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Abstract: In this paper, we introduce the concept of cone metric space over a topological left module
and we establish some coincidence and common fixed point theorems for self-mappings satisfying a
condition of Lipschitz type. The main results of this paper provide extensions as well as substantial
generalizations and improvements of several well known results in the recent literature. In addition,
the paper contains an example which shows that our main results are applicable on a non-metrizable
cone metric space over a topological left module. The article proves that fixed point theorems in the
framework of cone metric spaces over a topological left module are more effective and more fertile
than standard results presented in cone metric spaces over a Banach algebra.
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1. Introduction

The concept of metric space was defined by the mathematician Fréchet [1,2]. Afterwards,
Kurepa [3] introduced more abstract metric spaces, where the metric values are given in an ordered
vector space. Nowadays, the metric spaces with vector valued metric are known under different names:
vector-valued metric spaces, cone-valued metric spaces, generalized metric spaces, K-metric spaces,
pseudometric spaces, cone metric spaces or TVS cone metric space [4–7].

The distance between two elements x and y in a cone metric space X is defined to be a vector in
a ordered Banach space E, and a mapping T : X → X is said to be a contraction if there is a positive
constant k < 1 such that

d(Tx, Ty) ≤ k · d(x, y), for all x, y ∈ X. (1)

Recently, it was proved that any cone metric space (X, d) is equivalent with the usual metric space
(X, d∗), where the real-valued metric d∗ is defined by a nonlinear scalarization function ξe [4] or by a
Minkowski functional qe [8]. In addition, it was proved that for each linear contractive mapping T in
(X, d), which satisfies Equation (1), one has

d∗(Tx, Ty) ≤ k · d∗(x, y), for all x, y ∈ X. (2)

The above results have been extended by Olaru and Secelean [9] to nonlinear contractive condition
on TVS-cone metric space. Afterwards, some other generalizations were pointed out. Liu and Xu [10]
introduced the concept of cone metric space over a Banach algebra, replacing the Banach space E
by a Banach algebra as the underlying space of a cone metric space. They proved some fixed point
theorems of generalized Lipschitz mappings, with Lipschitz constant k such that ρ(k) < 1, where ρ(k)
is the spectral radius of k. Later on, by omitting the assumption of normality, Xu and Radenović [11]
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extended the results of Liu and Xu [10]. A survey regarding cone metric spaces, which presents
the results obtained after 2007, was published by Aleksić et al. [12]. In this paper, we replace the
Banach algebra by a topological module over a topological ordered ring. The Lipschitz constant will
be considered as a summable element of the ring, with some additional properties.

2. Methods

In the following, we recall some facts related to properties and examples of topological ordered
rings and topological modules. More details can be found, for instance, in Arnautov et al. [13],
Steinberg [14], and Warner [15].

Definition 1. Let us consider (G,+) a group and � a partial order on G. G is called a partially ordered group
if translations in G are order preserving:

x � y implies a + x + b � a + y + b, for all x, y, a, b ∈ G. (3)

Definition 2. Let (R,+, ·) be a ring with identity 1 such that 1 6= 0 and let � be a partial order on R. R is
called a partially ordered ring if:

(R1) (R,+) is a partially ordered group;
(R2) 0 � a and 0 � b implies 0 � a · b, for all a, b ∈ R.

The positive cone of R is R+ = {r ∈ R | 0 � r}. The set of invertible elements of R will be denoted
by U(R) and U(R) ∩ R+ will be denoted by U+(R).

Example 1. The ringMn×n(R) endowed with the partial order �Mn×n(R), defined by

A �Mn×n(R) B if and only if aij ≤ bij for each i, j = 1, n,

is a partial ordered ring.

Example 2. Let (A,�) be a partial ordered ring and let S be a nonempty set. The ring AS of A-valued functions
on S can be ordered. A partial order on AS can be defined as follows:

f � g if and only if f (s) ≤ g(s) for all s ∈ S.

The above order can be contracted to any subring of AS, e.g., the ring of continuous real valued functions
on a topological space or, also, the ring R[X1, X2, · · · , Xn] of polynomials functions.

Definition 3. Let (G,+) be an abelian group. G is called a topological group if G is endowed with a topology
G and the following conditions are satisfied:

(AC) the mapping G × G 3 (g1, g2) 7→ g1 + g2 ∈ G is continuous, where G × G is considered with the
product topology;

(AIC) the mapping G 3 g 7→ −g ∈ G is continuous.

We denote (G,+,G) or more simply (G,G) the topological group.

Definition 4. A ring (R,+, ·) is called a topological ring if R is endowed with a topology R such that the
additive group of the ring R becomes a topological group and the following condition is valid:

(MC) the mapping R× R 3 (r1, r2) 7→ r1 · r2 ∈ R is continuous, where R× R is considered with respect to
the product topology.

