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Abstract: In this paper, the weakly nonlinear shallow-water wave model is mathematically investigated
by applying the modified Riccati-expansion method and Adomian decomposition method. This model
is used to describe the propagation of waves in weakly nonlinear and dispersive media. We obtain
exact and solitary wave solutions of this model by using the modified Riccati-expansion method then
using these solutions to determine the boundary and initial conditions. These conditions are employed
to evaluate the semi-analytical wave solutions and calculate the absolute value of error. The values
of absolute error show the accuracy of the obtained solutions. Some solutions are sketched to show
the perspective view of the solution of this model. Moreover, the novelty of the obtained solutions is
illustrated by showing the similarity and differences between our and previous solutions of the model.

Keywords: the modified Riccati expansion method; Adomian decomposition method (ADM); weakly
nonlinear shallow-water wave regime; analytical and semi-analytical wave solutions

1. Introduction

Nonlinearity has recently been considered as the generator of many complex phenomena in distinct
fields such as infectious disease epidemiology [1], neural networks [2], biology [3], fluid mechanics [4],
population ecology [5], solid-state physics [6], wave propagation in plasma physics [7], thermodynamics [8],
condensed matter physics [9], nonlinear optics [10], civil engineering [11], quantum mechanics [12],
plasma wave [13], soil mechanics [14], and so on; they are formulated in nonlinear evolution equations.
The mathematical formulation of this phenomenon depends on real experiments to determine the
parameters and empirical functions. These obtained mathematical formulas help us to understand these
complex phenomena by explaining their physical and dynamical behavior. Thus, many mathematical and
physical researchers have paid attention to solve these nonlinear evolution equations. These works
have been deriving many analytical and numerical mathematical schemes to construct analytical,
semi-analytical, approximate solutions. These schemes are based on three mainly channels, namely
Lie group techniques, reduction techniques and ansatz techniques [15–29].

Mathematics 2020, 8, 697; doi:10.3390/math8050697 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6763-2569
https://orcid.org/0000-0001-8466-168X
https://orcid.org/0000-0002-4596-137X
http://dx.doi.org/10.3390/math8050697
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/5/697?type=check_update&version=2


Mathematics 2020, 8, 697 2 of 11

The main goal of this article is to study one of the nonlinear evolution equations (the ionic waves
propagating along microtubules in living cells) that is used to study the propagation of waves in
weakly nonlinear and dispersive media. Our study applies two computational schemes [30–39] to this
model for constructing exact traveling and solitary wave solutions. Moreover, we calculate the values
of absolute error to show the power and accuracy of our obtained solutions.

Firstly, the direction of flow for a fluid with a constant depth of µ with the following properties—
non-rotating flow, incompressible, and inviscid, x-axis and z-axis positively upward the free surface in the
gravitational field. The free surface elevation is above the undisturbed depth µ is ζ(x, t), so that the wave
surface at height z = µ + ζ(x, t), while z = 0 is a horizontal rigid bottom. Moreover, the Laplace and
Euler equation with the boundary conditions at the surface and at the bottom, respectively, are given by

Ax x +Az z = 0, 0 < z < µ + ζ

At +
1
2

(
Ax~i +Az~k

)2
+ λ ζ = 0 z = µ + ζ

ζt + ζxAx −Az = 0,

Az = 0, z = 0.

(1)

This is considered a good start to define the next dimensionless parameters:

v = ζ0
µ < 1; Ξ =

(
µ
ς

)2
< 1, (2)

where ζ0 is the wave amplitude, and ς is the characteristic length-like wavelength. Accordingly, we also
take a complete set of new suitable non-dimensional variables:

X = x
ς ; Z = z

µ ; τ = c t
ς Ψ = ζ

ζ0
Φ = µ

ζ0 ς c A, (3)

where c =
√

$ µ is the shallow-water wave speed, with g being gravitational acceleration so that we get:

ΞAX X +AZ Z = 0,

Φτ +
v

2 Ξ (ΦX)
2 + v

2 Ξ (ΦZ) + Ψ = 0, Z = 1 + v Ψ,

Ψτ + v (ΦX ΨX)− 1
Ξ ΦZ = 0, Z = 1 + v Ψ,

ΦZ = 0, Z = 0

(4)

Expanding Φ(x, τ) in terms of Ξ, yields

Φ = Φ0 + Ξ Φ1 + Ξ2 Φ2, (5)

using the dimensionless wave particles velocity in x-direction, by the definition ν = ΦX , leads to (Φ0)τ − Ξ
2 ντ X + Ψ + 1

2 v ν2 = 0,

Ψτ + v ν ΨX + 1
Ξ (1 + v Ψ) νX = Ξ

6 νX X X .
(6)

Making the differentiation of the first equation of Equation (6) with respect to X, and rearranging
the second equation of the same system, leads to ντ + v ν νX + ΨX − Ξ

2 νX X τ = 0,

Ψτ + (ν (1 + v Ψ))X − Ξ
6 νX X X = 0.

