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Abstract: In this article, we introduce a relatively new concept of multi-valued (θ,R)-contractions
and utilize the same to prove some fixed point results for a special class of multi-valued mappings in
metric spaces endowed with an amorphous binary relation. Illustrative examples are also provided
to exhibit the utility of our results proved herein. Finally, we utilize some of our results to investigate
the existence and uniqueness of a positive solution for the integral equation of Volterra type.

Keywords: fixed point; monotone type mappings; multi-valued θ-contractions; binary relations;
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1. Introduction

The classical Banach contraction principle continues to be the soul of metric fixed point theory,
which states that every contraction mapping S defined on a complete metric space (M, ρ) has a unique
fixed point. With a view to have wide range of applications, this principle has been improved, extended,
and generalized in many directions (e.g., [1–3]), which contains several novel generalizations. In the
present context, an effective generalization given by Jleli and Samet [1] is worth noting wherein the
authors introduced the idea of θ-contractions.

In 1986, the idea of an order-theoretic fixed point result was initiated by Turinici [4]. Thereafter,
Ran and Reurings [5] established a relatively more natural order-theoretic version, followed by Nieto
and Rodríguez-López [6–8]. Thereafter, Samet and Turinici [9] obtained fixed point results under
symmetric closure of an amorphous binary relation for nonlinear contractions. Recently, Alam and
Imdad [3] obtained a relation-theoretic analog of Banach contraction principle employing an arbitrary
binary relation, which unifies several well-known relevant order-theoretic results.

For the sake of completeness, we recollect few basic notions and related results regarding
multi-valued mappings.

Let M be a nonempty set. Suppose that (M, ρ) is a metric space and CB(M) the family of all
nonempty closed and bounded subsets of M. Let K(M) be the family of all nonempty compact subsets
of M. Now, defineH : CB(M)× CB(M)→ R by

H(U, V) = max
{

sup
u∈U

D(u, V), sup
v∈V

D(v, U)
}

, U, V ∈ CB(M),
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where D(u, V) := inf{ρ(u, v) : v ∈ V}. Then,H is a metric on CB(M) known as Pompeiu–Hausdorff
metric. Let P(M) denote the family of all nonempty subsets of M and S : M → P(M). An element
u ∈ M is said to be a fixed point of S if u ∈ Su (Fix(S) denotes the set of all such points).

In 1969, Nadler [10] extended Banach contraction principle to multi-valued mappings and begun
the study of fixed point theory of multi-valued contractions. Thereafter, vigorous studies were
conducted to obtain a variety of generalizations, extensions and applications of Nadler’s Theorem
(e.g., see, [11–21]). With a similar quest, Hançer et al. [22] extended the concept of θ-contractions to
multi-valued mappings and proved two nice fixed point results. Recently, Baghani and Ramezani [23]
introduced a new class of multi-valued mappings by utilizing the idea of arbitrary binary relations
between two sets and prove some relation-theoretic multi-valued results in a metric space.

Continuing this direction of research, in this paper, we do the following:

• We introduce a relatively new concept of multi-valued (θ,R)-contractions and obtain some
relation-theoretic fixed point results for a special class of mappings proposed by Baghani and
Ramezani [23], which in turn generalize and extend the results obtained by Hançer et al. [22].

• To exhibit the utility, we provide some illustrative examples.
• We obtain some relation-theoretic existence and uniqueness results for single-valued mappings.
• As consequences of our results, we deduce some corollaries in the setting of ordered-metric

spaces.
• We show the applicability of our newly obtained results by investigating the existence and

uniqueness of a positive solution for Volterra type integral equation under some suitable
conditions.

2. Preliminaries

We begin this section by describing some terminological and notational conventions that are used
throughout the paper.

Following [1] and [24], let θ : (0, ∞)→ (1, ∞) be a function satisfying the following conditions:

(Θ1) θ is nondecreasing;
(Θ2) for each sequence {βn}⊂ (0, ∞), limn→∞ θ(βn) = 1⇐⇒ limn→∞ βn = 0+;

(Θ3) there exist r ∈ (0, 1) and γ ∈ (0, ∞] such that limβ→0+
θ(β)−1

βr = γ; and
(Θ4) θ is continuous.

