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Abstract: We introduce three new estimators of the drift parameter of a fractional Ornstein–Uhlenbeck
process. These estimators are based on modifications of the least-squares procedure utilizing
the explicit formula for the process and covariance structure of a fractional Brownian motion.
We demonstrate their advantageous properties in the setting of discrete-time observations with
fixed mesh size, where they outperform the existing estimators. Numerical experiments by Monte
Carlo simulations are conducted to confirm and illustrate theoretical findings. New estimation
techniques can improve calibration of models in the form of linear stochastic differential equations
driven by a fractional Brownian motion, which are used in diverse fields such as biology, neuroscience,
finance and many others.
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1. Introduction

Stochastic models with fractional Brownian motion (fBm) as the noise source have attained
increasing popularity recently. This is because fBm is a continuous Gaussian process, increments of
which are positively, or negatively correlated if Hurst parameter H > 1/2, or H < 1/2, respectively.
If H = 1/2 fBm coincides with classical Brownian motion and its increments are independent.
The ability of fBm to include memory into the noise process makes it possible to build more realistic
models in such diverse fields as biology, neuroscience, hydrology, climatology, finance and many
others. The interested reader may check monographs [1,2], or more recent paper [3] and the references
therein for more information.

Let {B(H)
t }t∈[0,∞) be a fractional Brownian motion with Hurst parameter H defined on an

appropriate probability space {Ω,A, P}. Fractional Ornstein–Uhlenbeck process (fOU) is the unique
solution to the following linear stochastic differential equation

dXt = −λXtdt + σdB(H)
t , X0 = x0 ∈ R, t ≥ 0, (1)

where λ > 0 is a drift parameter (we consider ergodic case only) and σ > 0 is a noise intensity
(or volatility). Recall that solution to Equation (1) can be expressed by the exact analytical formula:

Xt = e−λtx0 +

t∫
0

e−λ(t−u)σdB(H)
u . (2)
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A single realization of the random process {Xt(ω)}t∈[0,∞) for a particular ω ∈ Ω is the model for the
single real-valued trajectory, part of which is observed. Two examples of such trajectories are given in
Figure 1. We assume H > 1/2 throughout this paper so that the fOU exhibits long-range dependence.
For an example of application, see a neuronal model based on fOU described in the recent work [4].

The aim of this paper is to study the problem of estimating drift parameter λ based on an
observation of a single trajectory of a fOU in discrete time instants t = 0, h, . . . , Nh with fixed mesh size
h > 0 and increasing time horizon T = Nh→ ∞ (long-span asymptotics). Estimating drift parameter
of a fOU observed in continuous time has been considered in [5,6], where least-squares estimator (LSE)
and ergodic-type estimator are studied. These have advantageous asymptotic properties, they are
strongly consistent and, if H ≤ 3/4, also asymptotically normal. Ergodic-type estimator is easy to
implement, but it has greater asymptotic variance compared to LSE, requires a priori knowledge of H
and σ and does not provide acceptable results for non-stationary processes with limited time horizon.

A straightforward discretization of the least-squares estimator for a fOU has been introduced and
studied in [7] for H > 1/2 and in [8] for H < 1/2. For the precise formula, see (8). This estimator is
consistent provided that both the time horizon T = Nh→ ∞ and the mesh size h→ 0 (mixed in-fill
and long-span asymptotics). However, it is not consistent when h is fixed and T → ∞. This has led us
to construct and study LSE-type estimators that converge in this long-span setting.

An easy modification of the ergodic-type estimator to discrete-time setting with fixed time step
was given in [9], see (10) for precise formula, and its strong consistency (assuming H ≥ 1/2) and
asymptotic normality (for 1/2 ≤ H < 3/4) when N → ∞ were proved, but with possibly incorrect
technique (as pointed out in [10]). Correct proofs of asymptotic normality for 0 < H ≤ 3/4 and strong
consistency for 0 < H < 1 of this estimator were provided (in more general setup) in [10]. Note that
the use of this discrete ergodic estimator requires the knowledge of parameter σ (in contrast to the
estimators of least-squares type introduced below). Other works related to estimating drift parameter
for discretely observed fOU include [11–13], but this list is by no means complete.

This work contributes to the problem of estimating drift parameter of fOU by introducing
three new LSE-type estimators: least-squares estimator from exact solution, asymptotic least-squares
estimator and conditional least-squares estimator. These estimators are tailored to discrete-time
observations with fixed time step. We provide proofs of their asymptotic properties and identify
situations, in which these new estimators perform better than the already known ones. In particular,
we eliminate the discretization error (the LSE from exact solution), construct strongly consistent
estimators in the long-span regime without assuming in-fill condition (the asymptotic LSE and the
conditional LSE), and eliminate the bias in the least-squares procedure caused by autocorrelation
of the noise term (the conditional LSE). Especially the conditional LSE demonstrates outstanding
performance in all studied scenarios. This suggests that the newly introduced (to our best knowledge)
concept of conditioning in the least-squares procedure applied to the models with fractional noise
provides a powerful framework for parameter estimation in this type of models. The proof of its
strong consistency, presented within this paper, is rather non-trivial and may serve as a starting point
for investigation of similar estimators in possibly different settings. A certain disadvantage of the
conditional LSE is its complicated implementation (involving optimization procedure), which is in
contrast to the other studied estimators.

