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Abstract: The main objective of this paper is to establish new oscillation results of solutions to a
class of fourth-order advanced differential equations with delayed arguments. The key idea of our
approach is to use the Riccati transformation and the theory of comparison with first and second-order
delay equations. Four examples are provided to illustrate the main results.
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1. Introduction

In the last decades, many researchers have devoted their attention to introducing more
sophisticated analytical and numerical techniques to solve mathematical models arising in all fields of
science, technology and engineering. Fourth-order advanced differential equations naturally appear in
models concerning physical, biological and chemical phenomena, having applications in dynamical
systems such as mathematics of networks and optimization, and applications in the mathematical
modeling of engineering problems, such as electrical power systems, materials and energy, also,
problems of elasticity, deformation of structures, or soil settlement, see [1].

The present paper deals with the investigation of the oscillatory behavior of the fourth order
advanced differential equation of the following form

(
a (υ)

(
y′′′ (υ)

)β
)′

+
j

∑
i=1

qi (υ) g (y (ηi (υ))) = 0, υ ≥ υ0, (1)

where j ≥ 1 and β is a quotient of odd positive integers. Throughout the paper, we suppose the
following assumptions:
a ∈ C1 ([υ0, ∞), (0, ∞)) , a′ (υ) ≥ 0, qi, ηi ∈ C ([υ0, ∞),R) , qi (υ) ≥ 0, ηi (υ) ≥ υ, i = 1, 2, .., j, g ∈
C (R,R) such that g (x) /xβ ≥ ` > 0, for x 6= 0 and under the condition∫ ∞

υ0

1
a1/β (s)

ds = ∞. (2)

During this decade, several works have been accomplished in the development of the oscillation
theory of higher order advanced equations by using the Riccati transformation and the theory of
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comparison between first and second-order delay equations. Further, the oscillation theory of fourth
and second order delay equations has been studied and developed by using an integral averaging
technique and the Riccati transformation, see [2–23].

In this paper, we are aimed to complement the results reported in [24–26], therefore we discuss
their findings and results below.

Moaaz et al. [27] considered the fourth-order differential equation(
a (υ)

(
y′′′ (υ)

)γ
)′

+ q (υ) yα (η (υ)) = 0,

where γ, α are quotients of odd positive integers.
Grace et al. [28] considered the equation(

a (υ)
(
y′′ (υ)

)γ
)′′

+ q (υ) g (y (η (υ))) = 0, (3)

where η (υ) ≤ υ.
Zhang et al. in [29] studied qualitative behavior of the fourth-order differential equation(

a (υ)
(
w′′′ (υ)

)β
)′

+ q (υ)w (σ (υ)) = 0,

where σ (υ) ≤ υ, β is a quotient of odd positive integers and they used the Riccati transformation.
Agarwal and Grace [24] considered the equation((

y(κ−1) (υ)
)β
)′

+ q (υ) yβ (η (υ)) = 0, (4)

where κ is even, and they established some new oscillation criteria by using the comparison technique.
Among others, they proved it oscillatory if

lim inf
υ→∞

∫ η(υ)

υ
(η (s)− s)κ−2

(∫ ∞

η(υ)
q (υ) dυ

)1/β

ds >
(κ − 2)!

e
. (5)

Agarwal et al. in [25] extended the Riccati transformation to obtain new oscillatory criteria for
ODE (4) under the condition

lim sup
υ→∞

υβ(κ−1)
∫ ∞

υ
q (s) ds > ((κ − 1)!)β . (6)

Authors in [26] studied oscillatory behavior of Equation (4) where β = 1 and if there exists a
function τ ∈ C1 ([υ0, ∞) , (0, ∞)) , also, they proved oscillatory by using the Riccati transformation if

∫ ∞

υ

(
τ (s) q (s)− (κ − 2)! (τ′ (s))2

23−2κsκ−2τ (s)

)
ds = ∞. (7)

To compare the conditions, we apply the previous results to the equation

y(4) (υ) +
q0

υ4 y (3υ) = 0, υ ≥ 1, (8)

1. By applying Condition (5) in [24], we get

q0 > 13.6

2. By applying Condition (6) in [25], we get

q0 > 18.
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3. By applying Condition (7) in [26], we get

q0 > 576.