In addition, we use the following notations:

• Θ1,2,3,4 denotes the set of all functions θ satisfying (Θ1)− (Θ4).
• Θ1,2,3 denotes the set of all functions θ satisfying (Θ1)− (Θ3).
• Θ1,2,4 denotes the set of all functions θ satisfying (Θ1), (Θ2), and (Θ4).
• Θ2,3 denotes the set of all functions θ satisfying (Θ2) and (Θ3).
• Θ2,4 denotes the set of all functions θ satisfying (Θ2) and (Θ4).

For examples of such functions, one may consult the work in [1,24,25]. However, we add the
following examples to this effect.

Example 1. Define θ : (0, ∞)→ (1, ∞) by

θ(β) =

{
e
√

β, β ≤ k,
e2(k+1), β > k,

where k is any fixed real number greater than or equal to 1. Then, θ ∈ Θ1,2,3.

Example 2. Define θ : (0, ∞)→ (1, ∞) by θ(β) = ee
− 1

β ; then, θ ∈ Θ1,2,4.
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The notion of θ-contractions was introduced by Jleli and Samet [1] as follows:

Definition 1 ([1]). Let (M, ρ) be a metric space and θ ∈ Θ1,2,3. Then, S : M → M is called a θ-contraction
mapping if there exists λ ∈ (0, 1) such that

ρ(Su, Sv) > 0⇒ θ(ρ(Su, Sv)) ≤ [θ(ρ(u, v))]λ, for all u, v ∈ M. (1)

Considering this new concept, the authors of [1] proved the following result.

Theorem 1 (Corollary 2.1 of [1]). On a complete metric space, every θ-contraction mapping has a unique
fixed point.

Imdad et al. [25] noticed that Theorem 1 can be proved without the Assumption (Θ1), from
which they introduced the notion of weak θ-contractions. Inspired by this, we also deduce some
relation-theoretic results (without Assumption (Θ1)) for single-valued mappings.

On the other hand, the concept of multi-valued θ-contractions was introduced by Hançer et al. [22]
as follows:

Definition 2 ([22]). Let (M, ρ) be a metric space and S : M→ CB(M). Then, S is said to be a multi-valued
θ-contraction mapping if there exist λ ∈ (0, 1) and θ ∈ Θ1,2,3 such that

H(Su, Sv) > 0⇒ θ(H(Su, Sv)) ≤ [θ(ρ(u, v))]λ, for all u, v ∈ M. (2)

Utilizing the preceding definition, the authors of [22] proved the following result.

Theorem 2 ([22]). Let (M, ρ) be a complete metric space and S : M → K(M) a multi-valued θ-contraction
for some θ ∈ Θ1,2,3. Then, S has a fixed point.

In addition, Hançer et al. [22] showed that one may replace K(M) by CB(M), by assuming the
following additional condition on θ :

(Θ′4) θ(inf B) = inf θ(B), ∀B ⊂ (0, ∞) with inf B > 0.

Notice that, if θ satisfies (Θ1), then it satisfies (Θ′4) if and only if θ is right continuous.
Let Θ1,2,3,4′ be the class of all functions θ satisfying (θ1), (θ2), (θ3) and (θ′4).

Theorem 3 ([22]). Let (M, ρ) be a complete metric space and S : M→ CB(M) be a multi-valued θ-contraction
mapping for some θ ∈ Θ1,2,3,4′ . Then, S has a fixed point.

To make our paper self contained, we provide some basic relation theoretic notions, definitions,
and relevant results described in the following.

A subsetR of M×M is called a binary relation on M. Trivially, ∅ and M×M are binary relations
on M known as the empty relation and the universal relation, respectively. A binary relationR on M
is said to be transitive if (u, v) ∈ R and (v, w) ∈ R implies (u, w) ∈ R, for all u, v, w ∈ M. Throughout
this paper,R stands for a nonempty binary relation. The inverse ofR is denoted byR−1 and is defined
asR−1 := {(u, v) ∈ M×M : (v, u) ∈ R} andRs = R∪R−1. The elements u and v of M are said to
beR-comparable if (u, v) ∈ R or (v, u) ∈ R, which is denoted by [u, v] ∈ R.