Let us explain the strength of the conditional least-squares estimator in more detail. Comparison
of the two trajectories in Figure 1 demonstrates the effect of different values of λ on trajectories of
fOU. In particular, it affects the speed of exponential decay in initial non-stationary phase and the
variability in stationary phase. As we illustrate below, the discretized least-squares estimator, cf. (8),
utilizes information about λ from the exponential decay in initial phase, but is not capable to make
use of the information contained in the variability in stationary phase. As a consequence, it is not
consistent (in long-span setting). On the contrary, the ergodic-type estimator, cf. (10), is derived from
the variance of the stationary distribution of the process. It works well for stationary processes (and is
consistent), but leaves idle (and even worse, it is corrupted by) the observation of the process in its
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initial non-stationary phase. In result, neither of these estimators can efficiently estimate drift from
long trajectories with far-from-stationary initial values. This gap is best filled with the conditional
least-squares estimator, cf. (25), which effectively utilizes both information stored in non-stationary
phase and in stationary phase of the observed process. This unique property is demonstrated in Results
and Discussion, where the conditional LSE (denoted by λ̂5) dominates the other estimators.
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Figure 1. Two single trajectories of fOU with different values of λ, where σ = 2, x0 = 20, T = 20,
H = 0.6.

For the three newly introduced estimators the value of the Hurst parameter H is considered
to be known a priori, whereas the knowledge of volatility parameter σ is not required, which is an
advantage of these methods. If H is not known, it can be estimated in advance by some of many
methods, such as methods based on quadratic variations (cf. [14]), sample quantiles or trimmed means
(cf. [15]), or on a wavelet transform (cf. [16]), to name just a few. Another useful works in this direction
include simultaneous estimation of σ and H using the powers of the second order variations (see [17],
Chapter 3.3). The estimates of H (obtained independently from λ) can subsequently be used in the
LSE-type estimators of lambda introduced below in a way similar to [18].

In Section 2, some elements of stochastic calculus with respect to fBm are recalled, stationary
fOU is introduced and precise formulas for two existing drift estimators λ̂1 and λ̂2 are provided.
Section 3 is devoted to construction of a new LSE type estimator (λ̂3) based on exact formula for fOU.
A certain modification of λ̂3 (denoted as λ̂4), which ensures long-span consistency, is introduced in
Section 4. In Section 5, we rewrite the linear model using conditional expectations to overcome the bias
in LSE caused by autocorrelation of the noise. Least-squares method, applied to the conditional model
with explicit formulas for conditional expectations, results in the conditional least-squares estimator
(λ̂5). We prove strong consistency of this estimator. The actual performance of the newly introduced
estimators λ̂3,λ̂4 and λ̂5 as well as its comparison to the already-known λ̂1 and λ̂2, is studied by Monte
Carlo simulations in various scenarios and reported in Section 6. The simulated trajectories have been
obtained in software R with YUIMA package (see [19]). Section 7 summarizes key points of the article
and provides possible future extensions.

2. Preliminaries

For reader’s convenience we briefly review the basic concepts from theory of stochastic models
with fractional noise in this section, including definition of fBm, Wiener integral of deterministic
functions w.r.t. fBm and stationary fOU. This exposition follows [2,20]. For further reading, see also
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the monograph [1]. In the end of this section, we also recall formulas for discretized LSE and discrete
ergodic estimator.

Fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a centered (zero-mean)
continuous Gaussian process {B(H)

t }t∈[0,∞) starting from zero (B(H)
0 = 0 and having the following

covariance structure

E
(

B(H)
s B(H)

t

)
=

1
2

(
s2H + t2H − |s− t|2H

)
, s, t ≥ 0.

Note that for the purpose of construction of the stationary fOU, we need a two-sided fBm
{B(H)

t }t∈R with t ranging over the whole R. In this case we have

E
(

B(H)
s B(H)

t

)
=

1
2

(
|s|2H + |t|2H − |s− t|2H

)
, s, t ∈ R.

As a consequence, the increments of fBm are negatively correlated for H < 1/2, independent for
H = 1/2 and positively correlated for H > 1/2.

Consider a two-sided fBm with H > 1/2 and define Wiener integral of a deterministic step
function with respect to the fBm by formula

∫
R

N

∑
i=1

αi I[ti ,ti+1]
(s)dB(H)

s =
N

∑
i=1

αi

(
B(H)

ti+1
− B(H)

ti

)
for any positive integer N, real-valued coefficients α1, . . . αN ∈ R and a partition −∞ < t1 ≤ . . . ≤
tN+1 < ∞. This definition constitutes the following isometry for any pair of deterministic step
functions f and g

E

∫
R

f (t)dB(H)
t

∫
R

g(s)dB(H)
s

 =
∫∫
R2

f (t)g(s)ϕ(t, s)dtds = 〈 f , g〉H , (3)

where ϕ(t, s) = H(2H − 1)|t− s|2H−2. Using this isometry, we can extend the definition of the Wiener
integral w.r.t. fBm to all elements of the space L2

H(R), defined as the completions of the space of
deterministic step functions w.r.t. the scalar product 〈., .〉H defined above. In result, the formula (3)
holds true for any f , g ∈ L2

H(R), see also [21]. We will frequently use this formula in what follows,
mainly to calculate the covariances of Wiener integrals.

Let {B(H)
t }t∈R be again a two-sided fBm with H > 1/2. Define

Z0 =
∫ 0

−∞
e−λ(0−u)σdB(H)

u ,

and denote by {Zt}t∈[0,∞) the solution to (1) with initial condition Z0 in the sense that it satisfies

dZt = −λZtdt + σdB(H)
t .

This process is referred to as the stationary fOU and it can be expressed as

Zt =
∫ t

−∞
e−λ(t−u)σdB(H)

u , t ≥ 0.