(7)

Returning back to dimensional variables ζ(x, t) and E = Φx, yields
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Eτ + E Ex + λ ζx =
1
3

µ2 Ex x t. (8)

We could define the new function E(x, t) unifying the velocity and displacement of water particles
as follows:

E = 1
µ Ht, ζ = −Hx. (9)

So that the weakly nonlinear shallow water wave equation is given by [40–44]

Ht t − λ µHx x +
1

2 µ

(
H2

t
)

x −
µ2

3 Hx x t t = 0, x, t ∈ R, (10)

whereR =]−∞, ∞[, H = H(x, t) unifying the velocity and displacement of water particles, µ is the wave

height and λ is the gravitation force. Using the moving coordinate
[
H = H(x, t) = U (Υ), Υ = x−0 t

]
with wave speed (0) converts Equation (10) into the following ordinary nonlinear differential equation:

(
02 − λ µ

)
U ′′ + 02

2 µ

(
U ′2
)′
− 02 µ2

3
U ′′′′ = 0. (11)

Integration Equation (11) once with zero constant of the integration, and replacing U (Υ) with[ ∫
S(Υ) d Υ

]
, leads to

S ′′ −
(

a S2 + b S + c
)
= 0, (12)

where
[

a = 3
2 µ3 , b =

3(02−λ µ)
(0 µ)2 ,

]
, while c is the integration constant. The replacement between U (Υ)

and S(Υ) aims to simplify Equation (11) into its simplest form. Applying the following homogeneous
balance rule

D
[

dqS
dξq

]
= m + q, D

[
S p
(

dqS
dξq

)s]
= mp + s(m + q), (13)

to Equation (12) yields,
(
S ′′&S2) ⇒ (2 m = m + 2) ⇒ (m = 2).

The rest of the paper is organized as follows. Section 2 employs two analytical and semi-analytical
schemes to find distinct types of solutions for the model. The goals of this section are constructing
the exact traveling and solitary wave solutions of the suggested model then evaluating the initial and
boundary conditions that allows application of the Adomian decomposition method for finding the
semi-analytical wave solutions. Finally, we estimate the absolute value of error to show the accuracy
of the obtained solutions. Section 3 shows the physical and dynamical behaviour of our obtained
solutions. Moreover, the novelty of our results is explained by comparing our solutions with previous
obtained solutions. Section 4 gives the conclusion.

2. Application

This section handles the analytical and semi-analytical wave solutions of the weakly nonlinear
shallow water wave model by employing two recent computational schemes.

2.1. Explicit Analytical Wave Solutions

Applying the modified Riccati-expansion method to Equation (12), yields formulating its general
wave solutions in the following formula:

S =
m

∑
i=1

ai Λ(Υ)i + a0 = a2 Λ(Υ)2 + a1 Λ(Υ) + a0, (14)
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where
[

a0, a1, a2

]
are arbitrary constants to be determined later. Additionally, Λ(Υ) is the solution

function of the following ordinary differential equation

Λ′(Υ) = δΛ(Υ) + σΛ(Υ)2 + $, (15)

where
[

δ, σ, $

]
are arbitrary constants. Substituting Equation (14) along (15) into Equation (12),

and collecting all terms with the same power of
[

Λ(Υ)i, i = 0, 1, 2, 3, 4
]

, yield a system of algebraic

equations. Using a computer software program (Mathematica 12) to solve this system, leads to[
a0 →

−b + δ2 + 8 σ $

2a
, a1 →

6 δ σ

a
, a2 →

6σ2

a
, c→ b2 − δ4 + 8 δ2 σ $− 16σ2 $2

4a
, where (a 6= 0)

]
.

Thus, the computational wave solutions of Equation (12) have the following formulas:

For
[

δ2 − 4 σ $ > 0 & δ σ 6= 0
]

S1(x, t) =
−1
2a

[
b− δ2 + 3

(
δ2 − 4σ$

)
sech2

(
1
2

√
δ2 − 4σ$(t0+ x)

)
+ 4σ$

]
, (16)

S2(x, t) =
1
2a

[
− b + δ2 + 3

(
δ2 − 4σ$

)
csch2

(
1
2

√
δ2 − 4σ$(t0+ x)

)
− 4σ$

]
. (17)

For
[

δ2 − 4 σ $ < 0 & δ σ 6= 0
]

S3(x, t) =
−1
2a

[
b + 2δ2 + 3

(
δ2 − 4σ$

)
tan2

(
1
2

√
4σ$− δ2(t0+ x)

)
− 8σ$

]
, (18)