IfR is a Hausdorff topology, then (R,+, ·,R) is called a Hausdorff topological ring. We denote (R,+, ·,R)
or more simple (R,R) the topological ring.
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In order to give an example of a topological ring, we need the definition of the norm on a ring.

Definition 5. A function N from a ring (R,+, ·) to R+ is a norm if the following conditions hold for every
x, y ∈ R:

(N1) N(0R) = 0;
(N2) N(x + y) ≤ N(x) + N(y);
(N3) N(−x) = N(x);
(N4) N(x · y) ≤ N(x) · N(y);
(N5) N(x) = 0 only if x = 0R.

Example 3. The application

N : Mn×n(R)→ R, N(A) = max
i=1,n

n

∑
j=1
|aij|

is a norm which generates a ring topology on Mn×n(R).

Proof. The ring topology is generated by the metric d defined by d(x, y) = N(x− y) for all x, y ∈ R.

Remark 1. ([15] (p. 4)) The Cartesian product of a family (Ri,Ri)i∈I of topological rings, together with the
product topology, is a topological ring.

Remark 2. Let (Ri,Ri)i∈I be a family of topological rings, R = ∏
i∈I

Ri the Cartesian product endowed with the

product topologyR, r ∈ R, and (rn)n∈N a sequence in R. Then, rn
R→ r if and only if pri(rn)

Ri→ pri(r) for all
i ∈ I. Here, pri : R→ Ri is the canonical projection.

Proof. ⇒ Suppose that rn
R→ r. Then, pri(rn)

Ri→ pri(r) for all i ∈ I, since pri are continuous.

⇐ Suppose that pri(rn)
Ri→ pri(r) for all i ∈ I and let be V an open neighborhood of r inR. Then,

there is a finite set F ⊆ I and the open sets Vi ⊆ Ri, i ∈ I, such that Vi = Ri for every i ∈ I \ F and
r ∈ ∏

i∈I
Vi ⊆ V. For each i ∈ F, there is Ni ∈ N such that pri(rn) ∈ Vi whenever n ≥ Ni. Let N = max

i∈F
Ni.

Then, for each n ≥ N, we have pri(rn) ∈ Vi, i ∈ I, and hence rn ∈ ∏
i∈I

Vi ⊆ V. Thus, rn
R→ r.

Definition 6. Let (R,R) be a topological ring. A left R-module (E,+, ·) is called a topological R-module
if, on E, a topology E is specified such that the additive group (E,+) is a topological abelian group and the
following condition is satisfied:

(RMC) R× E 3 (r, x) 7→ r · x ∈ E is continuous,

where R× E is considered with respect to the product topologyR× E . We denote (E,+, ·, E) or more simply
(E, E) a topological left R-module.

Remark 3. ([15] (p. 17)) The Cartesian product of a family (Ei, Ei)i∈I of topological left R-modules,
endowed with the product topology, is a topological left R-module.

In a way similar to the proof of Remark 2, we can prove the following:

Remark 4. Let (Ei, Ei)i∈I be a family of topological left R-modules, E = ∏
i∈I

Ei, the Cartesian product endowed

with the product topology E , x ∈ E an element, and (xn)n∈N a sequence in E. Then, xn
E→ x if and only if

pri(xn)
Ei→ pri(x) for all i ∈ I, where pri : E→ Ei is the canonical projection.
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Definition 7. Let (E,+, ·, E) be a topological R-module. A subset P of E is called a cone if:

(P1) P is nonempty, closed and P 6= {0E};
(P2) a, b ∈ R+ and x, y ∈ P implies a · x + b · y ∈ P;
(P3) P ∩−P = {0E}.

P is called a solid cone if intP 6= ∅, where intP denotes the interior of P.

For a given cone P ⊂ E, let define on E the partial ordering ≤P with respect to P by

x ≤P y if and only if y− x ∈ P. (4)

We shall write x <P y to indicate that x ≤P y but x 6= y, while x � y will stand for y− x ∈ intP.
Let us consider the following hypotheses:

Hypothesis 1 (H1). (R,⊕,�,R) is a topological Hausdorff ring such that:

(i) U+(R) 6= ∅;
(ii) 0R is an accumulation point of U+(R);

(iii) there is a partial order on R, denoted by �R;

Hypothesis 2 (H2). (E,+, ·, E) is a topological left R-module;

Hypothesis 3 (H3). P ⊂ E is a solid cone of E.

Proposition 1. Let us consider (E,+, ·, E) a topological left R-module and P ⊂ E such that the Hypotheses
H1, H2, and H3 are fulfilled. Then:

(i) intP + intP ⊆ intP;
(ii) λ� intP ⊆ intP, where λ ∈ U+(R);
(iii) if x ≤P y and α ∈ R+, then α� x ≤P α� y;
(iv) if u ≤P v and v� w, then u� w;
(v) if u� v and v ≤P w, then u� w;
(vi) if u� v and v� w, then u� w;
(vii) if 0E ≤P u� c for every c ∈ intP, then u = 0;
(viii) if 0E � c and (an)n∈N is a sequence in E such that an → 0E, then there exists n0 ∈ N such that an � c

for all n ≥ n0.

