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Abstract: In this study, a relatively new method to solve partial differential equations (PDEs) called
the fractional reduced differential transform method (FRDTM) is used. The implementation of the
method is based on an iterative scheme in series form. We test the proposed method to solve nonlinear
fractional Burgers equations in one, two coupled, and three dimensions. To show the efficiency and
accuracy of this method, we compare the results with the exact solutions, as well as some established
methods. Approximate solutions for different values of fractional derivatives together with exact
solutions and absolute errors are represented graphically in two and three dimensions. From all
numerical results, we can conclude the efficiency of the proposed method for solving different types
of nonlinear fractional partial differential equations over existing methods.

Keywords: fractional calculus; fractional reduced differential transform method; Caputo derivative;
Burgers’ equation

1. Introduction

Mathematical modeling of nonlinear systems is a major challenge for scientists currently.
The study of the exact and approximate solutions helps us to understand the applications of these
mathematical models. Finding an analytical solution is a very difficult task in most cases. Fractional
order derivatives provide researchers with new ways of modeling numerous types of phenomena in
science. Different kinds of fractional derivatives and their properties were considered in [1–5]. A survey
of several diverse applications that have arisen from fractional calculus was given by Podlubny [4].
Abuasad et al. [6] applied a fractional multi-step differential transformed method to find approximate
solutions to one of the most important to epidemiology and mathematical ecology, the fractional
stochastic susceptible-infective-susceptible (SIS) epidemic model with imperfect vaccination. The most
vital criteria that defined fractional derivatives were shown by Ross [7]. Several researchers are
trying to find techniques to solve different types of fractional differential equations by modifying the
traditional methods, while others have linked two or more methods to find numerical or analytical
solutions of fractional equations. In [8,9], we modified the definition of the beta fractional derivative to
find exact and approximate solutions of time fractional diffusion equations in different dimensions.

The differential transform method (DTM) was first applied to electrical circuit problems by
Zhou [10]. The DTM was well addressed in [11–15]. To overcome the long computations of DTM,
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Keskin and Oturanc [16] presented an effective and powerful technique called the reduced differential
transform method (RDTM). Srivastava et al. [17] used RDTM for solving the (1 + n)-dimensional
Burgers equation. Keskin and Oturance [18] proposed the so-called fractional reduced differential
transform method (FRDTM).

The central benefits of FRDTM is that it can solve different classes of linear and nonlinear partial
fractional differential equations (PFDE) in high dimensions. In most cases of linear PFDE, we can find
the exact solutions; nevertheless, in the case of nonlinear PFDE, the approximate solutions are satisfying
in comparison with exact solutions of non-fractional equations. Abuasad et al. [19] introduced a new
modification of the fractional reduced differential transform method (m-FRDTM) to find exact and
approximate solutions for multi-term time fractional diffusion equations (MT-TFDEs). Gupta [20]
studied eight different cases to obtain the approximate analytical solutions of the Benney–Lin
equation with the fractional time derivative by FRDTM and the homotopy perturbation method
(HPM). Rawashdeh [21] used FRDTM to find approximate analytical solutions to the time fractional
Sharma–Tasso–Olver equation and the time fractional damped Burger equation. Srivastava et al. [22]
solved the generalized time fractional order biological population model (GTFBPM) by FRDTM.
Rawashdeh [23] employed FRDTM to solve the nonlinear fractional Harry Dym equation. Singh
and Srivastava [24] presented an approximate series solution of the multi-dimensional (heat-like)
diffusion equation with the time fractional derivative using FRDTM. Singh [25] presented FRDTM
to compute an alternative approximate solution of the initial valued autonomous system of linear
and nonlinear fractional partial differential equations. Rawashdeh [26] proposed FRDTM to solve
the one-dimensional space and time fractional Burgers equations and the time fractional Cahn–Allen
equation, Arshad et al. [27] presented a general form of FRDTM to solve the wave-like problem, the
Zakharov–Kuznetsov equation, and the coupled Burgers equation, and Abuasad et al. [28] proposed
FRDTM for finding exact and approximate solutions of the fractional Helmholtz equation.

In the comparison between DTM, RDTM, FRDTM, and MsDTM (multi-step differential transform
method), we find that DTM is an improved method of the Taylor series method, which needs additional
computational work for large orders, and it decreases the size of the computational domain and is
appropriate for numerous problems [14]. Meanwhile, RDTM is simpler than DTM, and the total
number of calculations essential in RDTM is much fewer than that in traditional DTM [16]. FRDTM is
a modified method of RDTM for fractional order derivatives. The multi-step differential transform
method (MsDTM) is able to overcome the key disadvantages of the DTM and RDTM, which are
that the achieved series solution frequently converges in a very insignificant space and the range of
convergence is a very slow procedure or entirely divergent given a wider space [6].

