,d − sym(αiÂi, jXi,d + αiB̂i, jYi,d) ∗

−βiXi,d − αi(Âi, jXi,d + B̂i, jYi,d) (βi
2
− 2βi)Xi,d

]
The gain matrix Ki, j in (20) is divided as follows:

Ki, j =
[

Ki
e j Ki

xj Ki
Rj(0) Ki

Rj(1) · · · Ki
Rj(hi)

]
(33)

Equation (20) is then written as

∆ui(k) =
s∑

j=1

γ j

Ki
e jei(k) + Ki

xj∆x(k) +
hi∑

d=0

Ki
Rj(d)∆ri(k + d)


Therefore, the control input of System (1) is given by

ui(k) = Ki
e

k−1∑
h=0

ei(h) + Ki
xx(k) +

hi∑
d=0

Ki
R(d)ri(k + d) (34)

where Ki
e =

s∑
j=1

γ jKi
e j, Ki

x =
s∑

j=1
γ jKi

xj, and Ki
R(d) =

s∑
j=1

γ jKi
Rj(d).

4.2. Static Output Feedback PC

To obtain the control law with preview compensation, for System (13), the output equation is
modified as

zi(k) = CZi(θ)x̂i(k) (35)

where

CZi(θ) =


Iqi

s∑
j=1

Ci
j

I(MR,i+1)

 =
s∑

j=1

θ jCZi, j (36)

We consider a output feedback controller

∆ui(k) =

 s∑
j=1

γ jKi, j

zi(k), (i = 1, 2, · · · , q) (37)

Based on (13), (35), and (37), we obtain the following system:

x̂i(k + 1) =
[
Âi(θ) + B̂i(θ)Ki(γ)CZi(θ)

]
x̂i(k) (38)

Lemma 2. [40]: For appropriately dimensioned matrices F, R, S, and N and scalar β, F + STRT + RS < 0 is
fulfilled if the following condition holds:[

F ∗

βRT + NS −βN − βNT

]
< 0



Mathematics 2020, 8, 756 8 of 20

Theorem 3. For given αi, βi, and ρi, the System (38) is asymptotically stable if there exist matrices Xi(θ) > 0
and matrices Qi, Li(γ), Ui, and Hi, such that:

Πi(θ,γ) =


−αi

2Xi(θ) − sym(αiÂi(θ)Hi + B̂i(θ)Li(γ)Qi) ∗ ∗

−βiHi
T
− αi(Âi(θ)Hi + B̂i(θ)Li(γ)Qi) βi

2Xi(θ) − 2βiHi ∗

−ρiαiLi(γ)
TB̂i(θ)

T + CZi(θ)Hi −UiQi −ρiαiLi(γ)
TB̂i(θ)

T
−ρisym(Ui)

 < 0,

(i = 1, 2, · · · , q)

(39)

Proof. Equation (39) is written as

[
−αi

2Xi(θ) − sym(αiÂi(θ)Hi + B̂i(θ)Li(γ)Qi) ∗

−βiHi
T
− αi(Âi(θ)Hi + B̂i(θ)Li(γ)Qi) βi

2Xi(θ) − 2βiHi

]
︸                                                                                     ︷︷                                                                                     ︸

F

∗

−ρiαiLi(γ)
TB̂i(θ)

T
[

I I
]

︸                             ︷︷                             ︸
ρiRT

+ Ui︸︷︷︸
N

Ui
−1(CZi(θ)Hi −UiQi)

[
I 0

]
︸                                   ︷︷                                   ︸

S

−ρisym(Ui)︸        ︷︷        ︸
−ρiN−ρiNT


< 0. (40)

According to Lemma 2, (40) can guarantee[
−αi

2Xi(θ) − αisym(Âi(θ)Hi + B̂i(θ)Li(γ)Qi) ∗

−βiHi
T
− αi(Âi(θ)Hi + B̂i(θ)Li(γ)Qi) βi

2Xi(θ) − 2βiHi

]
− sym

([
I
I

]
αiB̂i(θ)Li(γ)Ui

−1(CZi(θ)Hi −UiQi)
[

I 0
])

=

[
−αi

2Xi(θ) − αisym(Âi(θ)Hi) ∗

−βiHi
T
− αi(Âi(θ)Hi) βi

2Xi(θ) − 2βiHi

]
− sym

([
I
I

]
αiB̂i(θ)Li(γ)Ui

−1(CZi(θ)Hi −UiQi + UiQi)
[

I 0
])

< 0.