Proof. (i) Let be x ∈ intP + intP. Then, there exist x1, x2 ∈ intP such that x = x1 + x2. It follows that
there exist the neighborhoods V1, V2 of x1, x2, respectively, such that x1 ∈ V1 ⊂ P and x2 ∈ V2 ⊂ P.
Since, for every x0 ∈ E, the mapping x 7→ x + x0 is a homeomorphism of E into itself, it follows that
V1 + V2 is a neighborhood of x with respect to the topology E . Thus, x ∈ intP.

(ii) Choose λ ∈ U+(R) and put x = λ� c, c ∈ intP. It follows that there exists a neighborhood
V of c such that c ∈ V ⊂ P. Therefore, x ∈ λ� V ⊂ λ� P ⊂ P. Since the mapping x → λ� x is a
homeomorphism of E onto itself, λ�V is a neighborhood of x. Thus, x ∈ intP.

(iii) If x ≤P y, then y − x ∈ P. It follows that, for all α ∈ R+, we have α � (y − x) ∈ P, i.e.,
α� x ≤P α� y.

(iv) We have to prove that w− u ∈ intP if v− u ∈ P and w− v ∈ intP. However, there exists a
neighborhood V of 0E such that w− v + V ⊂ P. It follows that w− u + V = (w− v) + V + (v− u) ⊂
P + P ⊂ P. Hence, w− u ∈ int P.

(v) Analogous with (iv).
(vi) Follows from (i).
(vii) Let us consider c ∈ intP. Since 0R is an accumulation point of U+(R), it follows that there

exists a sequence (αn)n∈N ∈ U+(R), αn 6= 0R, such that αn → 0R. From (ii), we get αn � c ∈ intP.
Therefore, αn � c− u ∈ intP, so lim

n→+∞
(αn � c− u) = −u ∈ P = P. Thus, u ∈ P ∩−P = {0E}.
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(viii) Let 0E � c and (an)n∈N ⊂ E such that an
E→ 0E. Then, there exists a symmetric

neighborhood U of 0E such that c + U ⊂ P. Since an converges to 0E, it follows that there exists
n0 ∈ N such that an ∈ U for all n ≥ n0. Then, we have c− an ∈ c + U ⊂ P for all n ≥ n0. Finally,
an � c for all n ≥ n0.

In the sequel, we provide some notions and results related to the sequences defined in a topological
ring. We define the convergence and the Cauchy property of a sequence defined in a topological ring.
Next, we define the summability of a family of elements from a topological ring. The summability is
used in order to introduce the Lipschitz constant of mappings defined on a cone metric space over a
topological left module. Furthermore, (R,+, ·,R) denotes a Hausdorff topological ring.

Definition 8. By a directed set, we understand a partially ordered set (Γ,≤) that satisfies the
following condition:

(D) for every γ1, γ2 ∈ Γ, there is γ3 ∈ Γ such that γ1 ≤ γ3 and γ2 ≤ γ3.

Definition 9. A sequence in R is a family of elements (xγ)γ∈Γ ⊂ R indexed by a directed set.

Definition 10. The sequence (xγ)γ∈Γ ⊂ R converges to x ∈ R if for every neighborhood V of x there is γ0 ∈ Γ
such that xγ ∈ V for each γ ∈ Γ with γ0 ≤ γ.

Definition 11. The sequence (xγ)γ∈Γ ⊂ R is called a Cauchy sequence if for every neighborhood V of 0R there
is γ0 ∈ Γ such that xγ1 − xγ2 ∈ V for all γ0 ≤ γ1 and γ0 ≤ γ2.

Remark 5. Each convergent sequence (xγ)γ∈Γ ⊂ R is a Cauchy sequence.

Proof. Let V be a neighborhood of 0R. Then, there exists a symmetric neighborhood W of 0R such that

W + W ⊆ V. Since xγ
R→ x ∈ R, it follows that there is γ0 ∈ Γ such that xγ ∈ x + W for all γ0 ≤ γ.

Then, for γ0 ≤ γ1 and γ0 ≤ γ2, we have xγ1 − xγ2 ∈ (x +W) + (−(x +W)) = W −W = W +W ⊆ V.
Therefore, (xγ)γ∈Γ is a Cauchy sequence.

In order to define the sumability of a family of elements from a topological ring, we consider the
set F (Γ) of all finite subsets of Γ directed by inclusion ⊆.

Definition 12. An element s ∈ R is the sum of a family (xγ)γ∈Γ ⊂ R if the sequence (sJ)J∈F (Γ) converges to
s, where for every J ∈ F (Γ),

sJ = ∑
γ∈J

xγ.