S4(x, t) =
−1
2a

[
b + 2δ2 + 3

(
δ2 − 4σ$

)
cot2

(
1
2

√
4σ$− δ2(t0+ x)

)
− 8σ$

]
. (19)

For
[

δ2 − 4 σ $ > 0 & σ $ 6= 0
]

S5(x, t) = 1
2a

[
−b + δ2 +

24σ2$2
(

cosh
(√

δ2−4σ$(t0+x)
)
+1
)

(
δ cosh

(
1
2

√
δ2−4σ$(t0+x)

)
−
√

δ2−4σ$ sinh
(

1
2

√
δ2−4σ$(t0+x)

))2

− 24δσ$

δ−
√

δ2−4σ$ tanh
(

1
2

√
δ2−4σ$(t0+x)

) + 8σ$

]
,

(20)

S6(x, t) = 1
2a

[
−b + δ2 +

24σ2$2
(

cosh
(√

δ2−4σ$(t0+x)
)
−1
)

(√
δ2−4σ$ cosh

(
1
2

√
δ2−4σ$(t0+x)

)
−δ sinh

(
1
2

√
δ2−4σ$(t0+x)

))2

− 24δσ$

δ−
√

δ2−4σ$ coth
(

1
2

√
δ2−4σ$(t0+x)

) + 8σ$

]
.

(21)

For
[

δ2 − 4 σ $ < 0 & σ $ 6= 0
]
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S7(x, t) = 1
2a

[
−b + δ2 +

24σ2$2
(

cos
(√

4σ$−δ2(t0+x)
)
+1
)

(√
4σ$−δ2 sin

(
1
2

√
4σ$−δ2(t0+x)

)
+δ cosh

(
1
2

√
4σ$−δ2(t0+x)

))2

−
24δσ$ cos

(
1
2

√
4σ$−δ2(t0+x)

)
√

4σ$−δ2 sin
(

1
2

√
4σ$−δ2(t0+x)

)
+δ cosh

(
1
2

√
4σ$−δ2(t0+x)

) + 8σ$

]
,

(22)

S8(x, t) = 1
2a

[
−b + δ2 −

24σ2$2
(

cos
(√

4σ$−δ2(t0+x)
)
−1
)

(√
4σ$−δ2 cos

(
1
2

√
4σ$−δ2(t0+x)

)
−δ sinh

(
1
2

√
4σ$−δ2(t0+x)

))2

+
24δσ$ sin

(
1
2

√
4σ$−δ2(t0+x)

)
√

4σ$−δ2 cos
(

1
2

√
4σ$−δ2(t0+x)

)
−δ sinh

(
1
2

√
4σ$−δ2(t0+x)

) + 8σ$

]
.

(23)

For
[

$ = 0 & δ σ 6= 0
]

S9(x, t) =
1
2a

[
δ2

12σΩeδ(t0+x)
(

Ω(σ− β)eδ(t0+x) − β
)

(
β + βΩeδ(t0+x)

)2 + 1

− b
]

, (24)

S10(x, t) =
1
2a

[
δ2

1−
12σeδ(t0+x)

(
βΩ + (β− σ)eδ(t0+x)

)
β2
(
eδ(t0+x) + Ω

)2

− b
]

. (25)

where
[

Ω, β

]
are arbitrary constants.

2.2. Semi-Analytical Wave Solutions

Applying the Adomian decomposition method to Equation (12) with the solution Equation (16)
under the following conditions[

a = 5, b = 4, c =
3
4

, δ = 3, σ = 2, $ = 1, S =
1
10

(
−3sech2

(
Υ
2

)
− 3
)

,
]

yield, the following semi-analytical solutions of Equation (18)

S0 =
3 Υ2

8
− 3

5
, (26)

S1 =
3 Υ6

128
− Υ4

16
− 3 Υ2

10
, (27)

S2 =
Υ10

1024
− 9 Υ8

1792
− Υ6

30
+

Υ4

20
, (28)

S3 =
45 Υ14

2981888
− Υ12

12288
+

61 Υ10

322560
− 11 Υ8

1920
− Υ6

300
+

3 Υ4

20
. (29)

Thus, the approximate solution of Equation (18) is calculated in the following form:

Sapproximate =
45 Υ14

2981888
− Υ12

12288
+

47 Υ10

40320
− 289 Υ8

26880
− 127 Υ6

9600
+

11 Υ4

80
+

3 Υ2

40
− 3

5
. (30)

Now, we evaluate the obtained analytical and semi-analytical solutions for different values of Υ
to show the absolute values of error between them. Table 1 shows the accuracy of solutions where the
absolute value of error is very small.
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Table 1. Values of computational and semi-analytical solutions for different values of Υ to show the
accuracy of the obtained solutions.