Note that the stationary fOU is an ergodic stationary Gaussian process (its autocorrelation function
vanishes at infinity).
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Consider now a stationary fOU {Zt}t∈[0,∞) observed at discrete time instants t = 0, h, 2h, . . . .
The ergodicity and the formula for the second moment of stationary fOU (see e.g., [20]) imply

1
N

N−1

∑
n=0

Z2
nh

N→∞−→ EZ2
0 =

σ2

λ2H HΓ(2H) a.s. (4)

Analogously,
1
N

N−1

∑
n=0

ZnhZ(n+1)h
N→∞−→ EZ0Zh a.s., (5)

and the expectation can be calculated using (3) and the change-of-variables formula

EZ0Zh = EZ0(e−λhZ0 +

h∫
0

e−λ(h−u)σdB(H)
u )

= e−λh σ2

λ2H HΓ(2H) +
∫ h

0

∫ 0

−∞
e−λ(h−u)e−λ(0−v)σ2(u− v)2H−2H(2H − 1)dvdu

= e−λh σ2

λ2H HΓ(2H)

[
1 +

2H − 1
Γ(2H)

∫ λh

0

∫ 0

−∞
er+s(r− s)2H−2dsdr

]
.

(6)

The rest of this section is devoted to the two popular estimators of the drift parameter of fOU
observed at discrete time instants described in Introduction—the discretized LSE and the discrete
ergodic estimator. Start with the former. Consider a straightforward discrete approximation of the
Equation (1):

Xn+h − Xn ≈ −λXnh + σ(B(H)
n+h − B(H)

n ). (7)

Application of the standard least-squares procedure to the linear approximation above provides
the discretized LSE studied in [7,8], which takes the form

λ̂1 = −1
h
(FN − 1) , (8)

where h is the mesh size (time step) and

FN =

N−1
∑

n=0
XnhX(n+1)h

N−1
∑

n=0
X2

nh

, (9)

with Xnh and X(n+1)h being the observations at adjacent time instants t = nh and t = (n + 1)h
respectively, of the process Xt defined by (1) or (2). Note that having λ̂1 expressed in term of FN
simplifies its comparison with the estimators newly constructed in this paper. Recall that for consistency
of λ̂1 mixed in-fill and long-span asymptotics is required due to the approximation error in (7).

The discrete ergodic estimator is derived from asymptotic behavior of the (stationary) fOU.
Recall the convergence in (4). Rearranging the terms provides an asymptotic formula for drift
parameter λ expressed in terms of the limit of the second sample moment of the stationary fOU.
Substituting the stationary fOU by the observed fOU Xh, X2h, ...XNh in the asymptotic formula results
in the discrete ergodic estimator:

λ̂2 =

(
1

Nσ2HΓ(2H)

N

∑
i=1

Xih

)− 1
2H

, (10)
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which was studied in [9,10]. Recall that this estimator is strongly consistent in the long span regime
(no in-fill condition needed), however, it heavily builds upon the asymptotic (stationary) behavior
of the process and fails for processes with non-stationary initial phase (as illustrated by numerical
experiments below).

3. Least-Squares Estimator from Exact Solution

Since the estimator λ̂1 obtained from naive discretization of (1) provides reasonable
approximations only for non-stationary solutions with short time horizon and small time step h > 0
(as seen from numerical simulations below), we eliminate discretization error by considering exact
analytical formula for Xt, see (2), and corresponding exact discrete formula for Xt+h,

Xt+h = βXt + ξt, (11)

where

β = e−λh, and ξt =

t+h∫
t

e−λ(t+h−u)σdB(H)
u .

The least-squares estimator for β w.r.t. linear model (11) is given by β̂ = FN , cf. (9), and the
estimator for λ can be defined as

λ̂3 = −1
h

log FN . (12)

Numerical simulations show that λ̂3 works well for non-stationary solutions and short time
horizon (T = 10 in simulations). The results for H = 0.6 are presented in Figure 2. Simulation results
for H ∈ {0.75, 0.9} are similar.

●

λ1 λ2 λ3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 2. Comparison of λ̂1, λ̂2 and λ̂3 for 100 trajectories, where H = 0.6, x0 = 100, T = 10, h = 0.1,
σ = 2; the horizontal line shows the true value of the estimated parameter λ = 0.5.

On the other hand, estimator λ̂3 does not provide good results for observations with long time
horizon (T = 1000 in simulations) since λ̂3 is not consistent if N → ∞ and h > 0 is fixed. The reason
is that ξt and Xt in (11) are correlated. In fact, we can calculate the almost sure limit of λ̂3 exactly.
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The limit is provided in Theorem 1. Its proof uses the following simple lemma (see [22]) to show the
diminishing effect of the initial condition on limiting behaviour of sample averages. It is later used in
the proof of Lemma 3 as well.

Lemma 1. Consider real-valued sequences (an)∞
n=1 and (bn)∞

n=1 such that

1
N

N

∑
n=1
|bn|

N→∞−→ K < ∞, and an
n→∞−→ 0.

Then 1
N ∑N

n=1 anbn
N→∞−→ 0.

Theorem 1. Let h > 0 be fixed and define f : (0, ∞)→ R by

f (x) = e−x

1 +
2H − 1
Γ(2H)

x∫
0

 0∫
−∞

eser(r− s)2H−2ds

dr

 . (13)

Then

lim
N→∞

λ̂3 = −1
h

log f (λh) almost surely. (14)

In particular, lim
N→∞

λ̂3 < λ.

Proof. Recall the asymptotic behavior of a stationary fOU described in formulas (4)–(6).
Since the effect of the initial condition vanishes at infinity, the limit behaviour of the non-stationary

solution (Xnh)
∞
n=0 is same. Indeed,

1
N

N−1

∑
n=0

XnhX(n+1)h − ZnhZ(n+1)h =
1
N

N−1

∑
n=0

(Xnh − Znh)X(n+1)h +
1
N

N−1

∑
n=0

(X(n+1)h − Z(n+1)h)Znh.