The family (xγ)γ∈Γ is summable if it has a sum s ∈ R.

Definition 13. A family (xγ)γ∈Γ ⊂ R satisfies the Cauchy condition if for every neighborhood V of 0R there is
JV ∈ F (Γ) such that

∑
γ∈K

xγ ∈ V,

for every K ∈ F (Γ) disjoint with JV .

Remark 6. A family (xγ)γ∈Γ ⊂ R satisfies the Cauchy condition if and only if (sJ)J∈F (Γ) is a Cauchy sequence.

Proof. Let V be a neighborhood of 0R and let W be a symmetric neighborhood of 0R such that
W + W ⊆ V.
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Let us suppose that (xγ)γ∈Γ ⊂ R satisfies the Cauchy condition. Then, there exists JW ∈ F (Γ)
such that for every K ∈ F (Γ) disjoint with JW we have sK = ∑

γ∈K
xγ ∈ W. Let J1, J2 ∈ F (Γ) be such

that JW ⊆ J1 and JW ⊆ J2. Then,

sJ1 − sJ2 = (sJ1 − sJW )− (sJ2 − sJW ) = sJ1\JW
− sJ2\JW

∈W + W ⊆ V.

Therefore, (sJ)J∈F (Γ) is a Cauchy sequence.
Conversely, we assume that (sJ)J∈F (Γ) is a Cauchy sequence. Then, for every neighborhood V

of 0R, there is JW ∈ F (Γ) such that sJ1 − sJ2 ∈ V for all J1, J2 ∈ F (Γ) with JW ⊆ J1 and JW ⊆ J2.
Let K ∈ F (Γ) be disjoint with JW . Then,

sK = sK∪JW − sJW ∈ V.

Therefore, (xγ)γ∈Γ satisfies the Cauchy condition.

Remark 7. Let (xγ)γ∈Γ be a summable family in R. Then, for every neighborhood V of 0R, there is K ∈ F (Γ)
such that xγ ∈ V for all γ ∈ Γ \ K.

Proof. Let V be a neighborhood of 0R. Since (xγ)γ∈Γ is a summable family, it follows that (sJ)J∈F (Γ)
converges. Then, via Remark 5, we find that (sJ)J∈F (Γ) is a Cauchy sequence. Remark 6 implies that
(sJ)J∈F (Γ) satisfies the Cauchy condition. Thus, there exists K ∈ F (Γ) such that xγ ∈ V whenever
{γ} ∩ K = ∅, that is, γ ∈ Γ \ K.

Definition 14. Let (G,+,G) be a topological group.

(a) A filter F = (Fγ)γ∈Γ is called a Cauchy filter if for any neighborhood V of 0R there exists Fγ ∈ F such
that Fγ − Fγ ⊆ V;

(b) G is called complete if any Cauchy filter F of G has its limit in G.

Definition 15. A topological ring (R,+, ·,R) is called complete if the topological additive group of the ring
(R,+,R) is complete.

Remark 8. ([15]) If R is a complete Hausdorff topological ring and the open additive subgroups constitute
fundamental systems of neighborhoods of 0R, then the family (xγ)γ∈Γ ⊂ R is summable if and only if for every
neighborhood V of 0R we have xγ ∈ V for all but finitely many γ ∈ Γ.

3. Results

Definition 16. Let us consider X a nonempty set, (E,+, ·, E) a topological left R-module, and suppose that the
mapping d : X× X → E satisfies:

(d1) 0E ≤P d(x, y) for all x, y ∈ X, and d(x, y) = 0E if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤P d(x, z) + d(z, y) for all x, y, z ∈ X.

Then, d is called a cone metric on X and (X, d) is said to be a cone metric space over the topological left
R-module E.

Example 4. Every cone metric space over a Banach algebra is a cone metric space over a topological left module.

Example 5. Let us consider Mn×n(R) as in the examples given in Section 2, Rn as a topological left
Mn×n(R)−module with the standard topology D, PRn = {x ∈ Rn | prk(x) ≥ 0, k = 1, n} and

dRn : Rn ×Rn → Rn,
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dRn(x, y) = (|x1 − y1|, |x2 − y2|, · · · , |xn − yn|).

Then, the following statements are true:

(a) U+(Mn×n(R+)) = {A ∈ Mn×n(R+) | detA 6= 0}, and On is an accumulation point of
U+(Mn×n(R+));

(b) PRn is a solid cone, with intPRn = {(x1, x2, · · · , xn) ∈ Rn | xi > 0, i = 1, n};
(c) (Rn, d) is a cone metric space over the topological left Mn×n(R)−module Rn.

Proof. (a) Since the sequence Ak = 1
k · Un ∈ U+(Mn×n(R+)), where Un is the unit matrix of

Mn×n(R+), converges to On, we find that On is an accumulation point of U+(Mn×n(R+)).
Using the operations on coordinates, the statements (b) and (c) are easy to check.