Burgers’ equation (BE) was proposed by Burgers [29] to describe the mathematical model of
turbulence. It is the simplest nonlinear diffusion equation arising in fluid mechanics. BE can be
transformed into the diffusion equation using the Hopf–Cole transformation [30]. BE has been applied
to turbulence problems [31], traffic flow [32], and plane waves [33]. Several numerical methods have
been used to solve BE, for instance the finite element method and generalized boundary element
method. Esen and Tabozan [34] solved the time fractional order BE by the quadratic B-spline Galerkin
method. Li et al. [35] proposed a linear implicit finite difference scheme for solving generalized
time fractional BE, and Miškinis [36] presented some important properties of the fractional BE and
the relation with BE of integer order. Non-perturbative analytical solutions for the generalized BE
with time and space fractional derivatives were derived using the Adomian decomposition method
by Momani [37]. Safari et al. [38] applied the variational iteration method (VIM) and the Adomian
decomposition method (ADM) to the fractional KdV–Burgers–Kuramoto equation.

In this paper, we give approximate solutions of the time fractional Burgers’ equation in one,
two coupled, and three dimensions. The rest of this article is organized as follows: In Section 2, we
present the basic definitions of the fractional derivatives in brief. Section 3 gives the idea of FRDTM.
In Section 4, we illustrate an application of this method to the fractional Burgers equation in different
dimensions. Section 5 is the conclusion.
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2. Preliminaries and Fractional Derivative Order

This section gives some important definitions, such as the Gamma function and the basic
definitions of the fractional derivatives.

2.1. The Gamma Function

The most basic interpretation of the (complete) Gamma function Γ(x) is simply the generalization
of the factorial to complex and real arguments. The Gamma function can be defined as [4]:

Γ(x) =
∫ ∞

0
e−ttx−1 dt, x > 0. (1)

2.2. Fractional Derivative

In this paper, we will use the Caputo fractional derivative. The initial conditions for fractional
order differential equations with the Caputo fractional derivative are in a form involving only the limit
values of integer order derivatives at the lower terminal initial time (t = a), such as y′(a), y′′(a), ... [4].
The fractional derivative of a constant function is zero.

Definition 1. The Caputo fractional derivative is defined as [5]:

cDα
a f (t) :=


1

Γ(n− α)

∫ t

a

f (n)(τ)
(t− τ)α+1−n dτ, n− 1 < α < n,

dn

dtn f (t), α = n,

(2)

Ross [7] indicated five criteria for the fractional derivative: If Dα
x f (x) represents the fractional

Caputo derivative, where α > 0, β > 0, then all of the following need to be satisfied:

• The fractional derivative of an analytical function is analytic.
• Backward compatibility: when the order is positive, the integer fractional derivative gives the

same result as the ordinary derivative.
• Identity: the zero order derivative of a function returns the function itself.
• Linearity: the operator must be linear.
• The index law of fractional integrals holds, that is,

D−α
x D−β

x f (x) = D−α−β
x f (x). (3)

Other criteria for the fractional derivatives can be found in [39,40].

3. Fractional Reduced Differential Transform Method

In this section, we give the basic definitions and properties of FRDTM [22,24,27,28]. Consider a
function of (n + 1) variables w(t, x1, x2, ..., xn), such that:

w(t, x1, x2, ..., xn) = m1(x1)m2(x2) · · ·mn(xn)h(t),

then from the properties of the one-dimensional differential transform method (DTM) and motivated
by the components of the form xi1

1 xi2
2 · · · x

in
n tαj, we write the general solution function w(t, x1, x2, ..., xn)
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as an infinite linear combination of such components to obtain the second half of Equation (4), then
we have:

w(t, x1, x2, ..., xn) =
∞

∑
i1=0

m1(i1)xi1
1

∞

∑
i2=0

m2(i2)xi2
2 · · ·

∞

∑
in=0

mn(in)xin
n

∞

∑
j=0

h(j)tαj

=
∞

∑
i1=0

∞

∑
i2=0
· · ·

∞

∑
in=0

∞

∑
j=0

W(i1, i2, ..., in, j)xi1
1 xi2

2 · · · x
in
n tαj, (4)

where W(i1, i2, ..., in, j) = m1(i1)m2(i2) · · ·mn(in)h(j) is referred to as the spectrum of w(t, x1, x2, ..., xn).
Furthermore, the lowercase w(t, x1, x2, ..., xn) is used for the original function, while its fractional
reduced transformed function is represented by the uppercase Wk(x1, x2, ..., xn), which is called the
T-function.