Value of Υ Analytical Solution Semi-Analytical Solutions Absloute Value of Error
0.01 0.599993 0.599992 1.49999× 10−9

0.02 0.59997 0.59997 2.3999× 10−8

0.03 0.599933 0.599932 1.21489× 10−7

0.04 0.59988 0.59988 3.83938× 10−7

0.05 0.599813 0.599812 9.37265× 10−7

0.06 0.59973 0.599728 1.9433× 10−6

0.07 0.599633 0.599629 3.59973× 10−6

0.08 0.599521 0.599514 6.14005× 10−6

0.09 0.599393 0.599383 9.83348× 10−6

0.1 0.599251 0.599236 1.49849× 10−5

3. Results and Discussion

Here, we discuss our obtained analytical and semi-analytical solutions of the weakly nonlinear
shallow-water wave model.

1. The modified Riccati expansion method and Adomian decomposition method were applied
to the weakly nonlinear shallow water wave equation for constructing the exact traveling and
semi-analytical wave solutions. These methods are considered as recent schemes in this field and
they were not applied to this model previously.

2. All our obtained solutions are different from that obtained in References [40,44] where the authors
of References [40,44] applied different methods to solve the weakly nonlinear shallow water
wave regime.

3. Equations (29) and (30) equal to Equations (8) and (9) [45], when
[

a = −1
2 , b + 2 δ2 − 8 σ $ =

8 b−β
2 α , 6 b

α = 3
(
δ2 − 4 σ $

)
, 4 b =

(
4 σ $− δ2) ] while all our obtained solutions are different from

that obtained in this paper where the Khater method was employed to find the exact traveling
and solitary wave solutions.

4. Figure 1 shows the breath wave solution Equation (16) in the three-dimensional plot (a) to
illustrate the perspective view of the solution, the two-dimensional plot (b) to present the wave
propagation pattern of the wave along x-axis, and the contour plot (c) to explain the overhead

view of the solution when
[

a = 5, b = 4, δ = 3, σ = 2, $ = 1, 0 = −1
]

.

5. Figure 2 shows the kink wave solution Equation (20) in the three-dimensional plot (a) to clarify the
perspective view of the solution, the two-dimensional plot (b) to illustrate the wave propagation
pattern of the wave along x-axis, and the contour plot (c) to exhibit the overhead view of the

solution when
[

a = 2, b = 4, δ = 5, σ = 6, $ = 1, 0 = 3
]

.

6. Figure 3 shows the periodic-wave solution Equation (24) in the three-dimensional plot (a) to exalt
the perspective view of the solution, the two-dimensional plot (b) to exhibit the wave propagation
pattern of the wave along x-axis, and the contour plot (c) to explain the overhead view of the

solution when
[

a = 2, b = 4, β = −6, δ = 5, σ = 6, Ω = −5, $ = 0, 0 = 3
]

.

7. Figure 4 shows the cone-wave solution Equation (30) in the three-dimensional plot (a) to illustrate
the perspective view of the solution, the two-dimensional plot (b) to explain the wave propagation
pattern of the wave along x-axis, and the contour plot (c) to clarify the overhead view of the

solution when
[
0 = −3

]
.

8. Figure 5 shows the distinct types of plots of Table 1 in line plot (a), columns plot (b), and scattering
plot (c). These figures show the accuracy of the obtained analytical wave solutions compared to
the approximate solutions.
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9. Table 1 shows the accuracy of the obtained analytical where the absolute value of error between
analytical and semi-analytical solutions are imperceptible.

Figure 1. Numerical simulation of Equation (16) in three (a), two-dimensional (b), and contour (c) sketches

for
[

a = 5, b = 4, δ = 3, σ = 2, $ = 1, 0 = −1
]

.

Figure 2. Numerical simulation of Equation (20) in three (a), two-dimensional (b), and contour

(c) sketches for
[

a = 2, b = 4, δ = 5, σ = 6, $ = 1, 0 = 3
]

.
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Figure 3. Numerical simulation of Equation (24) in three (a), two-dimensional (b), and contour sketches

(c) for
[

a = 2, b = 4, β = −6, δ = 5, σ = 6, Ω = −5, $ = 0, 0 = 3
]

.

Figure 4. Numerical simulation of Equation (30) in three (a), two-dimensional (b), and contour sketches (c).
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Figure 5. Sketches of Computational and semi-analytical solutions in distinct plots to show the accuracy
of the obtained solutions.

4. Conclusions

New distinct types of the ocean solitons to cellular ionic nano-solitons of the nonlinear weakly
nonlinear shallow-water wave regime have been investigated by using two recent analytical and semi-
analytical schemes. Some new soliton wave solutions were obtained plotted in two, three-dimensional,
and contour plots of these solutions. The effectiveness and power of the used methods and their ability
for application to other nonlinear evaluation equation are illustrated.
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