Example 6. Let us consider Rn as in the previous example, I an uncountable set, R = ∏
i∈I

Mn×n(R),

E = ∏
i∈I

Rn endowed with the product topology, and:

(A, B) 3 R× R 7→ A⊕R B
de f
= (pri(A) + pri(B))i∈I ,

(A, B) 3 R× R 7→ A�R B
de f
= (pri(A) · pri(B))i∈I ,

(x, y) 3 E× E 7→ x⊕E y
de f
= (pri(x) + pri(y))i∈I ,

(A, x) 3 R× E 7→ A�E x
de f
= (pri(A) · pri(x))i∈I ,

A �R B i f and only i f pri(A) �Mn×n(R) pri(B) f or all i ∈ I.

Then, the following properties are valid:

(a) R endowed with the product topology is a topological ring;
(b) U+(R) = {A ∈ R | det(pri(A)) 6= 0, f or all i ∈ I}, and OR = ∏

i∈I
On, On being the null matrix of

Mn×n(R), is an accumulation point of U+(R);
(c) E endowed with the product topology is a non-metrizable topological left R-module;
(d) the set PE = {x ∈ E | 0Rn ≤PRn pri(x), f or all i = 1, n} is a solid cone in E;
(e) the map dE : E× E→ E, defined by

dE(x, y) = (dRn(pri(x), pri(y)))i∈I f or all x, y ∈ E,

is a cone metric over the topological left R-module E.

Proof. (a) Follows from Remark 1.
(b) Let A ∈ R. Then,

A ∈ U+(R) if and only if (∃)A′ ∈ R such that A�R A′ = ∏
i∈I

Un,

which is equivalent to
pri(A) ∈ U+(Mn×n(R)) for all i ∈ I,

i.e.,
det(pri(A)) 6= 0 for all i ∈ I,

where Un means the unit matrix from Mn×n(R). Since the sequence ∏
i∈I

1
k ·Un converges to OR with

respect to the product topology, it follows that OR is an accumulation point of U+(R).
(c) It follows from Remark 3 taking into account that I is an uncountable set.
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(d) We first check that PE verifies the conditions from Definition 7.
(P1) Since PRn is a cone, it follows that PRn is a nonempty and closed set. Then, there exists

x ∈ PRn so that ∏
i∈I

x ∈ PE and PE 6= ∅. Let us consider a sequence (xn)n∈N ⊂ PE such that xn → x in

the product topology, hence pri(xn)→ pri(x) for all i ∈ I. Since pri(xn) ∈ PRn belongs to the cone PRn ,
we find that pri(x) ∈ PRn for all i ∈ I. Therefore, x ∈ PE, which means that PE is closed.

(P2) Let A, B ∈ R such that OR �R A, OR �R B, and x, y ∈ PE. Since pri(A) · pri(x) + pri(B) ·
pri(y) ∈ PRn for all i ∈ I, we get A�E x⊕E B�E y ∈ PE.

(P3) Choose x ∈ PE ∩ −PE. Then, for each i ∈ I, we have pri(x) ∈ PRn ∩ −PRn = {0Rn},
thus x = 0E.

Next, we prove that intPE 6= ∅. As PRn is a solid cone, there exists x ∈ PRn and (xk)k∈N ⊂ PRn ,
xk 6= x, such that xk → x. Then, from Remark 4, the sequence ∏

i∈I
xk converges in the product topology

to ∏
i∈I

x. This means that ∏
i∈I

x ∈ intPE.

(e) In order to show that dE is a cone metric, we will check the conditions from Definition 16.
(d1) Consider x, y ∈ E. Then,

dE(x, y) = 0E if and only if dRn(pri(x), pri(y)) = 0Rn for all i ∈ I,

which is equivalent to
x = y.

(d2) dRn(pri(x), pri(y)) = dRn(pri(y), pri(x)) implies

dE(x, y) = dE(y, x) for all x, y ∈ E.

(d3) Let x, y, z ∈ E. Since, for all i ∈ I,

dRn(pri(x), pri(y)) ≤PRn dRn(pri(x), pri(z)) + dRn(pri(z), pri(y)),

we get
dE(x, y) ≤PE dE(x, z)⊕E dE(z, y).

Definition 17. Let us consider (X, d) a cone metric space over the topological left R-module E, x ∈ X an
element and (xn)n∈N ⊂ X a sequence. We say that:

(i) the sequence (xn)n∈N ⊂ X converges to x, and we denote by lim
n→+∞

xn = x, if, for every 0� c, there exists

N ∈ N such that d(xn, x)� c for all n > N;
(ii) the sequence (xn)n∈N ⊂ X is a Cauchy sequence if, for every 0 � c, there exists N ∈ N such that

d(xm, xn)� c for all m, n > N.

The cone metric space (X, d) is called complete if every Cauchy sequence is convergent.