The main aim of this paper is to establish new oscillation results of solutions to a class of
fourth-order differential equations with delayed arguments and they essentially complement the
results reported in [24–26].

The rest of the paper is organized as follows. In Section 2, four lemmas are given to prove the
main results. In Section 3, we establish new oscillation results for Equation (1), comparisons are carried
out with oscillations of first and second-order delay differential equations and some examples are
presented to illustrate the main results. Some conclusions are discussed in Section 4.

2. Some Auxiliary Lemmas

In this section, the following some auxiliary lemmas are provided

Lemma 1 ([23]). Suppose that y ∈ Cκ ([υ0, ∞) , (0, ∞)) , y(κ) is of a fixed sign on [υ0, ∞) , y(κ) not identically
zero and there exists a υ1 ≥ υ0 such that

y(κ−1) (υ) y(κ) (υ) ≤ 0,

for all υ ≥ υ1. If we have limυ→∞ y (υ) 6= 0, then there exists υθ ≥ υ1 such that

y (υ) ≥ θ

(κ − 1)!
υκ−1

∣∣∣y(κ−1) (υ)
∣∣∣ ,

for every θ ∈ (0, 1) and υ ≥ υθ .

Lemma 2 ([30]). Let β be a ratio of two odd numbers, V > 0 and U are constants. Then

Ux−Vx(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
,

for all positive x.

Lemma 3 ([9]). If y(i) (υ) > 0, i = 0, 1, ..., κ, and y(κ+1) (υ) < 0, then

y (υ)
υκ/κ!

≥ y′ (υ)
υκ−1/ (κ − 1)!

.

Lemma 4 ([7]). Suppose that y is an eventually positive solution of Equation (1). Then, there exist two possible
cases:

(S1) y (υ) > 0, y′ (υ) > 0, y′′ (υ) > 0, y′′′ (υ) > 0, y(4) (υ) < 0,
(S2) y (υ) > 0, y′ (υ) > 0, y′′ (υ) < 0, y′′′ (υ) > 0, y(4) (υ) < 0,

for υ ≥ υ1, where υ1 ≥ υ0 is sufficiently large.

3. Oscillation Criteria

In this section, we shall establish some oscillation criteria for fourth order advanced differential
Equation (1).

Remark 1. It is well known (see [31]), the differential equation[
a (υ)

(
y′ (υ)

)β
]′
+ q (υ) yβ (g (υ)) = 0‚ υ ≥ υ0, (9)
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where β > 0 is the ratio of odd positive integers, a , q ∈ C ([υ0, ∞),R+) is nonoscillatory if and only if there
exists a number υ ≥ υ0, and a function ς ∈ C1 ([υ, ∞),R) , satisfying the following inequality

ς′ (υ) + γa−1/β (υ) (ς (υ))(1+β)/β + q (υ) ≤ 0‚ on [υ, ∞).

In what follows, we compare the oscillatory behavior of Equation (1) with the second-order
half-linear equations of the type in Equation (9). There are numerous results concerning the oscillation
of (9), which included Hille and Nehari types, Philos type, etc.

Theorem 1. Assume that Equation (2) holds. If the differential equations2a
1
β (υ)

(θυ2)
β

(
y′ (υ)

)β

′ + j

∑
i=1

qi (υ) yβ (υ) = 0 (10)

and

y′′ (υ) + y (υ)
∫ ∞

υ

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς = 0 (11)

are oscillatory for some constant θ ∈ (0, 1), then every solution of Equation (1) is oscillatory.

Proof. By contradiction, assume that y is a positive solution of Equation (1). Then, we can suppose
that y (υ) and y (ηi (υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 4, we have two
possible cases (S1) and (S2).