The convergence of the first summand to zero follows from the facts that

(Xnh − Znh)
n→∞−→ 0 a.s.,

1
N

N−1

∑
n=0

X(n+1)h
N→∞−→ 0 a.s.

and Lemma 1. Similar argument guarantees convergence of the second summand to zero as well.
The convergence

1
N

N−1

∑
n=0

X2
nh − Z2

nh
N→∞−→ 0

can be shown correspondingly. In result, we obtain the almost sure convergence

N−1
∑

n=0
XnhX(n+1)h

N−1
∑

n=0
X2

nh

N→∞−→ e−λh
[

1 +
2H − 1
Γ(2H)

∫ λh

0

∫ 0

−∞
er+s(r− s)2H−2dsdr

]
= f (λh). (15)

The claim follows immediately from definition of λ̂3.
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Remark 1. Note that the convergence in (14) holds true also for H = 1/2 (the double integral in f disappears)
and for H < 1/2 (utilizing the fact that a relation analogous to (3) is true even for H < 1/2, if the two domains
of integration are disjoint). Consequently

lim
N→∞

λ̂3 = −1
h

log f (λh)


< λ, H > 1/2,

= λ, H = 1/2,

> λ, H < 1/2.

a.s.

4. Asymptotic Least-Squares Estimator

Our goal in this section is modifying λ̂3 so that it converges to λ when N → ∞ and h > 0 is fixed.
Combination of (12) and (14) yields FN → f (λh) a.s. Thus, we can define the asymptotic least-squares
estimator λ̂4 by relation f (hλ̂4) = FN . Since f is one-to-one (see below), the explicit formula for
λ̂4 reads

λ̂4 =
1
h

f−1(FN). (16)

The following lemma justifies invertibility of f in the definition of λ̂4.

Lemma 2. In our setting H > 1/2 the function f defined by (13) is strictly decreasing on [0, ∞).

Proof. Calculate the derivative

f ′(x) = −e−x

1 +
2H − 1
Γ(2H)

x∫
0

 0∫
−∞

eser(r− s)2H−2ds

dr

+ e−x

2H − 1
Γ(2H)

 0∫
−∞

esex(x− s)2H−2ds


= e−x 2H − 1

Γ(2H)

 0∫
−∞

esex(x− s)2H−2 −
x∫

0

eser(r− s)2H−2dr

ds− Γ(2H)

2H − 1

 .

Continue with

esex(x− s)2H−2 −
x∫

0

eser(r− s)2H−2dr < (x− s)2H−2es

ex −
x∫

0

erdr

 = (x− s)2H−2es < (−s)2H−2es.

Plug this estimate into the formula for f ′(x) to see

f ′(x) < e−x 2H − 1
Γ(2H)

 0∫
−∞

(−s)2H−2esds− Γ(2H)

2H − 1

 = e−x 2H − 1
Γ(2H)

[Γ(2H − 1)− Γ(2H − 1)] = 0. (17)

Remark 2. Note that f is monotonous also for H = 1/2, but it is not monotonous if H < 1/2, which rules
out the possibility to use estimator λ̂4 in this singular case.

Theorem 2. The asymptotic least-squares estimator λ̂4 is strongly consistent, i.e.,

lim
N→∞

λ̂4 = λ a.s.
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Proof. Recall the definition of λ̂4 in (16) and the limit in (15):

FN
N→∞−→ f (λh) a.s.

Further recall that f : (0, ∞)→ (0, ∞) is differentiable with strictly negative derivative (see (17)).
Thus, f−1 is also differentiable with strictly negative derivative and this implies

lim
N→∞

λ̂4 = lim
N→∞

1
h

f−1(FN) =
1
h

f−1( f (λh)) = λ a.s.

The strongly consistent estimator λ̂4 works well for stationary solutions or observations with
long time horizon (see Figure 3). Moreover it does not require explicit knowledge of σ (in contrast
to λ̂2, which is also strictly consistent). On the other hand it does not provide adequate results for
non-stationary solutions and short time horizon, since the correction function f reflects stationary
behavior of the process (see Figure 4).

λ1 λ2 λ3 λ4

0.
3

0.
4

0.
5

0.
6

Figure 3. Comparison of λ̂1, λ̂2, λ̂3 and λ̂4 for 100 trajectories, where H = 0.6, x0 = 0, T = 1000, h = 1,
σ = 2; the horizontal line shows the true value of the estimated parameter λ = 0.5.
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Figure 4. Comparison of λ̂1, λ̂2, λ̂3 and λ̂4 for 100 trajectories, where H = 0.6, x0 = 100, T = 10,
h = 0.1, σ = 2; the horizontal line shows the true value of the estimated parameter λ = 0.5.

5. Conditional Least-Squares Estimator

Non-stationary trajectories with long time horizon contain a lot of information about λ, which is
encoded mainly in two aspects: speed of decay in initial non-stationary phase and variance in stationary
phase (see Figure 1). However, neither of the estimators λ̂1,λ̂2, λ̂3 or λ̂4 can utilize all the information
effectively. This motivates us to introduce another estimator. Recall that λ̂3 fails to be consistent
because of bias in LSE caused by the correlation between Xt and ξt in Equation (11). To eliminate the
correlation between explanatory variable and noise term in the linear model, we switch to conditional
expectations. Start from the following equation, which defines ηt:

Xt+h = E[Xt+h|Xt] + ηt = EΛ=λ[Xt+h|Xt] + ηt, (18)

where λ is the true value of the unknown drift parameter and EΛ the (conditional) expectation with
respect to the measure generated by the fOU {Xt}t∈[0,∞) with drift value Λ and initial condition x0.
(Λ stands for an unknown throughout this section). In other words, EΛ[Xt+h|Xt] means the conditional
expectation of Xt+h, conditioned by Xt, where the process X is given by (2) with drift λ = Λ. Hence,
Eλ has the same meaning as E in previous sections.