Example 7. Assume that the hypotheses of the Example 5 are fulfilled and

dC([a,b],Rn) : C([a, b],Rn)× C([a, b],Rn)→ Rn,

dC([a,b],Rn)(x, y) = (‖x1 − y1‖∞, ‖x2 − y2‖∞, · · · , ‖xn − yn‖∞).

Then, (C([a, b],Rn), dC([a,b],Rn)) is a complete cone metric space over the topological left
Mn×n(R)−module Rn.

Proof. It is obvious that dC([a,b],Rn) is a cone metric. Next, we will prove that (C([a, b],Rn), dC([a,b],Rn))

is a complete cone metric space. Let ( fk)k∈N ⊂ C([a, b],Rn) be a Cauchy sequence. Then, for each
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c = (c1, c2, · · · , cn) ∈ intPRn , there exists N ∈ N such that dC([a,b],Rn)( fk, fl) � c for all k, l ≥ N.
It follows that (pri ◦ fk)k∈N is a Cauchy sequence in the Banach space (C([a, b],R), ‖ · ‖∞). Therefore,
there is f i ∈ C([a, b],R) such that ‖ f i − pri ◦ fk‖∞ → 0 as k → +∞. Taking f = ( f 1, f 2, · · · , f n) we
find that dC([a,b],Rn)( f , fk)� c for all k ≥ N, i.e., fk converges to f in the cone metric dC([a,b],Rn).

Example 8. Let suppose that the conditions of Example 6 are fulfilled and

d ∏
i∈I

C([a,b],Rn) : ∏
i∈I

C([a, b],Rn)×∏
i∈I

C([a, b],Rn) −→∏
i∈I

Rn,

d ∏
i∈I

C([a,b],Rn)(x, y) = (dC([a,b],Rn)(pri(x), pri(y)))i∈I .

Then, (∏
i∈I

C([a, b],Rn), d ∏
i∈I

C([a,b],Rn)) is a complete cone metric space, which is not metrizable in the

product topology generated by ‖ · ‖∞ on C([a, b],Rn).

Proof. It is obvious that d ∏
i∈I

C([a,b],Rn) is a cone metric, and, since the index set I is uncountable,

we find that ∏
i∈I

C([a, b],Rn) is not metrizable. Next, we will prove that (∏
i∈I

C([a, b],Rn), d ∏
i∈I

C([a,b],Rn))

is a complete metric space. Let ( fk)k∈N ⊂ ∏
i∈I

C([a, b],Rn) be a Cauchy sequence. Then, for every

c ∈ intP∏
i∈I

Rn , there exists N ∈ N such that d ∏
i∈I

C([a,b],Rn)( fk, fl) � c for all k, l ≥ N. It follows that,

for all i ∈ I, (pri ◦ fk)k∈N is a Cauchy sequence in the cone metric space (C([a, b],Rn), dC([a,b],Rn)).

From Example 7, there exists f i ∈ C([a, b],Rn) such that for all i ∈ I we have pri ◦ fk
dC([a,b],Rn)−→ f i as k→

+∞, thus dC([a,b],Rn)(pri( fk), f i)� pri(c) for every i ∈ I. Then, the element f = ∏
i∈I

f i ∈ ∏
i∈I

C([a, b],Rn)

has the property that d ∏
i∈I

C([a,b],Rn)( f , fk) � c for all k ≥ N, i.e. ( fk)k∈N converges to f in the cone

metric d ∏
i∈I

C([a,b],Rn).

Remark 9. Let us consider (X, d) a cone metric space over a topological left R-module E and (xn)n∈N a
sequence in X. If (xn)n∈N converges to x and (xn)n∈N converges to y, then x = y.

Proof. Let us consider 0� c. Then,

d(x, y) ≤P d(x, xn) + d(xn, y)� c + c ∈ intPE.

From Proposition 1 (vii), we get d(x, y) = 0, i.e., x = y.

Furthermore, we obtain several coincidences and common fixed point theorems for Lipschitz
mappings defined on a cone metric space (X, d) over a topological left R-module E. These results are
generalizations of some well known theorems in the recent literature. The last example in this section
will show that our results are applicable on a non-metrizable cone metric space over a topological
left module.

Definition 18. Let f and g be self-maps on a set X. If w = f x = gx for some x ∈ X, then x is called a
coincidence point of f and g, and w is named a point of coincidence of f and g.

Jungck [16] said that a pair of self-mappings are weakly compatible if they commute at their
coincidence points.

Proposition 2. ([16]) Let f and g be weakly compatible self-maps on a set X. If f and g have a unique point of
coincidence w = f x = gx, then w is the unique common fixed point of f and g.
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The main result can be found in the next section

Theorem 1. Let us consider (X, d) a cone metric space over a topological left R-module E such that the
Hypotheses H1, H2 and H3 are fulfilled, the set

S de f .
= {k ∈ R+ | (kn)n∈N is a summable family}

and suppose that the mappings f , g : X → X satisfy:

(i) the range of g contains the range of f and g(X) is a complete subspace of X;
(ii) there exists k ∈ S such that d( f x, f y) ≤P k · d(gx, gy) for all x, y ∈ X.