Definition 3 ([3]). Let R be a binary relation on a nonempty set M. A sequence {un} ⊆ M is said to be
R-preserving if

(un, un+1) ∈ R, ∀n ∈ N0.
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Definition 4 ([26]). Let (M, ρ) be a metric space and R be a binary relation on M. Then, M is said to be
R-complete if everyR-preserving Cauchy sequence converges to some point in M.

It is worth mentioning that every complete metric space is R-complete, for arbitrary binary
relationR. On the other hand, under the universal relation, the notion ofR-completeness coincides
with the usual completeness.

Definition 5 ([3]). Let (M, ρ) be a metric space and R a binary relation on M. Then, R is said to be
ρ-self-closed if, wheneverR-preserving sequence {un} converges to u, there exists a subsequence {unk} of {un}
with [unk , u] ∈ R, ∀k ∈ N0.

Definition 6 ([26]). Let M be a nonempty set equipped with a binary relationR. Then, M is said to be locally
transitive if for any (effective)R-preserving sequence {un} ⊆ M (with range A := {un : n ∈ N0}), the binary
relationR|A is transitive, whereR|A = R∩ (A× A).

Definition 7 ([3]). Let M be a nonempty set and S : M→ M. A binary relationR on M is called S-closed if
for any u, v ∈ M,

(u, v) ∈ R ⇒ (Su, Sv) ∈ R.

Definition 8 ([27]). Let (M, ρ) be a metric space, R a binary relation on M, S : M → M and u ∈ M. We
say that S is R-continuous at u if for any R-preserving sequence {un} ⊆ M such that un

ρ−→ u, we have
Sun

ρ−→ Su. Moreover, S is calledR-continuous if it isR-continuous at each point of M.

Definition 9 ([27]). A subset S ⊆ M is calledR-connected if for each u, v ∈ S, there exists a path inR from
u to v where a path of length n (n ∈ N) inR from u to v is a finite sequence {u0, u1, u2, ..., un} ⊆ M such that
u0 = u, un = v with (ui, ui+1) ∈ R, for each i ∈ {0, 1, ..., n− 1}.

Now, we have some definitions which play a crucial role in the forthcoming sections.

Definition 10 ([23]). Let U, V be two nonempty subsets of a nonempty set M andR a binary relation on M.
Define binary relationsR1 andR2 between U and V as follows:

(i) (U, V) ∈ R1 if (u, v) ∈ R, for all u ∈ U and v ∈ V.
(ii) (U, V) ∈ R2 if, for each u ∈ U, there exists v ∈ V such that (u, v) ∈ R.

Remark 1. Clearly, if (U, V) ∈ R1, then (U, V) ∈ R2 but the converse is not true in general.

Definition 11 ([23]). Let (M, ρ) be a metric space equipped with a binary relationR and S : M→ CB(M).
Then, S is called

(i) monotone of Type (I) if

u, v ∈ M, (u, v) ∈ R implies that (Su, Sv) ∈ R1;

and
(ii) monotone of Type (II) if

u, v ∈ M, (u, v) ∈ R implies that (Su, Sv) ∈ R2.

Remark 2. If S is monotone of Type (I) then by Remark 1 it is monotone of Type (II), but the converse may not
be true in general.
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Definition 12. Let (M, ρ) be a metric space, R a binary relation on M, S : M → CB(M) and u ∈ M. We
say that S is RH-continuous at u if for any R-preserving sequence {un} ⊆ M such that un

ρ−→ u, we have

Sun
H−→ Su (as n→ ∞). Moreover, S is calledRH-continuous if it isRH-continuous at each point of M.

3. Main Results

We begin this section by introducing the notion of multi-valued (θ,R)-contractions as follows:

Definition 13. Let (M, ρ) be a metric space endowed with a binary relationR and S : M→ CB(M). Given
θ ∈ Θ1,2,3 (or θ ∈ Θ1,2,4), we say that S is multi-valued (θ,R)-contraction mapping if there exists λ ∈ (0, 1)
such that

θ(H(Su, Sv)) ≤ [θ(ρ(u, v))]λ, ∀u, v ∈ M with (u, v) ∈ R∗, (3)

where (u, v) ∈ R∗ := {(u, v) ∈ R : H(Su, Sv) > 0}.