Let w(t, x1, x2, ..., xn) be analytical and continuously differentiable with respect to n + 1 variables
t, x1, x2, ... to xn in the domain of interest, then the FRDTM in n dimensions of w(t, x1, x2, ..., xn) is
given by:

Wk(x1, x2, ..., xn) =
1

Γ(kα + 1)
[Dαk

t (w(t, x1, x2, ..., xn))]t=t0 , (5)

where k = 0, 1, 2, . . ., with time fractional derivative.
The inverse FRDTM of Wk(x1, x2, ..., xn) is defined by:

w(t, x1, x2, ..., xn) :=
∞

∑
k=0

Wk(x1, x2, ..., xn)(t− t0)
kα. (6)

From (5) and (6), we have:

w(t, x1, x2, ..., xn) =
∞

∑
k=0

1
Γ(kα + 1)

[Dαk
t (w(t, x1, x2, ..., xn))]t=t0(t− t0)

kα.

In particular, for t0 = 0, the above equation becomes:

w(t, x1, x2, ..., xn) =
∞

∑
k=0

1
Γ(kα + 1)

[Dαk
t (w(t, x1, x2, ..., xn))]t=0tkα. (7)

From the above definition, it can be seen that the concept of FRDTM is derived from the
power series expansion of a function. Then, the inverse transformation of the set of values
{Wk(x1, x2, ..., xn)}m

k=0 gives an approximate solution as:

w̃m(t, x1, x2, ..., xn) =
m

∑
k=0

Wk(x1, x2, ..., xn)tαk, (8)

where n is the order of the approximate solution. Therefore, the exact solution is given by:

w(t, x1, x2, ..., xn) = lim
m→∞

w̃m(t, x1, x2, ..., xn). (9)

In Table 1, we give some properties of FRDTM, where the transform is essentially a generating
function and δ(k− r) is defined by:

δ(k− r) =

{
1, k = r
0, k 6= r.

(10)

where w = w(t, x1, x2..., xn), u = u(t, x1, x2..., xn), Wk = Wk(x1, x2..., xn), Uk = Uk(x1, x2..., xn).
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Table 1. Fundamental operations of the fractional reduced differential transform method (FRDTM) [14,16,27].

Original Function Transformed Function

w = c1u± c2v Wαk = c1Uαk ± c2Vαk
w = uv Wαk = ∑k

i=0 UαiVα(k−i)

w = Dmα
t u Wαk =

Γ(α(k + m) + 1)
Γ(kα + 1)

Uα(k+m)

w =
∂hu
∂xh

i
Wαk =

∂hUαk

∂xh
i

, i = 1, 2, ..., n

w = xm
i tr Wkα = xm

i δ(αk− r), i = 1, 2, ..., n

w = xm
i tru Wαk = xm

i

k

∑
i=0

δ(αi− r)Uα(k−r), i = 1, 2, ..., n

4. Numerical Experiments

To demonstrate the efficiency of FRDTM as an approximate tool for solving different types of
nonlinear fractional diffusion equations, we apply the proposed algorithm to three nonlinear time
fractional BEs of one-dimensional, (3 + 1)-dimensional, and (2 + 1)-dimensional coupled equations.

4.1. Example 1

Consider the following one-dimensional nonlinear time fractional BE, where 0 < α ≤ 1 [41]:

Dα
t u + au

∂u
∂x
− c

∂2u
∂x2 = 0, (11)

with the initial condition:

u(x, 0) = u0(x, t) =
2[b− bc tanh(bx)]

a
, (12)

where a, b, and c are arbitrary constants and a 6= 0. Applying the appropriate properties given in
Table 1 to Equation (11), we obtain the following recurrence relation:

Uk+1 =
Γ(kα + 1)

Γ(α(k + 1) + 1)

(
c

∂2Uk
∂x2 − a

k

∑
r=0

Ur
∂Uk−r

∂x

)
, (13)

where k = 0, 1, 2, . . . and Uk = Uk(x, t). From (13), we obtain the inverse transform coefficients of tkα

as follows:

U0 =
2[b− b c tanh(bx)]

a
, U1 =

4b3c sech2(bx)
a Γ(α + 1)

,

U2 =
16 b5 c tanh(bx) sech2(bx)

a Γ(2α + 1)
, . . . .

Continuing in the same manner and after some successive approximations, the differential inverse
transform of {Uk}∞

k=0 will give the following series solution,

u(x, t) =
∞

∑
k=0

Uktkα

=
2[b− bc tanh(bx)]

a
+

4b3c sech2(bx)
a Γ(α + 1)

tα

+
16 b5 c tanh(bx) sech2(bx)

a Γ(2α + 1)
t2α + · · · . (14)
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If α = 1 (non-fractional case) in Equation (14), then the third order approximate solution of
FRDTM gives a reliable solution, which is compared with the exact solution in Table 2.

u3(x, t) =

1
3a×

[
− 48b7ct3sech4(bx) + 4b3ctsech2(bx)

(
8b4t2 + 6b2t tanh(bx) + 3

)
−6bc tanh(bx) + 6b

]
. (15)

The exact solution of the non-fractional BE (11) is given [41] as:

u(x, t) =
2b
a
− a b c

a
tanh[b(x− 2bt)]. (16)