Then, f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f
and g have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. We choose x1 ∈ X such that f (x0) = g(x1). Continuing this
process, having chosen xn ∈ X, we obtain xn+1 ∈ X such that f (xn) = g(xn+1). Then,

d(gxn+1, gxn) = d( f xn, f xn−1) ≤P k · d(gxn, gxn−1)

≤P k2 · d(gxn−1, gxn−2) ≤P · · · ≤P kn · d(gx1, gx0).

Based on the previous inequality, for all p ≥ 1, we get

d(gxn, gxn+p) ≤P d(gxn, gxn+1) + d(gxn+1, gxn+2) + · · ·+ d(gxn+p−1, gxn+p)

≤P kn · d(gx1, gx0) + kn+1 · d(gx1, gx0) + · · ·+ kn+p−1 · d(gx1, gx0)

≤P (1R + k + · · ·+ kp−1) · kn · d(gx1, gx0) ≤P (
+∞

∑
j=0

kj) · kn · d(gx1, gx0).

From Remark 7, one obtains kn R→ 0R as n → +∞, and taking into account that (kj)j∈N is a
summable family, from the condition (RMC) and Proposition 1 (viii) we find that, for all 0 � c,
there exists N ∈ N such that d(gxn, gxn+p) � c for every n ≥ N and p ≥ 1. Thus, (gxn)n∈N is a
Cauchy sequence. Since g(X) is complete, there exists q ∈ g(X) such that gxn → q as n → +∞.
Consequently, we can find p ∈ X such that gp = q. Furthermore, for each 0� c, there exists n0 ∈ N
such that for all n ≥ n0 we have

d(gxn, f p) = d( f xn−1, f p) ≤P k · d(gxn−1, gp)� k · c ∈ intP.

It follows that gxn → f p as n→ +∞. The uniqueness of the limit implies that f p = gp = q. Next,
we will show that f and g have a unique point of coincidence. For this, we assume that there exists
another point p1 ∈ X such that f p1 = gp1. Therefore, for every c ∈ intP, we have

d(gp1, gp) = d( f p1, f p) ≤P k · d(gp1, gp) = k · d( f p1, f p)

≤P k2 · d(gp1, gp) ≤P · · · ≤P kn · d(gp1, gp)� c,

for all n ≥ N(c). Thus, d(gp1, gp) = 0, i.e., gp1 = gp. From Proposition 2, it follows that f and g have
a unique common fixed point.

Theorem 2. Let us consider (X, d) a cone metric space over a topological left R-module E such that the
Hypotheses H1, H2 and H3 are fulfilled. We suppose that:

(i) the range of g contains the range of f and g(X) is a complete subspace of X;
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(ii) R is complete and the open additive subgroups constitute fundamental systems of neighborhoods of 0R;

(iii) there is k ∈ R+ such that kn R→ 0R as n→ +∞, and d( f x, f y) ≤P k · d(gx, gy) for all x, y ∈ X.

Then, f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f
and g have a unique common fixed point.

Proof. From (iii) and according to Remark 8, we find that (kn)n∈N is a summable family.
The conclusion follows now from Theorem 1.

Corollary 1. Let us consider (X, d) a cone metric space over a topological left R-module E such that the
Hypotheses H1, H2, and H3 are fulfilled, the set

S de f .
= {k ∈ R+ | (kn)n∈N is a summable family}

and we suppose that the mapping f : X → X satisfies:

(i) there exists k ∈ S such that d( f x, f y) ≤P k · d(x, y) for all x, y ∈ X.

Then, f has a unique fixed point in X.

Proof. The conclusion follows from Theorem 1 replacing g with the identity map.

The next corollaries show that our results generalize the main contributions published in the
papers [10,11].

Corollary 2. Let (X, d) be a cone metric space over a Banach algebra E and the mapping f : X → X such that:

(i) there exists k ∈ E such that the spectral radius ρ(k) is less than one;
(ii) d( f x, f y) ≤P k · d(x, y) for all x, y ∈ X.

Then, f has a unique fixed point in X.

Proof. The condition (i) implies that (kn)n∈N is a summable family of R. The conclusion comes from
Corollary 1 taking into account that every Banach algebra is a topological module.

Corollary 3. Let (X, d) be a complete cone metric space over a topological left R-module E and f : X → X be a
mapping. Assume that the following two conditions are satisfied:

(i) R is complete and the open additive subgroups constitute fundamental systems of neighborhoods of 0R;

(ii) there is k ∈ R+ such that kn R→ 0R as n→ +∞, and d( f x, f y) ≤P k · d(x, y) for all x, y ∈ X.

Then, f has a unique fixed point in X.