Let case (S1) holds, then with the help of Lemma 1, we get

y′ (υ) ≥ θ

2
υ2y′′′ (υ) , (12)

for every θ ∈ (0, 1) and for all large υ.
Define

ϕ (υ) := τ (υ)

(
a (υ) (y′′′ (υ))β

yβ (υ)

)
, (13)

we see that ϕ (υ) > 0 for υ ≥ υ1, where there exists a positive function τ ∈ C1 ([υ0, ∞) , (0, ∞)) and

ϕ′ (υ) = τ′ (υ)
a (υ) (y′′′ (υ))β

yβ (υ)
+ τ (υ)

(
a (y′′′)β

)′
(υ)

yβ (υ)

−βτ (υ)
yβ−1 (υ) y′ (υ) a (υ) (y′′′ (υ))β

y2β (υ)
.

Using Equations (12) and (13), we obtain

ϕ′ (υ) ≤
τ′+ (υ)

τ (υ)
ϕ (υ) + τ (υ)

(
a (υ) (y′′′ (υ))β

)′
yβ (υ)

−βτ (υ)
θ

2
υκ−2 a (υ) (y′′′ (υ))β+1

yβ+1 (υ)

≤ τ′ (υ)

τ (υ)
ϕ (υ) + τ (υ)

(
a (υ) (y′′′ (υ))β

)′
yβ (υ)

− βθυ2

2 (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β . (14)
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From Equations (1) and (14), we obtain

ϕ′ (υ) ≤ τ′ (υ)

τ (υ)
ϕ (υ)− `τ (υ)

∑
j
i=1 qi (υ) yβ (ηi (υ))

yβ (υ)
− βθυ2

2 (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β .

Note that y′ (υ) > 0 and ηi (υ) ≥ υ, thus, we get

ϕ′ (υ) ≤ τ′ (υ)

τ (υ)
ϕ (υ)− `τ (υ)

j

∑
i=1

qi (υ)−
βθυ2

2 (τ (υ) a (υ))
1
β

ϕ (υ)
β+1

β . (15)

If we set τ (υ) = ` = 1 in Equations (15), then we find

ϕ′ (υ) +
βθυ2

2a
1
β (υ)

ϕ (υ)
β+1

β +
j

∑
i=1

qi (υ) ≤ 0.

Thus, we can see that Equation (10) is a nonoscillatory, which is a contradiction.
Let suppose the case (S2) holds. Define

ψ (υ) := ϑ (υ)
y′ (υ)
y (υ)

,

we see that ψ (υ) > 0 for υ ≥ υ1, where there exist a positive function ϑ ∈ C1 ([υ0, ∞) , (0, ∞)).
By differentiating ψ (υ), we obtain

ψ′ (υ) =
ϑ′ (υ)

ϑ (υ)
ψ (υ) + ϑ (υ)

y′′ (υ)
y (υ)

− 1
ϑ (υ)

ψ (υ)2 . (16)

Now, integrating Equation (1) from υ to m and using y′ (υ) > 0, we obtain

a (m)
(
y′′′ (m)

)β − a (υ)
(
y′′′ (υ)

)β
= −

∫ m

υ

j

∑
i=1

qi (s) g (y (ηi (s))) ds.

By virtue of y′ (υ) > 0 and ηi (υ) ≥ υ, we get

a (m)
(
y′′′ (m)

)β − a (υ)
(
y′′′ (υ)

)β ≤ −`yβ (υ)
∫ m

υ

j

∑
i=1

qi (s) ds.

Letting m→ ∞ , we see that

a (υ)
(
y′′′ (υ)

)β ≥ `yβ (υ)
∫ ∞

υ

j

∑
i=1

qi (s)ds

and hence

y′′′ (υ) ≥ y (υ)

(
`

a (υ)

∫ ∞

υ

j

∑
i=1

qi (s)ds

)1/β

.