(41)

Letting Ki(γ) = Li(γ)Ui
−1, we have[

−αi
2Xi(θ) − sym(αiÂi(θ)Hi) ∗

−βiHi
T
− αi(Âi(θ)Hi) βi

2Xi(θ) − 2βiHi

]
− αisym

([
I
I

]
B̂i(θ)Ki(γ)CZi(θ)Hi

[
I 0

])
< 0,

and therefore[
−αi

2Xi(θ) − αisym((Âi(θ) + B̂i(θ)Ki(γ)CZi(θ))Hi) ∗

−βiHi
T
− αi((Âi(θ) + B̂i(θ)Ki(γ)CZi(θ))Hi) βi

2Xi(θ) − 2βiHi

]
< 0

From Theorem 1, Theorem 3 holds. �

Theorem 4. For given scalars αi, βi, and ρi and matrix Qi, if there exist Xi, j > 0, Li,d, Hi, and Ui such that

Πi
j,d < 0 (i, j, d : i ∈

{
1, 2, 3, · · · , q

}
, j, d ∈ {1, 2, 3, · · · , s}) (42)

then the System (38) is robust asymptotically stable. The controller is given by

∆ui(k) = Ki(γ)Zi(k) =
s∑

d=1

γdLi,dUi
−1Zi(k) (43)
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In (42),

Πi
j,d =


−αi

2Xi,d − αisym(Âi, jHi + B̂i, jLi,dQi) ∗ ∗

−βiHi
T
− αi(Âi, jHi + B̂i, jLi,dQi) βi

2Xi,d − 2βiHi ∗

−ρiαiLi,d
TB̂i, j

T + CZi, jHi −UiQi −ρiαiLi,d
TB̂i, j

T
−ρisym(Ui)


Similarly, if the uncertain parameters of the system model are known, we consider the following form of the

parameter-dependent output controller:

∆ui(k) =

 s∑
d=1

θdKi,d

zi(k) (44)

where Ki,d (d = 1, 2, · · · , s) are gain matrices, and Ki(θ) =
s∑

d=1
θdKi,d.

Based on (13) and (44), we obtain

x̂i(k + 1) =
[
Âi(θ) + B̂i(θ)Ki(θ)CZi(θ)

]
x̂i(k) (45)

According to Theorem 3 and 4, Corollary 3 and 4 are given as follows:

Corollary 3. For given scalars αi, ρi and βi ∈ (0, 2), a sufficient condition for the proposed controller (44)
that ensures the uncertain discrete-time closed system (45) to be asymptotically stable, if there exist matrices
Xi(θ) > 0, Li(θ), Qi, and Ui(θ) such that Equation (46) hold:

Πi(θ) =


−αi

2Xi(θ) − αisym(Âi(θ)Xi(θ) + B̂i(θ)Li(θ)Qi) ∗ ∗

−βiXi(θ) − αi(Âi(θ)Xi(θ) + B̂i(θ)Li(θ)Qi) (βi
2
− 2βi)Xi(θ) ∗

−ρiαiLi(θ)
TB̂i(θ)

T + CZi(θ)Xi(θ) −UiQi −ρiαiLi(θ)
TB̂i(θ)

T
−ρisym(Ui)

 < 0,

(i = 1, 2, · · · , q)

(46)

Corollary 4. For given βi ∈ (0, 2), αi, ρi, and matrix Qi, if there exist matrices Xi,d > 0, Li,d and Ui such that

Πi
j,d + Πi

d, j < 0, ( j ≤ d : j, d ∈ {1, 2, 3, · · · , s}, i ∈
{
1, 2, 3, · · · , q

}
) (47)

hold, then the closed-loop System (45) is robustly asymptotically stable, and the controller is given by

∆ui(k) =
s∑

d=1

θdLi,dUi
−1Zi(k) (48)

In (47),

Πi
jd =


−αi

2Xi,d − αisym(Âi, jXi,d + B̂i, jLi,dQi) ∗ ∗

−βiXi,d − αi(Âi, jXi,d + B̂i, jLi,dQi) βi
2Xi, j − 2βiXi, j ∗

−ρiαiLi,d
TB̂i, j

T + CZi, jXi,d −UiQi −ρiαiLi,d
TB̂i, j

T
−ρisym(Ui)


We decompose the gain matrix Ki, j as

Ki, j =
[

Ki
e j Ki

yj Ki
Rj(0) Ki

Rj(1) · · · Ki
Rj(hi)

]
(49)

and then (37) is

∆ui(k) =
s∑

j=1

γ j

Ki
e jei(k) + Ki

yj∆y(k) +
hi∑

d=0

Ki
R(d)∆ri(k + d)
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The controller of System (1) can be taken as

ui(k) = Ki
e

k−1∑
h=0

ei(h) + Ki
yyi(k) +

hi∑
d=0

Ki
R(d)ri(k + d) (50)

where

Ki
e =

s∑
j=1

γ jKi
e j, Ki

y =
s∑

j=1

γ jKi
yj, Ki

R(d) =
s∑

j=1

γ jKi
Rj(d)

Remark 3. In light of (34) and (50), it is clear that the preview controller of System (1) consists of three terms.
The first term is the integral action on the tracking error, the second term represents the state feedback or output
feedback, the third term represents the feedforward or preview action based on the future information on ri(k).