Remark 3. Due to the symmetricity of the metrics ρ and H, it is clear that, if Equation (3) is satisfied for
(u, v) ∈ R∗, then it is also satisfied for (v, u) ∈ R∗ and so for [u, v] ∈ R∗.

Remark 4. Under the universal relation (in case θ ∈ Θ1,2,3), Definition 13 coincides with Definition 2.

Now, we present our first main result which runs as follows.

Theorem 4. Let (M, ρ) be a metric space endowed with a binary relation R and S : M → K(M). Suppose
that the following conditions are fulfilled:

(a) S is monotone of Type (I);
(b) there exists u0 ∈ M such that ({u0}, Su0) ∈ R2;
(c) S is multi-valued (θ,R)-contraction with θ ∈ Θ1,2,3;
(d) M isR-complete; and
(e) one of the following holds:

(e′) S isRH-continuous, or
(e′′) R is ρ-self-closed.

Then, S has a fixed point.

Proof. In view of Assumption (b), there exists u0 ∈ M such that ({u0}, Su0) ∈ R2. This implies that
there exists u1 ∈ Su0 such that (u0, u1) ∈ R. As S is monotone of Type (I), we have (Su0, Su1) ∈ R1.
If u1 ∈ Su1, then u1 is a fixed point of S and we are done. Assume that u1 /∈ Su1, then Su0 6= Su1, i.e.,
H(Su0, Su1) > 0. Using Condition (c), we have

θ(H(Su0, Su1)) ≤ [θ(ρ(u0, u1))]
λ. (4)

In addition, we have
D(u1, Su1) ≤ H(Su0, Su1). (5)

Making use of (Θ1) and Equations (4) and (5), we have

θ(D(u1, Su1)) ≤ θ(H(Su0, Su1)) ≤ [θ(ρ(u0, u1))]
λ. (6)

As u1 ∈ Su0 and Su1 is compact, there exists u2 ∈ Su1 with (u1, u2) ∈ R such that

D(u1, Su1) = ρ(u1, u2). (7)
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Now, from Equations (6) and (7), we have

θ(ρ(u1, u2)) ≤ [θ(ρ(u1, u0))]
λ.

Recursively, we obtain a sequence {un}inM such that un+1 ∈ Sun with (un, un+1) ∈ R (i.e., {un}
is anR-preserving sequence) and if un /∈ Sun (for all n ∈ N), then

θ(ρ(un, un+1)) ≤ [θ(ρ(un, un−1))]
λ, for all n ∈ N0. (8)

Otherwise, S has a fixed point. Denote αn = ρ(un, un+1), ∀n ∈ N0. Then, αn > 0, ∀n ∈ N0. Now,
in view of Equation (8), we have (∀n ∈ N0)

θ(αn) ≤ [θ(αn−1)]
λ ≤ [θ(αn−1)]

λ2 ≤ · · · ≤ [θ(α0)]
λn

,

which yields that
1 < θ(αn) ≤ [θ(α0)]

λn
, ∀n ∈ N0. (9)

Taking n→ ∞ in Equation (9), we obtain

lim
n→∞

θ(αn) = 1,

which on using (Θ2) gives rise to
lim

n→∞
αn = 0+. (10)

i.e., {αn} is a sequence of positive real numbers converges to 0 (as n→ ∞). Using (Θ3), there exists
r ∈ (0, 1) and γ ∈ (0, ∞] such that

lim
n→∞

θ(αn)− 1
(αn)r = γ.

There are two cases depending on γ.