Integrating again from υ to ∞, we get

y′′ (υ) + y (υ)
∫ ∞

υ

(
`

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς ≤ 0. (17)
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From Equations (16) and (17), we obtain

ψ′ (υ) ≤ ϑ′ (υ)

ϑ (υ)
ψ (υ)− ϑ (υ)

∫ ∞

υ

(
`

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς− 1
ϑ (υ)

ψ (υ)2 . (18)

If we now set ϑ (υ) = ` = 1 in Equation (18), then we obtain

ψ′ (υ) + ψ2 (υ) +
∫ ∞

υ

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς ≤ 0.

Thus, it can be seen that Equation (11) is non oscillatory, which is a contradiction. Hence,
Theorem 1 is proved.

Remark 2. It is well known (see [19]) that if

∫ ∞

υ0

1
a (υ)

dυ = ∞, and lim inf
υ→∞

(∫ υ

υ0

1
a (s)

ds
) ∫ ∞

υ
q (s)ds >

1
4

,

then Equation (9) with β = 1 is oscillatory.

Based on the above results and Theorem 1, we can easily obtain the following Hille and Nehari
type oscillation criteria for (1) with β = 1.

Theorem 2. Let β = ` = 1, and assuming that Equation (2) holds, if

∫ ∞

υ0

θυ2

2a (υ)
dυ = ∞

and

lim inf
υ→∞

(∫ υ

υ0

θs2

2a (s)
ds
) ∫ ∞

υ

j

∑
i=1

qi (s)ds >
1
4

, (19)

also, if

lim inf
υ→∞

υ
∫ υ

υ0

∫ ∞

v

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)
dςdv >

1
4

, (20)

for some constant θ ∈ (0, 1), then all solutions of Equation (1) are oscillatory.

In the following theorem, we compare the oscillatory behavior of Equation (1) with the first-order
differential equations:

Theorem 3. Assume that Equation (2) holds, if the differential equations

x′ (υ) + `
j

∑
i=1

qi (υ)

(
θυ2

2a1/β (υ)

)β

x (η (υ)) = 0 (21)

and

z′ (υ) + υz (υ)
∫ ∞

υ

(
`

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς = 0 (22)

are oscillatory for some constant θ ∈ (0, 1), then every solutions of Equation (1) is oscillatory.
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Proof. We prove this theorem by contradiction again, assume that y is a positive solution of Equation
(1). Then, we can suppose that y (υ) and y (ηi (υ)) are positive for all υ ≥ υ1 sufficiently large. From
Lemma 4, we have two possible cases (S1) and (S2).
In the case where (S1) holds, from Lemma 1, we see

y (υ) ≥ θυ2

2a1/β (υ)

(
a1/β (υ) y′′′ (υ)

)
,

for every θ ∈ (0, 1) and for all large υ. Thus, if we set

x (υ) = a (υ)
(
y′′′ (υ)

)β
> 0,

then we see that ψ is a positive solution of the inequality

x′ (υ) + `
j

∑
i=1

qi (υ)

(
θυ2

2a1/β (υ)

)β

x (η (υ)) ≤ 0. (23)

From [20] [Theorem 1], we conclude that the corresponding Equation (21) has a positive solution,
which is a contradiction. In the case where (S2) holds. From Lemma 3, we get

y (υ) ≥ υy′ (υ) , (24)

From Equations (17) and (24), we get

y′′ (υ) + υy′ (υ)
∫ ∞

υ

(
`

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς ≤ 0.

Now, we set
z (υ) = y′ (υ) .

Thus, we find ψ is a positive solution of the inequality

z′ (υ) + υz (υ)
∫ ∞

υ

(
`

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dς ≤ 0. (25)

From ([20], Theorem 1), we conclude that the corresponding Equation (22) has a positive solution,
which is a contradiction again. Thus the proof is completed.

Corollary 1. Let Equation (2) hold, if

lim inf
υ→∞

∫ ηi(υ)

υ
`

j

∑
i=1

qi (s)
(

θs2

2a1/β (s)

)β

ds >
6β

e
(26)

and

lim inf
υ→∞

∫ ηi(υ)

υ
s
∫ ∞

υ

(
`

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dςds >
1
e

(27)

for some constant θ ∈ (0, 1), then every solutions of Equation (1) is oscillatory.