Remark 4. If the construction method of AES proposed by [11,13,14,26] is used in this paper. In the other
word, the future information of the reference signal r(k) has been added to augmented state vector. The preview
compensation term in PC will be the form of

h∑
d=0

KR(d)r(k + d) =
h∑

d=0

KR(d)
[

r1(k + d)T r2(k + d)T
· · · rq(k + d)T

]T
(51)

It follows from the theoretical analysis and numerical simulations that the future information of r1(k),
r2(k)· · · , rq(k) interacts with each other. This may lead to poor tracking performance.

5. Numerical Example

In (1), let

A(θ) =


1 −0.6 −0.8 −1
0 0 −0.1 0.5

0.2 0 0.9 −0.3
0.1 −0.3 −0.3 0.1

θ1 +


0.9 1.2 0.4 −0.3
0 1 0 0.2
−0.6 0.3 1 0
0.3 −0.5 0 1

θ2

B(θ) =


−0.5 0.1
−0.2 0.1
0.5 0
0 0.5

θ1 +


−0.3 0.2
−0.1 0
−0.6 0.2
0.2 0.5

θ2

C(θ) = θ1

[
0.2 1.2 0.3 0
−0.1 1.5 0.2 0.4

]
+ θ2

[
0.3 0.8 0 0
−0.7 −2 0.5 −0.3

]
, D(θ) = 0.

For s = 2, the scalars are taken as α1 = 4, β1 = 0.6, α2 = 0.8, and β2 = 0.5 and γ1 = 0.3 and
γ2 = 0.7. In this example, we selected the preview lengths as 1O h1 = 6, (h2 = 5), 2O h1 = 2, (h2 = 1),
and 3O h1 = 0, (h2 = 0). By solving the LMIs (25) using the MatLab LMI control toolbox, the gains
were obtained as follows.

When h1 = 2, we had

K1 =

[
0.31429 0.94275 2.01847 −0.33257 −0.82234
−0.36601 1.14616 −1.09108 −1.71517 −3.31321

−0.31382 −0.31125 −0.29639
0.36385 0.34914 0.28267

]
,
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When h1 = 6, we obtained

K1 =

[
0.30753 0.95324 1.98948 −0.34762 −0.82702 −0.30735
−0.45000 1.08942 −1.29829 −1.74390 −3.308732 0.4487631
−0.30500 −0.29540 −0.28696 −0.26726 −0.24118 −0.20619
0.43397 0.36963 0.27278 0.22070 0.18295 0.16303

]
.

When h1 = 0, we had

K1 =

[
0.29017 0.95022 1.99563 −0.37000 −0.83099
−0.37170 1.20180 −1.19541 −1.80608 −3.39788

]
When h2 = 1, we had

K2 =

[
−0.11796 0.80069 1.46557 −0.53132 −0.62061 0.11759 0.11951
−0.12550 0.91854 −0.11027 −1.29944 −2.73462 0.11732 0.12856

]
.

When h2 = 5, we obtained

K2 =

[
−0.11978 0.79657 1.46443 −0.53304 −0.61610 0.11975
−0.12802 0.91029 −0.11878 −1.29739 −2.73190 0.12520
0.11903 0.11962 0.11649 0.11441 0.10747
0.13164 0.13769 0.12484 0.12282 0.11164

]
,

When h2 = 0, we had

K2 =

[
−0.11994 0.81063 1.46822 −0.53765 −0.62579
−0.13216 0.94764 −0.09604 −1.31084 −2.74898

]
The reference signal was selected as

r1(k) =


0, k ≤ 10,

0.05(k− 10), 10 < k < 50,
2, k ≥ 50.

(52)

r2(k) =


0, k ≤ 40,

0.0375(k− 40), 40 < k < 80,
1.5, k ≥ 80.

(53)

The outputs and the reference signals are depicted in Figure 1. Figure 2 plots the control input.
As can be seen in Figures 1 and 2, the existence of the preview compensation accelerated the response
speed, which reduced the tracking error.