Figure 1 shows the exact solution of non–fractional solution and the three-dimensional plot of the
third order approximate solution of FRDTM (α = 1), while Figure 2 depicts the third order approximate
solutions for (α = 0.9, 0.5); Figure 3 depicts solutions in two-dimensional plots for different values of α;
Figure 4 shows the absolute errors between the exact solution and third order solution for α = 1. Table 2
presents the numerical solutions for u3(x, t) by FRDTM at different values of α and a comparison of
absolute errors at α = 1 for FRDTM with fractional variational iteration method (FVIM).
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Table 2. Approximate numerical solution for u3(x, t) by FRDTM at different values of α and a comparison of absolute errors at α = 1 for FRDTM with FVIM.

Non-Fractional Order Fractional Order

x t α = 1 uExact |uFRDTM − uExact| |uFVIM − uExact| α = 0.9 α = 0.8

0 0.0399011 0.0399011 0 0 0.0399011 0.0399011
20 0.0399019 0.0399019 1.6237× 10−14 8.360 83× 10−12 0.0399017 0.0399016
40 0.0399027 0.0399027 2.593 48× 10−13 6.675 72× 10−11 0.0399022 0.0399019

−300 60 0.0399034 0.0399034 1.310 92× 10−12 2.2487× 10−10 0.0399027 0.0399022
80 0.0399042 0.0399042 4.136 82× 10−12 5.319 96× 10−10 0.0399032 0.0399025
100 0.039905 0.039905 1.008 42× 10−11 1.037 05× 10−9 0.0399036 0.0399028

0 0.0352319 0.0352319 0 0 0.0352319 0.0352319
20 0.0352654 0.0352654 1.409 42× 10−13 2.473 81× 10−10 0.0352577 0.0352517
40 0.0352987 0.0352987 2.239 93× 10−12 1.980 16× 10−9 0.03528 0.0352663

−100 60 0.0353318 0.0353318 1.126 34× 10−11 6.686 76× 10−9 0.035301 0.0352794
80 0.0353646 0.0353646 3.5358× 10−11 1.585 87× 10−8 0.0353212 0.0352916
100 0.0353973 0.0353973 8.573 94× 10−11 3.099 08× 10−8 0.0353409 0.0353031

0 0.00476812 0.00476812 0 0 0.00476812 0.00476812
20 0.00480182 0.00480182 1.428 37× 10−13 1.784 36× 10−11 0.00479407 0.00478797
40 0.00483572 0.00483572 2.300 62× 10−12 1.415 91× 10−10 0.00481666 0.00480275

100 60 0.00486984 0.00486984 1.172 43× 10−11 4.739 09× 10−10 0.00483819 0.00481609
80 0.00490415 0.00490415 3.730 03× 10−11 1.113 83× 10−9 0.00485909 0.00482858
100 0.00493868 0.00493868 9.166 66× 10−11 2.156 64× 10−9 0.00487955 0.00484049

0 0.0000989049 0.0000989049 0 4.201 28× 10−19 0.0000989049 0.0000989049
20 0.0000996974 0.0000996974 1.628 47× 10−14 8.228 05× 10−22 0.0000995152 0.0000993717
40 0.000100496 0.000100496 2.609 42× 10−13 6.595 51× 10−11 0.000100047 0.0000997194

300 60 0.000101301 0.000101301 1.323 05× 10−12 2.2304× 10−10 0.000100555 0.000100034
80 0.000102113 0.000102113 4.187 95× 10−12 5.297 41× 10−10 0.000101048 0.000100328
100 0.000102931 0.000102931 1.024 02× 10−11 1.036 71× 10−9 0.000101532 0.000100609
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(a) (b)
Figure 1. (a) The exact solution and (b) the third order approximation u3 for α = 1, a = 1, b = 0.01, and
c = 1.

(a) (b)
Figure 2. The third order approximation u3 for (a) α = 0.9 and (b) α = 0.5, a = 1, b = 0.1, and c = 1.

α=1(non-fractional)

α=0.9

α=0.8

α=0.7

0 20 40 60 80 100

0.00480

0.00485

0.00490

t

u
3
(x
,t
)

Figure 3. The FRDTM approximate solutions u3(x, t) for α = 1, 0.9, 0.8, 0.7; t ∈ [0, 100], and x = 100.
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(a) (b)
Figure 4. The absolute errors between the exact solution and third order solution for α = 1, a = 1, c = 1
with (a) b = 0.01 and (b) b = 0.1.