Proof. Follows from Theorem 2 for g = 1X .

Example 9. Let us consider the following integral equation:

x(t) = f (t) +
t∫

a

K(t, s, x(s))ds, t ∈ [a, b], (5)

such that:

(i) the conditions of the Example 7 are fulfilled;
(ii) x ∈ C([a, b],Rn), f ∈ C([a, b],Rn) and K ∈ C([a, b]× [a, b]×Rn,Rn);
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(iii) there exists A = (aij)i,j=1,n ∈ Mn×n(R) such that the spectral radius ρ(A) < 1 and

|pri ◦ K(t, s, u)− pri ◦ K(t, s, v)| ≤
n

∑
j=1

aij · |prj(u)− prj(v)|,

for all t, s ∈ [a, b], u, v ∈ Rn, i = 1, n.

Then, Equation (5) has a unique solution in the cone metric space (C([a, b],Rn), dC([a,b],Rn)).

Proof. Let us consider

T : (C([a, b],Rn), dC([a,b],Rn)) −→ (C([a, b],Rn), dC([a,b],Rn)),

given by

T(x)(t) = f (t) +
t∫

a

K(t, s, x(s))ds, t ∈ [a, b].

Let x, y ∈ C([a, b],Rn). From the condition (iii), it follows that, for each i = 1, n and every
t ∈ [a, b], we have

|pri ◦ T(x)(t)− pri ◦ T(y)(t)| ≤
t∫

a

|pri ◦ K(t, s, x(s))− pri ◦ K(t, s, y(s))| ≤

≤
n

∑
j=1

aij · ‖prj(x)− prj(y)‖∞ = pri(A · dRn(x, y)).

The previous inequality leads to

‖pri ◦ T(x)− pri ◦ T(y)‖∞ ≤ pri(A · dC([a,b],Rn)(x, y)), for all i = 1, n,

which means that
dC([a,b],Rn)(T(x), T(y)) ≤PRn A · dC([a,b],Rn)(x, y).

Since ρ(A) < 1, we deduce that (An)n∈N is a summable family. The conclusion follows from
Corollary 1.

Example 10. Let us consider the following integral equation:

x(t) = f (t) +
t∫

a

K(t, s, x(s))ds, t ∈ [a, b], (6)

such that:

(i) the hypotheses of Example 8 are fulfilled;
(ii) x ∈ ∏

i∈I
C([a, b],Rn), f ∈ ∏

i∈I
C([a, b],Rn) and K ∈ ∏

i∈I
C([a, b]× [a, b]× ∏

i∈I
Rn,Rn);

(iii) there exists A ∈ ∏
i∈I
Mn×n(R) such that the spectral radius ρ(pri(A)) < 1 and

|prk ◦ pri ◦ K(t, s, u)− prk ◦ pri ◦ K(t, s, v)|

≤
n

∑
l=1

(pri(A))kl · |prl ◦ pri(u)− prl ◦ pri(v)|,

for all t, s ∈ [a, b], u, v ∈ ∏
i∈I

Rn, k = 1, n, i ∈ I.
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Then, Equation (6) has a unique solution in the cone metric space (∏
i∈I

C([a, b], Rn), d ∏
i∈I

C([a,b],Rn)).

Proof. Let us consider

T : (∏
i∈I

C([a, b],Rn), d ∏
i∈I

C([a,b],Rn)) −→ (∏
i∈I

C([a, b],Rn), d ∏
i∈I

C([a,b],Rn)),

defined by

T(x)(t) = f (t) +
t∫

a

K(t, s, x(s))ds, t ∈ [a, b].

Let x, y ∈ ∏
i∈I

C([a, b],Rn). From assumption (iii), it follows that, for every i ∈ I, we have

dC([a,b],Rn)(pri ◦ T(x), pri ◦ T(y)) ≤PRn pri(A) · dC([a,b],Rn)(pri(x), pri(y)).

The previous relation leads to

d ∏
i∈I

C([a,b],Rn)(T(x), T(y)) ≤P ∏
i∈I

Rn A · d ∏
i∈I

C([a,b],Rn)(x, y).

Since ρ(pri(A)) < 1 for every i ∈ I, and taking into account the definition of the relation �R,
we deduce that (An)n∈N is a summable family. The conclusion follows from Corollary 1.

4. Conclusions

This paper introduced the concept of cone metric space over a topological left module and
established some coincidence and common fixed point theorems for self-mappings satisfying a
condition of Lipschitz type. The article proved that the fixed point results in the framework of
cone metric spaces over a topological left module are more powerful than the standard theorems
presented in cone metric spaces over a Banach algebra, whereas some recent results presented in the
literature can be obtained as particular cases of our theorems. The results obtained in this study were
applied to prove the existence and uniqueness of the solution of some integral equations. In addition,
an example that showed that the main results are applicable on a non-metrizable cone metric space
over a topological left module has been given.
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