Example 1. Consider a differential equation(
υ3 (w′′′ (υ))3

)′
+

q0

υ6 w3 (2υ) = 0, υ ≥ 1, (28)
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where q0 is a constant. Let β = 3, a (υ) = υ3, q (υ) = q0/υ6 and η (υ) = 2υ. If we set ` = 1, then
Condition (26) becomes

lim inf
υ→∞

∫ ηi(υ)

υ
`

j

∑
i=1

qi (s)
(

θs2

2a1/β (s)

)β

ds = lim inf
υ→∞

∫ 2υ

υ

q0

s6

(
θs2

2s1/3

)3

ds

= lim inf
υ→∞

(
q0θ3

8

)3 ∫ 2υ

υ

q0

s
ds

=
q0θ3 ln 2

8
>

63

e

and Condition (27) holds. Therefore, from Corollary 1, all solutions of Equation (28) are oscillatory if q0 >

1728/
(
θ3e ln 2

)
for some constant θ ∈ (0, 1) .

Example 2. Let the equation
y(4) (υ) +

q0

υ4 y (2υ) = 0, υ ≥ 1, (29)

where q0 > 0 is a constant. Let β = 1, a (υ) = 1, q (υ) = q0/υ4 and η (υ) = 2υ. If we set ` = 1, then
Condition (19) becomes

lim inf
υ→∞

(∫ υ

υ0

θs2

2a (s)
ds
) ∫ ∞

υ

j

∑
i=1

qi (s)ds = lim inf
υ→∞

(
υ3

3

) ∫ ∞

υ

q0

s4 ds

=
q0

9
>

1
4

and Condition (20) becomes

lim inf
υ→∞

υ
∫ υ

υ0

∫ ∞

v

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/β

dςdv = lim inf
υ→∞

υ
( q0

6υ

)
=

q0

6
>

1
4

.

Therefore, from Theorem 2, all solutions of Equation (29) are oscillatory if q0 > 2.25.

Remark 3. We compare our result with the known related criteria

The condition (5) (6)
The criterion q0 > 25.5 q0 > 18

(7)
q0 > 1728

our condition
q0 > 2.25

Example 3. Consider a differential Equation (8) where q0 > 0 is a constant. Note that β = 1, κ = 4, a (υ) =
1, q (υ) = q0/υ4 and η (υ) = 3υ. If we set ` = 1, then Condition (19) becomes

q0

9
>

1
4

.

Therefore, from Theorem 2, all the solutions of Equation (8) are oscillatory if q0 > 2.25.

Remark 4. We compare our result with the known related criteria

The condition (5) (6)
The criterion q0 > 13.6 q0 > 18

(7)
q0 > 576

our condition
q0 > 2.25

Example 4. Let the equation
y(4) (υ) +

q0

υ2 y (cυ) = 0, υ > 1, (30)
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where q0 > 0, c > 1 are constants. Note that β = 1, a (υ) = 1, q (υ) = q0/υ2 and η (υ) = cυ.
From ([14], Corollary 2.4), we have that the equation

y′′ (υ) +
q0

υ2 y (cυ) = 0, c > 1, q0 > 0,

is oscillatory if

q0 (1 + q0 ln c) >
1
4

.

Therefore, from Theorem 1, all the solutions of Equation (30) are oscillatory if q0 (1 + q0 ln c) > 1/4.

4. Conclusions

In this paper, the main aim to provide a study of asymptotic behavior of the fourth order
advanced differential equation has been achieved. We used the theory of comparison with first
and second-order delay equations and the Riccati substitution to ensure that every solution of this
equation is oscillatory. The presented results complement a number of results reported in the literature.
Furthermore, the findings of this paper can be extended to study a class of systems of higher order
advanced differential equations.
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