To consider the robustness of the proposed PC, the simulations were completed with different θ1

and θ2 as long as they met A1. Here, the simulation results about θ1 = 1 and θ1 = 0 would be given
separately. We depicted the output and control input of system (1) with θ1 = 1 and θ2 = 0 in Figures 3
and 4. Figure 5 plotted the output of System (1) with θ1 = 0 and θ2 = 1. The corresponding input
control is shown in Figure 6. One can see from Figures 3–6 that the PC made the closed-loop system
have a faster dynamic response speed compared with no preview.
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The construction methods of AES in [11,13,15,26] were employed, or, equivalently, the future
information of r(k) was added to the augmented state vector to derive the AES. For comparison,
we performed simulations for this case in [11,13,15,26] by using the same example. From Figures 1
and 7, it can be seen that the future information of the signal components r1(k) and r2(k) interacted
with each other. This led to poor tracking performance of System (1). In addition, From Figures 1, 2,
7 and 8, we could easily see that our proposed PC provided better tracking performance than those
in [11,13,15,26].
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A(θ) =


1 −0.4 0.8
1 0 0
0 1 0

θ1 +


1.2 −0.6 0.7
1 0 0
0 1 0

θ2,

B(θ) =


1 1

0.3 0.3
0 0

θ1 +


1 1

1.1 1
0 0

θ2, C(θ) = θ1

[
1 0 0
1 0 0

]
+ θ2

[
1 0 0
1 0 0

]
,

D(θ) = 0

Letting α1 = α2 = 4, β1 = β2 = 0.6, and ρ1 = ρ2 = 1 and γ1 = 0.3 and γ2 = 0.7, we had matrices
Q1 = 6(CZ1,1 + CZ2,1) and Q2 = 6(CZ1,2 + CZ2,2). According to Theorem 4, the static output feedback
gain matrices were obtained as follows.

When h1 = h2 = 2, we obtained

K1 =

[
1.26358 −0.40042 −1.26358 −1.26358 −1.26358
−1.32911 −0.14526 1.32911 1.32911 1.32911

]

K2 =

[
1.26358 −0.40042 −1.26358 −1.26358 −1.26358
−1.32911 −0.14526 1.32911 1.32911 1.32911

]
When h1 = h2 = 6, K1 and K2 are given, respectively, by

K1 =

[
1.31567 −0.30661 −1.31567 −1.31567 −1.31567 −1.31567
−1.38506 −0.24404 1.38506 1.38506 1.38506 1.38506
−1.31567 −1.31567 −1.31567
1.38506 1.38506 1.38506

]
,

K2 =

[
1.31567 −0.30661 −1.31567 −1.31567 −1.31567 −1.31567
−1.38506 −0.24404 1.38506 1.38506 1.38506 1.38506
−1.31567 −1.31567 −1.31567
1.38506 1.38506 1.38506

]
,

When h1 = h2 = 0, we obtained

K1 =

[
1.18156 −0.45238
−1.24364 −0.09158

]

K2 =

[
1.18156 −0.45238
−1.24364 −0.09158

]
For the Signal (52) and (53), Figure 9 depicts the output and the reference Signals (52) and (53).

Figure 10 indicates the control input for different preview lengths. From Figures 9 and 10, we found
that the output response could reach a steady state faster when using the output controller with
preview compensation.
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For the static output feedback case, two extreme cases, namely, θ1 = 1 and θ1 = 0 have also been
considered. Figures 11 and 12, respectively, show the output response and control input of System (1)
by static output controller under θ1 = 0. When θ1 = 1, Figures 13 and 14 show the response and the
control input curves, respectively. It is evident from Figures 11–14 that the tracking effect was still
remarkable under the reference input preview compensation.
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Figure 14. θ1 = 1,θ2 = 0, control input of system (1) with different MR.

Similarly, for the output feedback case, the simulations were completed when the design methods
in [11,13,15,26] were used. From these simulation results, we could find that the proposed output
feedback PC had more advantages. Simulation and analysis were made separately under different
situations of parameters θ1 and θ2. Considering length limitations, the figures for these results would
not be provided here.

6. Conclusions

The PC problem for MIMO discrete-time systems with polytopic uncertainties was discussed
in this paper. We derived the AES including previewed information on ri(k) by using classical
difference method. The parameter-dependent state feedback and output feedback were proposed and
the conditions of the design methods of PCs were given by using parameter-dependent quadratic
Lyaounov functions and LMI approach. The robust controllers with preview actions using LMIs
were presented.
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