4.2. Example 2

Consider the following (3 + 1)-dimensional time fractional BE [17]:

Dα
t u =

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 − u

∂u
∂x

, (17)

where 0 < α ≤ 1, with the initial condition:

u(x, y, z, 0) = u0(x, y, z) = x + y + z. (18)

Applying the appropriate properties given in Table 1 to Equation (17), we obtain the following
recurrence relation:

Uk+1 =
Γ(kα + 1)

Γ(α(k + 1) + 1)

(
∂2Uk
∂x2 +

∂2Uk
∂y2 +

∂2Uk
∂z2 +

k

∑
r=0

Ur
∂Uk−r

∂x

)
, (19)

where k = 0, 1, 2, . . . and Uk = Uk(x, y, z). From (19), we obtain the inverse transform coefficients of tkα

as follows:

U0 = x + y + z, U1 =
x + y + z
Γ(α + 1)

,

U2 =
2(x + y + z)

Γ(2α + 1)
, U3 =

[
4Γ(α + 1)2 + Γ(2α + 1)

]
(x + y + z)

Γ(α + 1)2Γ(3α + 1)
, . . . .

Continuing in the same manner and after a few iterations, the differential inverse transform of
{Uk}∞

k=0 will give the following series solution:

u(x, y, z, t) =
∞

∑
k=0

Uktkα

= x + y + z +
x + y + z
Γ(α + 1)

tα +
2(x + y + z)

Γ(2α + 1)
t2α

+

[
4Γ(α + 1)2 + Γ(2α + 1)

]
(x + y + z)

Γ(α + 1)2Γ(3α + 1)
t3α · · · . (20)
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If α = 1, then the FRDTM gives the same results as the RDTM. Equation (17) subject to (18) was
solved in [17] for non-fractional BE, and the exact solution is:

u(x, y, z, t) =
x + y + z

1− t
, provided that 0 ≤ t < 1. (21)

The three-dimensional plots of the exact solution and seventh term of the FRDTM solution of
(17) with the initial condition (18) are shown in Figures 5 and 6 for different values of α = 1, 0.8, 0.5
for t ∈ [0, 0.7], x ∈ [−1, 1], and y = 0.5, z = 0.5. Figure 7 depicts solutions in two-dimensional plots
for the exact solution and different values of α = 1 non-fractional, 0.9, 0.8, and 0.7 for t ∈ [0, 0.8] and
y = 0.2, z = 0.1, x = 0.3. The plot of absolute errors between the exact solution and the seventh
order approximate solution of FRDTM is given in Figure 8. Table 3 shows the approximate numerical
solution by FRDTM at different values of α = 1, 0.9, 0.8, and 0.7 and comparison of absolute errors for
different values of t = 0, 0.2, 0.4, and 0.6 and different values of x = −300,−100, 100, and 300.

Table 3. Seventh order approximate numerical solutions by FRDTM at different values of α and
comparison of absolute errors at α = 1.

Non-Fractional Order Fractional Order

x t α = 1 uExact Absolute error α = 0.9 α = 0.8 α = 0.7

0 0.2 0.2 0 0.2 0.2 0.2
−0.8 0.2 0.249999 0.25 6.4× 10−7 0.267012 0.339529 0.705107

0.4 0.333115 0.333333 0.000218453 0.383913 0.677598 2.51926
0.6 0.491602 0.5 0.00839808 0.639169 1.6304 7.11893

0 0.5 0.5 0 0.5 0.5 0.5
−0.5 0.2 0.624998 0.625 1.6× 10−6 0.66753 0.848823 1.76277

0.4 0.832787 0.833333 0.000546133 0.959782 1.694 6.29816
0.6 1.229 1.25 0.0209952 1.59792 4.07599 17.7973

0 1 1 0 1 1 1
0 0.2 1.25 1.25 3.2× 10−6 1.33506 1.69765 3.52553

0.4 1.66557 1.66667 0.00109227 1.91956 3.38799 12.5963
0.6 2.45801 2.5 0.0419904 3.19585 8.15198 35.5946

0 1.5 1.5 0 1.5 1.5 1.5
0.5 0.2 1.875 1.875 4.8× 10−6 2.00259 2.54647 5.2883

0.4 2.49836 2.5 0.0016384 2.87935 5.08199 18.8945
0.6 3.68701 3.75 0.0629856 4.79377 12.228 53.3919

0 2 2 0 2 2 2
1 0.2 2.49999 2.5 6.4× 10−6 2.67012 3.39529 7.05107

0.4 3.33115 3.33333 0.00218453 3.83913 6.77598 25.1926
0.6 4.91602 5. 0.0839808 6.39169 16.304 71.1893

(a) (b)
Figure 5. (a) α = 1 (exact) and (b) α = 1 (seven term FRDTM).
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(a) (b)
Figure 6. The seventh order approximation u7 for (a) α = 0.8 and (b) α = 0.5; y = 0.5, z = 0.5.

Exact

alpha=1(non-fractional)

alpha=0.9

alpha=0.8

alpha=0.7

0.0 0.2 0.4 0.6 0.8

1

2

3

4

5

t

u
7
(x
,y
,t
)

Figure 7. The seven term FRDTM solutions u7 for α = 1 (exact), 0.9, 0.8, 0.7; t ∈ [0, 0.8], and y = 0.2, z =

0.1, x = 0.3.