Obviously Eλ[ηt|Xt] = 0 and, consequently, ct(Xt, Λ) = EΛ[Xt+h|Xt] and ηt are uncorrelated.
Indeed,

Eλ

(
(ct(Xt, Λ)− Eλ[ct(Xt, Λ)])ηt

)
= Eλ

(
Eλ

[
(ct(Xt, Λ)− Eλ[ct(Xt, Λ)])ηt|Xt

])
= Eλ

(
(ct(Xt, Λ)− Eλ[ct(Xt, Λ)])Eλ

[
ηt|Xt

])
= 0.

In result, we apply the least-squares technique to Equation (18), where λ is to be estimated,
i.e., we would like to minimize

min
Λ

N−1

∑
n=0

(
X(n+1)h − EΛ[X(n+1)h|Xnh]

)2
.
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To calculate ct(Xt, Λ) = EΛ[Xt+h|Xt] explicitly, use (11) and obtain

EΛ[Xt+h|Xt] = e−ΛhXt + EΛ[ξt|Xt]. (19)

Note that random vector (ξt, Xt) has 2-dimensional normal distribution (dependent on
parameter Λ) [

ξt

Xt

]
∼ N

([
0

e−Λtx0

]
,

[
σ2

ξ (Λ) σξ,X(Λ)

σξ,X(Λ) σ2
X(Λ)

])
,

and we can use explicit expression for its conditional expectation to write

EΛ[ξt|Xt] =
(

Xt − e−Λtx0

) σξ,X(Λ)

σ2
X(Λ)

. (20)

With respect to the exact formula for Xt given by (2) and relation (3) we get

σ2
X(Λ) = σ2H(2H − 1)

t∫
0

t∫
0

eΛ(u−t)eΛ(v−t)|u− v|2H−2dvdu

=
σ2H(2H − 1)

Λ2H

0∫
−Λt

0∫
−Λt

eres|r− s|2H−2dsdr,

where we used change-of-variable formula in the last step. Analogously

σξ,X(Λ) = σ2H(2H − 1)
t+h∫
t

 t∫
0

eΛ(u−t−h)eΛ(v−t)(u− v)2H−2dv

du

=
σ2H(2H − 1)

Λ2H e−Λh
Λh∫
0

 0∫
−Λt

eres(r− s)2H−2ds

dr.

Using the expressions for σξ,X(Λ) and σ2
X(Λ) in (20) we obtain

EΛ[ξt|Xt] =
(

Xt − e−Λtx0

)
e−Λh

Λh∫
0

(
0∫
−Λt

eres(r− s)2H−2ds

)
dr

0∫
−Λt

0∫
−Λt

eres|r− s|2H−2dsdr
. (21)

Combining formula (21) with (19) yields

EΛ[Xt+h|Xt] = ct(Xt, Λ) = Xt AΛt,Λh − BΛt,Λh,

with

Aτ,x = e−x

1 +

x∫
0

(
0∫
−τ

eres(r− s)2H−2ds

)
dr

0∫
−τ

0∫
−τ

eres|r− s|2H−2dsdr

 , (22)
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and

Bτ,x = e−τe−xx0

x∫
0

(
0∫
−τ

eres(r− s)2H−2ds

)
dr

0∫
−τ

0∫
−τ

eres|r− s|2H−2dsdr
. (23)

We can thus reformulate the Equation (18) for the observed process X as the following model
(linear in Xt, but non-linear in Λ):

Xt+h =

[
Xt AΛt,Λh − BΛt,Λh

]
Λ=λ

+ ηt. (24)

Now we aim to apply the least-squares method to the reformulated model to get the conditional
least-squares estimator λ̂5. To ensure the existence of global minima, we choose a closed interval
[ΛL, ΛU ] ⊂ (0, ∞) and define λ̂5 as the minimizer of sum-of-squares function on this interval:

SN(λ̂5) = min
Λ∈[ΛL ,ΛU ]

{SN(Λ)}, (25)

with criterion function SN defined as

SN(Λ) =
N−1

∑
n=0

[
X(n+1)h − (Xnh AΛnh,Λh − BΛnh,Λh)

]2
, (26)

where we used (24) with t = nh.

Note that SN(Λ) is continuous in Λ and therefore a minimum on the compact interval [ΛL, ΛU ]

exists. Although model (24) is linear in Xt, the coefficients A and B depend on t and that complicates
the numerical minimization of SN .

Remark 3. Let {Zt}t∈[0,∞) be the stationary solution to (1). Then

EΛ[Zt+h|Zt] = Zt A∞,Λh + 0 = Zt f (Λh),

where f is defined in (13) and Λ > 0 is arbitrary. Since the coefficient f (Λh) does not depend on t, it is possible
to calculate LSE for f (λh) explicitly and to construct the estimator of λ by applying f−1. Such estimator
coincides with λ̂4 introduced in previous chapter. Thus λ̂4 can be understood as the special case of conditional
LSE for the stationary solution.

In order to prove strong consistency of the estimator λ̂5 we need to verify uniform convergence
of (1/N)SN(Λ) to a function S∞(Λ) specified below. Let us start with the following proposition on
uniform convergence of Aτ,x and Bτ,x. This proposition will help us in the sequel to investigate limiting
behaviour of the two terms AΛnh,Λh and BΛnh,Λh in the sum-of-squares function SN .

Proposition 1. Consider Aτ,x and Bτ,x defined by (22) and (23), and f defined by (13). Fix arbitrary
0 < xL < xU < ∞. Then

lim
τ→∞

sup
x∈[xL ,xU ]

|Aτ,x − f (x)| = 0, (27)

and
lim

τ→∞
sup

x∈[xL ,xU ]

|Bτ,x| = 0. (28)
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Proof. In order to simplify the notation, denote

I(τ) =
0∫
−τ

0∫
−τ

eres|r− s|2H−2dsdr, J(τ) =
0∫
−τ

es(−s)2H−2ds,

and notice that

I(τ) τ→∞−→ Γ(2H)

2H − 1
= Γ(2H − 1), J(τ) τ→∞−→ Γ(2H − 1).

Begin with (27):

sup
x∈[xL ,xU ]

|Aτ,x − f (x)|

= sup
x∈[xL ,xU ]

e−x

∣∣∣∣∣∣∣∣∣∣

x∫
0

(
0∫
−τ

eres(r− s)2H−2ds

)
dr

0∫
−τ

0∫
−τ

eres|r− s|2H−2dsdr
−

x∫
0

(
0∫
−∞

eser(r− s)2H−2ds

)
dr

Γ(2H − 1)

∣∣∣∣∣∣∣∣∣∣
≤ e−xL sup

x∈[xL ,xU ]

∣∣∣∣∣∣∣∣∣∣

x∫
0

(
0∫
−τ

eres(r− s)2H−2ds

)
dr−

x∫
0

(
0∫
−∞

eser(r− s)2H−2ds

)
dr

I(τ)

∣∣∣∣∣∣∣∣∣∣
+ e−xL sup

x∈[xL ,xU ]

∣∣∣∣∣∣∣∣∣∣
[Γ(2H − 1)− I(τ)]

x∫
0

(
0∫
−∞

eser(r− s)2H−2ds

)
dr

I(τ)Γ(2H − 1)

∣∣∣∣∣∣∣∣∣∣
≤ e−xL

I(τ)

xU∫
0

er

 −τ∫
−∞

es(r− s)2H−2ds

dr

+
e−xL |Γ(2H − 1)− I(τ)|

I(τ)Γ(2H − 1)

xU∫
0

er

 0∫
−∞

es(r− s)2H−2ds

dr

≤ e−xL(Γ(2H − 1)− J(τ))
I(τ)

xU∫
0

erdr +
e−xL |Γ(2H − 1)− I(τ)|

I(τ)

xU∫
0

erdr τ→∞−→ 0.

Similarly

sup
x∈[xL ,xU ]

|Bτ,x| ≤ e−τe−xL x0
J(τ)
I(τ)

xU∫
0

erdr τ→∞−→ 0.

Choose any 0 < ΛL < ΛU < ∞ and recall that h > 0 is fixed. The uniform convergences in (27)
and (28) imply the following convergences uniformly in Λ ∈ [ΛL, ΛU ]:

lim
n→∞

sup
Λ∈[ΛL ,ΛU ]

|AΛnh,Λh − f (Λh)| = 0, (29)

and
lim

n→∞
sup

Λ∈[ΛL ,ΛU ]

|BΛnh,Λh| = 0, (30)
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respectively. Indeed, set xL = ΛLh and xU = ΛUh and fix any ε > 0. There is τ0 > 0 such that for any
τ > τ0,

sup
x∈[xL ,xU ]

|Aτ,x − f (x)| < ε.

If n > τ0
ΛLh , then Λnh > τ0 for any Λ ∈ [ΛL, ΛU]. Consequently

sup
Λ∈[ΛL ,ΛU ]

|AΛnh,Λh − f (Λh)| < ε,

which proves (29). The convergence in (30) can be shown analogously. These uniform convergences
will be helpful in the proof of the following Lemma, which provides uniform convergence of 1

N SN(Λ)

to a limiting function S∞(Λ). This uniform convergence is the key ingredient for the convergence of
the minimizers λ̂5.

Lemma 3. Let f be defined by (13) and let SN(Λ) be defined by (26), where {Xt}t∈[0,∞) is the observed process
with drift value λ. Denote

S∞(Λ) =
σ2

λ2H HΓ(2H)

(
1− 2 f (Λh) f (λh) + f 2(Λh)

)
. (31)

Then

lim
N→∞

sup
Λ∈[ΛL ,ΛU ]

∣∣∣∣ 1
N

SN(Λ)− S∞(Λ)

∣∣∣∣ = 0 a.s. (32)

Proof. First consider the stationary solution {Zt}t∈[0,∞) to (1) corresponding to drift value λ.
Comparison of (6) with (13) yields

EλZ0Zh = f (λh)
σ2

λ2H HΓ(2H).

It enables us to write

S∞(Λ) = EλZ2
0 − 2 f (Λh)EλZ0Zh + f 2(Λh)EλZ2

0

for any Λ > 0, and, consequently

1
N

SN(Λ)− S∞(Λ) =

(
1
N

N−1

∑
n=0

X2
(n+1)h − EλZ2

0

)

− 2
(

1
N

N−1

∑
n=0

AΛnh,ΛhX(n+1)hXnh − f (Λh)EλZ0Zh

)

+

(
1
N

N−1

∑
n=0

X2
nh A2

Λnh,Λh − f 2(Λh)EλZ2
0

)

+

(
1
N

N−1

∑
n=0

BΛnh,Λh

(
2X(n+1)h − 2AΛnh,ΛhXnh + BΛnh,Λh

))
.