(a) (b)
Figure 8. The absolute errors between the exact solution and the seventh order solution for α = 1, z =

0.5 with (a) y = 0.5 and (b) y = 0.3.

4.3. Example 3

Consider the following (2 + 1)-dimensional time–fractional coupled BE [42]:

Dα1
t u + u

∂u
∂x

+ v
∂u
∂y

=
1
R

(
∂2u
∂x2 +

∂2u
∂y2

)
, (22)
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Dα2
t v + u

∂v
∂x

+ v
∂v
∂y

=
1
R

(
∂2v
∂x2 +

∂2v
∂y2

)
, (23)

where 0 < α1, α2 ≤ 1, 0 ≤ x, y ≤ 1, t > 0, and R � 1 is the Reynolds number, subject to the
initial conditions:

u(x, y, 0) = u0(x, y, t) =
1
4

(
1

e
1
8 R(x−y) + 1

+ 2
)

, (24)

v(x, y, 0) = v0(x, y, t) =
1
4

(
1

e
1
8 R(y−x) + 1

+ 3
)

. (25)

Applying the appropriate properties given in Table 1 to Equation (22) and Equation (23), we
obtain the following recurrence relation:

Uk+1 =
Γ(kα1 + 1)

Γ(α1(k + 1) + 1)

×
[

1
R

(
∂2Uk
∂x2 +

∂2Uk
∂y2

)
−

k

∑
r=0

Ur
∂Uk−r

∂x
−

k

∑
r=0

Vr
∂Uk−r

∂y

]
, (26)

Vk+1 =
Γ(kα2 + 1)

Γ(α2(k + 1) + 1)

×
[

1
R

(
∂2Vk
∂x2 +

∂2Vk
∂y2

)
−

k

∑
r=0

Ur
∂Vk−r

∂x
−

k

∑
r=0

Vr
∂Vk−r

∂y

]
, (27)

where k = 0, 1, 2, . . ., Uk = Uk(x, y), and Vk = Vk(x, y). From (26) and (27), we obtain the inverse
transform coefficients of tkαi , i = 1, 2 as follows:

U0 =
1
4

(
1

e
1
8 R(x−y) + 1

+ 2
)

,

V0 =
1
4

(
1

e
1
8 R(y−x) + 1

+ 3
)

,

U1 = −
R sech2

(
1

16 R(x− y)
)

512 Γ(α1 + 1)
,

V1 =
R sech2

(
1

16 R(x− y)
)

512 Γ(α2 + 1)
,

U2 =
R2 sech4

(
1

16 R(x− y)
)

65536 Γ(2α1 + 1)Γ(α2 + 1)

[
Γ(α2 + 1)

(
2 sinh

(
1
8

R(x− y)
)
+ 1
)
− Γ(α1 + 1)

]
,

V2 =
R2 sech4

(
1

16 R(x− y)
)

65536 Γ(α1 + 1)Γ(2α2 + 1)

[
Γ(α1 + 1)

(
−2 sinh

(
1
8

R(x− y)
)
− 1
)
+ Γ(α2 + 1)

]
.
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Continuing in the same manner and after a few iterations, the differential inverse transform of
{Uk}∞

k=0 and {Vk}∞
k=0 will give the following series solutions.

u(x, y, t) =
∞

∑
k=0

Uktkα1

=
1
4

(
1

e
1
8 R(x−y) + 1

+ 2
)
−

R sech2
(

1
16 R(x− y)

)
512 Γ(α1 + 1)

tα1

+
R2 sech4

(
1

16 R(x− y)
)

65536 Γ(2α1 + 1)Γ(α2 + 1)

[
Γ(α2 + 1)

(
2 sinh

(
1
8

R(x− y)
)
+ 1
)

−Γ(α1 + 1)
]

t2α1 + · · · , (28)

v(x, y, t) =
∞

∑
k=0

Vktkα2

=
1
4

(
1

e
1
8 R(y−x) + 1

+ 3
)
+

R sech2
(

1
16 R(x− y)

)
512 Γ(α2 + 1)

tα2

+
R2 sech4

(
1

16 R(x− y)
)

65536 Γ(α1 + 1)Γ(2α2 + 1)

[
Γ(α1 + 1)

(
−2 sinh

(
1
8

R(x− y)
)
− 1
)

+Γ(α2 + 1)
]

t2α2 + · · · . (29)

The fourth term of the numerical solutions of Equations (22) and (23) was solved using coupled
fractional reduced differential transform (CFRDTM) and compared with FVIM in [42]. CFRDTM
depends directly on the generalized Taylor formula and therefore needs more computational steps
than FRDTM.

The exact solutions for the non-fractional case where α1 = α2 = 1 of Equations (22) and (23) are:

u(x, y, t) =
3
4
− 1

4[1 + exp((R/32)(−4x + 4y− t))]
, (30)

v(x, y, t) =
3
4
+

1
4[1 + exp((R/32)(−4x + 4y− t))]

. (31)

Figures 9 and 10 plot the exact solutions and the approximate solutions of u4(x, y, t) and v4(x, y, t),
respectively, using FRDTM (α1 = α2 = 1) in three dimensions. Figure 11 shows the absolute errors
between the exact solutions and the approximate solutions for α1 = α2 = 1, y = 1 and R = 100
with (a) u4(x, y, t) and (b) v4(x, y, t). The approximate solutions of u4(x, y, t) for (a) α1 = 0.7 and (b)
α1 = 0.5 are plotted in Figure 12, while the approximate solutions of v4(x, y, t) for (a) α1 = 0.7 and (b)
α1 = 0.5 are plotted in Figure 13. Table 4 shows the numerical approximate solutions of u4(x, y, t) at
different values of α1 = 1, 0.9, 0.8, and 0.7 and a comparison of the absolute errors for different values
t and x, where Table 5 shows the numerical approximate solutions of v4(x, y, t) at different values of
α2 = 1, 0.9, 0.8, and 0.7 and the comparison of absolute errors for different values t and x.
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Table 4. Fourth order approximate numerical solutions of u4(x, y, t) by FRDTM at different values of
α1 and comparison of absolute errors at α1 = 1, y = 1 and R = 100.

Non-Fractional Order Fractional Order

x t α1 = 1 uExact Absolute error α1 = 0.9 α1 = 0.8 α1 = 0.7

0 0.749997 0.749997 0 0.749997 0.749997 0.749997
0.1 0.749951 0.749996 0.0000441493 0.749951 0.749951 0.749951
0.2 0.749911 0.749994 0.0000827147 0.749911 0.749911 0.749911

0.1 0.3 0.74987 0.749992 0.00012135 0.74987 0.74987 0.74987
0.4 0.749829 0.749989 0.000159937 0.749829 0.749829 0.749829
0.5 0.749786 0.749984 0.000198136 0.749786 0.749786 0.749786

0 0.749989 0.749989 0 0.749989 0.749989 0.749989
0.1 0.74983 0.749984 0.000154016 0.74983 0.74983 0.74983
0.2 0.74969 0.749979 0.000288529 0.74969 0.74969 0.74969

0.2 0.3 0.749548 0.749971 0.00042328 0.749548 0.749548 0.749548
0.4 0.749403 0.74996 0.000557856 0.749403 0.749403 0.749403
0.5 0.749255 0.749946 0.000691078 0.749255 0.749255 0.749255

0 0.74996 0.74996 0 0.74996 0.74996 0.74996
0.1 0.749409 0.749946 0.000536592 0.749409 0.749409 0.749409
0.2 0.748921 0.749926 0.00100496 0.748921 0.748921 0.748921

0.3 0.3 0.748425 0.749899 0.00147406 0.748425 0.748425 0.748425
0.4 0.747919 0.749862 0.0019425 0.747919 0.747919 0.747919
0.5 0.747405 0.749811 0.00240619 0.747405 0.747405 0.747405

0 0.749862 0.749862 0 0.749862 0.749862 0.749862
0.1 0.74795 0.749811 0.00186104 0.74795 0.74795 0.74795
0.2 0.74626 0.749742 0.00348202 0.74626 0.74626 0.74626

0.4 0.3 0.744543 0.749647 0.00510455 0.744543 0.744543 0.744543
0.4 0.742794 0.749518 0.00672411 0.742794 0.742794 0.742794
0.5 0.741015 0.749342 0.00832666 0.741015 0.741015 0.741015

0 0.749518 0.749518 0 0.749518 0.749518 0.749518
0.1 0.742989 0.749342 0.0063529 0.742989 0.742989 0.742989
0.2 0.737257 0.749102 0.011845 0.737257 0.737257 0.737257

0.4 0.3 0.731444 0.748774 0.0173301 0.731444 0.731444 0.731444
0.4 0.72553 0.748327 0.0227968 0.72553 0.72553 0.72553
0.5 0.719519 0.747719 0.0281996 0.719519 0.719519 0.719519

(a) (b)
Figure 9. The approximate solution u4(x, y, t) for α1 = 1, y = 1, and R = 100: (a) FRDTM and (b)
exact solution.
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Table 5. Fourth order numerical approximate solutions of v4(x, y, t) by FRDTM at different values of
α2 and comparison of absolute errors at α2 = 1, y = 1 and R = 100.