(33)

Recall that {Zt}t∈[0,∞) is ergodic and |Zt − Xt| vanishes at infinity. Using Lemma 1 in the same
way as in the proof of Theorem 1 implies

sup
Λ∈[ΛL ,ΛU ]

∣∣∣∣ 1
N

N−1

∑
n=0

X2
(n+1)h − EλZ2

0

∣∣∣∣ N→∞−→ 0 a.s.
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For the second term, write

sup
Λ∈[ΛL ,ΛU ]

∣∣∣∣ 1
N

N−1

∑
n=0

AΛnh,ΛhX(n+1)hXnh − f (Λh)EλZ0Zh

∣∣∣∣
≤ sup

Λ∈[ΛL ,ΛU ]

∣∣∣∣ 1
N

N−1

∑
n=0

(AΛnh,Λh − f (Λh)) X(n+1)hXnh

+
1
N

N−1

∑
n=0

f (Λh)
(

X(n+1)hXnh − EλZ0Zh

)∣∣∣∣
≤ 1

N

N−1

∑
n=0

(
sup

Λ∈[ΛL ,ΛU ]

∣∣AΛnh,Λh − f (Λh)
∣∣) ∣∣∣X(n+1)hXnh

∣∣∣
+

(
sup

Λ∈[ΛL ,ΛU ]

| f (Λh)|
) ∣∣∣∣∣ 1

N

N−1

∑
n=0

X(n+1)hXnh − EλZ0Zh

∣∣∣∣∣ .

Application of Lemma 1, the convergence in (29) and the continuity of f ensure the convergence
with probability one of both summands to zero as N → ∞.

The uniform convergence of the third term can be shown analogously:

sup
Λ∈[ΛL ,ΛU ]

∣∣∣∣ 1
N

N−1

∑
n=0

X2
nh A2

Λnh,Λh − f 2(Λh)EλZ2
0

∣∣∣∣ N→∞−→ 0 a.s.,

where we use

lim
n→∞

sup
Λ∈[ΛL ,ΛU ]

|A2
Λnh,Λh − f 2(Λh)| = 0,

which follows directly from (29) and the continuity of f .

The last term in (33) can be treated similarly:

sup
Λ∈[ΛL ,ΛU ]

∣∣∣∣ 1
N

N−1

∑
n=0

BΛnh,Λh

(
2X(n+1)h − 2AΛnh,ΛhXnh + BΛnh,Λh

)∣∣∣∣ ≤ 1
N

N−1

∑
n=0

(
sup

Λ∈[ΛL ,ΛU ]

|BΛnh,Λh|
)

Cn,

where

Cn = 2|X(n+1)h|+ 2

(
sup

Λ∈[ΛL ,ΛU ]

|AΛnh,Λh − f (Λh)|
)
|Xnh|

+ 2

(
sup

Λ∈[ΛL ,ΛU ]

| f (Λh)|
)
|Xnh|+

(
sup

Λ∈[ΛL ,ΛU ]

|BΛnh,Λh|
)

.

By (30)

sup
Λ∈[ΛL ,ΛU ]

|BΛnh,Λh|
n→∞−→ 0,

and

1
N

N−1

∑
n=0

Cn
N→∞−→ Eλ|Z0|

(
1 + 2 sup

Λ∈[ΛL ,ΛU ]

| f (Λh)|
)

< ∞ a.s.
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Lemma 1 concludes the proof:

1
N

N−1

∑
n=0

(
sup

Λ∈[ΛL ,ΛU ]

|BΛnh,Λh|
)

Cn
N→∞−→ 0 a.s.

Previous considerations lead to the convergence of λ̂5, being the minimizers of 1
N SN(Λ) to the

minimizer of S∞(Λ). Next lemma ensures that this minimizer coincides with the true drift value λ.

Lemma 4. S∞ defined by (31) is continuous on (0, ∞) and λ is the unique minimizer of S∞, i.e.,

S∞(λ) < S∞(Λ) ∀Λ > 0, Λ 6= λ.

Proof. By definition

S∞(Λ) =
σ2

λ2H HΓ(2H)

(
1− 2 f (Λh) f (λh) + f 2(Λh)

)
=

σ2

λ2H HΓ(2H)

(
1− f 2(λh) + f 2(λh)− 2 f (Λh) f (λh) + f 2(Λh)

)
=

σ2

λ2H HΓ(2H)

(
1− f 2(λh) + [ f (λh)− f (Λh)]2

)
.

The claim follows immediately, because f is one-to-one (it is strictly decreasing).
Continuity of S∞ is a direct consequence of the continuity of f .

Now we are in a position to prove the strong consistency of λ̂5.

Theorem 3. Consider bounds 0 < ΛL < ΛU < ∞ so that they cover the true drift λ of the observed solution
{Xt}t∈[0,∞) to Equation (1), i.e., λ ∈ (ΛL, ΛU). Then λ̂5 defined in (25) is strongly consistent, i.e.,

λ̂5
N→∞−→ λ a.s.

Proof. The proof follows standard argumentation from nonlinear regression and utilizes Lemma 3
and Lemma 4. Choose ε > 0 sufficiently small so that [ΛL, ΛU ] \ (λ− ε, λ + ε) 6= ∅ and set

δ = min
{

S∞(Λ)− S∞(λ) : Λ ∈ [ΛL, ΛU ] \ (λ− ε, λ + ε)

}
> 0.

Consider a set of full measure on which the uniform convergence (32) holds and take N0 > 0
such that

sup
Λ∈[ΛL ,ΛU ]

∣∣∣∣ 1
N

SN(Λ)− S∞(Λ)

∣∣∣∣ < δ

3
∀N ≥ N0.

Fix any N ≥ N0. Then for arbitrary Λ ∈ [ΛL, ΛU ] \ (λ− ε, λ + ε) we get

1
N

SN(λ) < S∞(λ) +
δ

3
< S∞(Λ)− δ

3
<

1
N

SN(Λ).

As λ̂5 minimizes SN , for all N ≥ N0 we have

|λ̂5 − λ| < ε.
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Since ε was arbitrary (if small enough), we obtain the convergence

λ̂5
N→∞−→ λ

on a set of full measure.

6. Results and Discussion

In Table 1 we present comparison of the root mean square errors (RMSE) of all considered
estimators for λ = 0.5 and several combinations of x0, T and H. Estimators λ̂1 and λ̂3 demonstrate
good performance in scenarios with far-from-zero initial (x0 = 100) condition and short time horizon
(T = 10) This illustrates the fact that these estimators reflect mainly the speed of convergence to zero of
the observed process in its initial phase. Increasing time horizon to T = 1000 adds a stationary phase
to the observed trajectories, which distorts the estimators λ̂1 and λ̂3.

Table 1. Root mean square errors of the studied estimators calculated using 100 numerical simulations
with λ = 1/2.

x0 T H λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

0 1000 0.6 0.216161 0.0364895 0.167108 0.0464931 0.0462385
0 1000 0.75 0.350571 0.0484904 0.33802 0.0637274 0.0643273
0 1000 0.9 0.444239 0.120954 0.442423 0.174213 0.170646

100 1000 0.6 0.158561 0.237689 0.0840923 0.125846 0.0297993
100 1000 0.75 0.244412 0.160116 0.205152 0.358587 0.0497393
100 1000 0.9 0.326662 0.105573 0.309256 1.17871 0.0454533

0 10 0.6 0.333834 0.513897 0.347278 0.539418 0.488992
0 10 0.75 0.439545 0.590848 0.438978 0.608744 0.552812
0 10 0.9 0.528586 0.841335 0.527932 0.840721 0.635887

100 10 0.6 0.0259539 0.49369 0.024092 0.441152 0.0277489
100 10 0.75 0.031949 0.480362 0.029853 1.53454 0.0411947
100 10 0.9 0.0398104 0.457155 0.0376366 4.54265 0.0291719

Estimators λ̂2 and λ̂4 perform well in settings with stationary-like initial condition (x0 = 0) and
long time horizon (T = 1000). This is because they are constructed from the stationary behavior of the
process. Taking far-from-zero initial condition ruins these estimators, unless trajectory is very long.

The conditional LSE, λ̂5, shows reasonable performance in all studied scenarios and it significantly
outperforms the other estimators in scenario with far-from-stationary initial condition (x0 = 100) and
long time horizon (T = 1000). This results from the unique ability of this estimator to reflect and utilize
information about the drift from both non-stationary (decreasing) phase and stationary (oscillating)
phase. This is also illustrated on Figure 5. On the other hand, evaluation of λ̂5 is the most numerically
demanding compared the other studied estimators.

If x0 = 0 and T = 10, λ̂5 shows greater RMSE than λ̂1 and λ̂3 in Table 1 due to λ = 1/2 being
relatively close to zero. This causes that λ̂1 and λ̂3 have smaller variance (although greater bias)
compared to λ̂5 (see Figure 6). In order to present this effect we have calculated RMSE for simulations
in same scenario but with λ = 3/2 (see Table 2). λ̂5 provides smaller RMSE than the other estimators
in this setting.
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Figure 5. Comparison of λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5 for 100 trajectories, where H = 0.75, x0 = 100, T = 1000,
h = 1, σ = 2; the horizontal line shows the true value of the estimated parameter λ = 0.5.
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Figure 6. Comparison of λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5 for 100 trajectories, where H = 0.6, x0 = 0, T = 10,
h = 0.1, σ = 2; the horizontal line shows the true value of the estimated parameter λ = 0.5.

Table 2. Root mean square errors of the studied estimators calculated using 100 numerical simulations
with λ = 3/2.

x0 T H λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

0 10 0.6 0.68946 0.641613 0.686183 0.761677 0.399386
0 10 0.75 1.11793 0.761793 1.10949 0.877707 0.457095
0 10 0.9 1.38463 1.21928 1.38299 1.52812 0.504919
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7. Conclusions

Three new estimators were defined and studied:

1. The least-squares estimator from exact solution (λ̂3), which improves the popular discretized LSE
(λ̂1) by eliminating the discretization error. It is easy to implement, since it can be calculated by a
closed formula. However, it fails to be strongly consistent in long-span regime.

2. The asymptotic least-squares estimator (λ̂4), which is a modification of λ̂3 with respect to its
asymptotic behavior. In result, λ̂4 is strongly consistent in the long-span regime and behaves
similarly to the well-established discrete ergodic estimator (λ̂2). The advantage of λ̂4 is that it
does not require a priori knowledge of the volatility σ. On the other hand, its implementation
includes a root-finding numerical procedure.

3. The conditional least-squares estimator (λ̂5), which eliminates the bias in the least-squares
procedure by considering the conditional expectation of the response as the explanatory variable.
The possibility to express the conditional expectation explicitly makes this approach feasible.
This conditioning idea (which is new in the context of the models with fractional noise, to our
best knowledge) provides exceptionally reliable estimator, which outperforms all the other
studied estimators. We proved the strong consistency (in long-span regime) of this estimator.
The implementation comprises solving an optimization problem.

These new estimating procedures can help practitioners or scientists from various fields to improve
the calibration of their models based on available data with autocorrelated noise (these are typically
observed/measured in discrete time instants) and, consequently, obtain more reliable conclusions from
the calibrated models.

An interesting future extension would certainly be to explore the potential of the promising idea
of the conditioning within least-squares procedure to more general models and settings (including
d-dimensional fOU, fOU with H < 1/2, non-linear drift, multiplicative noise, etc.).
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