Non-Fractional Order Fractional Order

x t α2 = 1 vExact Absolute error α2 = 0.9 α2 = 0.8 α2 = 0.7

0 0.750003 0.749997 6.503 56× 10−6 0.750003 0.750003 0.750003
0.1 0.750049 0.749996 0.0000530386 0.750049 0.750049 0.750049
0.2 0.750089 0.749994 0.0000948648 0.750089 0.750089 0.750089

0.1 0.3 0.75013 0.749992 0.000137957 0.75013 0.75013 0.75013
0.4 0.750171 0.749989 0.000182636 0.750171 0.750171 0.750171
0.5 0.750214 0.749984 0.000229162 0.750214 0.750214 0.750214

0 0.750011 0.749989 0.0000226989 0.750011 0.750011 0.750011
0.1 0.75017 0.749984 0.000185041 0.75017 0.75017 0.75017
0.2 0.75031 0.749979 0.000330935 0.75031 0.75031 0.75031

0.2 0.3 0.750452 0.749971 0.000481239 0.750452 0.750452 0.750452
0.4 0.750597 0.74996 0.000637074 0.750597 0.750597 0.750597
0.5 0.750745 0.749946 0.00079935 0.750745 0.750745 0.750745

0 0.75004 0.74996 0.0000792181 0.75004 0.75004 0.75004
0.1 0.750591 0.749946 0.000644864 0.750591 0.750591 0.750591
0.2 0.751079 0.749926 0.00115293 0.751079 0.751079 0.751079

0.3 0.3 0.751575 0.749899 0.0016763 0.751575 0.751575 0.751575
0.4 0.752081 0.749862 0.00221889 0.752081 0.752081 0.752081
0.5 0.752595 0.749811 0.00278389 0.752595 0.752595 0.752595

0 0.750138 0.749862 0.000276389 0.750138 0.750138 0.750138
0.1 0.75205 0.749811 0.00223874 0.75205 0.75205 0.75205
0.2 0.75374 0.749742 0.00399813 0.75374 0.75374 0.75374

0.4 0.3 0.755457 0.749647 0.00580973 0.755457 0.755457 0.755457
0.4 0.757206 0.749518 0.00768747 0.757206 0.757206 0.757206
0.5 0.758985 0.749342 0.0096425 0.758985 0.758985 0.758985

0 0.750482 0.749518 0.000963367 0.750482 0.750482 0.750482
0.1 0.757011 0.749342 0.00766873 0.757011 0.757011 0.757011
0.2 0.762743 0.749102 0.0136418 0.762743 0.762743 0.762743

0.5 0.3 0.768556 0.748774 0.0197828 0.768556 0.768556 0.768556
0.4 0.77447 0.748327 0.0261433 0.77447 0.77447 0.77447
0.5 0.780481 0.747719 0.0327624 0.780481 0.780481 0.780481

(a) (b)
Figure 10. The approximate solution v4(x, y, t) for α2 = 1, y = 1, and R = 100: (a) FRDTM and (b)
exact solution.
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(a) (b)
Figure 11. The absolute errors between the exact solutions and the fourth order solutions for α = 1, y =

1 and R = 100 with (a) u4(x, y, t) and (b) v4(x, y, t).

(a) (b)
Figure 12. The u4(x, y, t) for (a) α1 = 0.7 and (b) = α1 = 0.5, y = 1, and R = 100.

(a) (b)
Figure 13. The v4(x, y, t) for (a) α2 = 0.7 and (b) = α1 = 0.5, y = 1, and R = 100.

5. Results and Conclusions

In this work, we applied FRDTM for the nonlinear fractional Burgers equations in three different
dimensions. Example 1 indicated that the third order approximate solution was accurate in comparison
with the exact solution; see Figure 1. The maximum absolute errors were notably small with order
10−10; see Figure 4. While the results in Table 2 indicated the efficiency of FRDTM over FVIM such
that the maximum difference between the third order FRDTM solutions and the exact solution was of
order 10−11, the maximum difference between the second order FVIM solutions and the exact solution
was of order 10−8. Example 2 showed that only seven terms of the FRDTM were enough to give
a good approximate solution; see Figures 5 and 7 for the exact solutions and different values of α.
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The numerical results from Table 3 indicated that the approximate solutions were close to the exact
solution especially if 0 < t < 0.3. Example 3 for solving (2 + 1)-dimensional time fractional coupled
BE showed remarkable accuracy between the fourth order approximate solutions using FRDTM and
the exact solution; see Figures 9 and 10. Tables 4 and 5 with Figure 11 showed the absolute errors
between the approximate solutions and the exact solutions, which indicated the importance of FRDTM
for solving different types of nonlinear fractional coupled equations.

In conclusion, the study of the figures and tables in the three previous examples illustrated the
importance of using FRDTM; only small amounts of computations gave rapid convergence to the exact
solutions, and only a few iterations were enough to yield good accuracy with exact solutions. These
results showed certainly that FRDTM was a reliable and powerful method for solving different types
of nonlinear fractional partial differential equations over existing methods.
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