Case 1: When γ < ∞. Take A = γ
2 > 0; then, by the definition of the limit, there exists n0 ∈ N such

that ∣∣∣∣ θ(αn)− 1
(αn)r − γ

∣∣∣∣ ≤ A, for all n ≥ n0,

which implies that
θ(αn)− 1
(αn)r ≥ γ− A = A, for all n ≥ n0,

yielding there by

n(αn)
r ≤ nB[θ(αn)− 1], (whereB =

1
A
) for all n ≥ n0.

Case 2: When γ = ∞. Let A∗ > 0 be any positive real number. Then, by the definition of limit, there
exists n1 ∈ N such that

θ(αn)− 1
(αn)r ≥ A∗, for all n ≥ n1,

which yields

n(αn)
r ≤ nB∗[θ(αn)− 1], (whereB∗ =

1
A∗

) for all n ≥ n1.

Thus, in both the above cases, there exist C > 0 (real number) and a positive integer n2 ∈ N
(where n2 = max{n0, n1}), such that

n(αn)
r ≤ nC[θ(αn)− 1], for all n ≥ n2.
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Using Equation (9), we have

n(αn)
r ≤ nC[[θ(α0)]

λn − 1].

Taking n→ ∞ in the above inequality, we get

lim
n→∞

n(αn)
r = 0.

Therefore, there exists n3 ∈ N such that n(αn)r ≤ 1, for all n ≥ n3. Which implies that

αn ≤
1

n
1
r

, for all n ≥ n3.

Now, our aim is to show that {un} is a Cauchy sequence, for this let m, n ∈ N with m > n ≥ n2,
then we have

ρ(un, um) ≤ ρ(un, un+1) + ρ(un+1, un+2) + ... + ρ(um−1, um)

=
m−1

∑
j=n

αj ≤
∞

∑
j=n

αj ≤
∞

∑
j=n

1

j
1
r

.

As ∑∞
j=n

1
j

1
r
< ∞, we get

lim
n,m→∞

ρ(un, um) = 0.

Thus, the sequence {un} is anR-preserving Cauchy sequence in (M, ρ). By Condition (d), M is
R-complete, and then there exists u∗ ∈ M such that limn→∞ un = u∗. Now, in view of Condition (e),
we have two alternative cases.

Firstly, if (e′) holds, then due toRH-continuity of S, we must haveH(Sun, Su∗)→ 0 as n→ ∞.
Now, as un+1 ∈ Sun, ∀n ∈ N0, we get

0 ≤ D(un+1, Su∗) ≤ H(Sun, Su∗), ∀n ∈ N0,

which implies that
0 ≤ lim

n→∞
D(un+1, Su∗) ≤ lim

n→∞
H(Sun, Su∗) = 0.

That is, limn→∞ D(un+1, Su∗) = 0, from which we obtain un+1 ∈ Su∗ (as n → ∞). Since Su∗ is
closed and un+1 → u∗(as n→ ∞), u∗ ∈ Su∗. Hence, S has a fixed point.

Secondly, assume that Condition (e′′) holds. Then, by Definition 5, there exists a subsequence
{unk} of {un} with [unk , u] ∈ R, ∀k ∈ N0. In addition, from (θ1) and Equation (13), we have

H(Su, Sv) < ρ(u, v), ∀u, v ∈ M with (u, v) ∈ R∗.

Now, using Condition (c), we obtain

D(unk+1, Su∗) ≤ H(Sunk , Su∗) ≤ ρ(unk , u∗), ∀k ∈ N0.

Taking limit as n → ∞, we have D(u∗, Su∗) = 0, which implies that u∗ ∈ Su∗ = Su∗ (as Su∗ is
closed). Thus, u∗ is a fixed point of S. This finishes the proof.

Remark 5. The following question naturally arises: Can we replace K(M) by CB(M) in Theorem 4? The
answer to this question is no. The following example substantiates the answer.



Mathematics 2020, 8, 695 8 of 17

Example 3. Let M = [0, 2] and define a metric ρ on M by (for all u, v ∈ M)

ρ(u, v) =

{
0, u = v,
µ + |u− v|, u 6= v,

where µ is any fixed real number such that µ ≥ 1. Define a binary relationR on M as follows:

R := {(u, v) ∈ R ⇔ {u, v} ∩Q is singleton, for all u, v ∈ M}.

Then, M isR-complete andR is d-self closed. In addition, (M, ρ) is a bounded metric space. All subsets
of M are closed as τρ generates discrete topology. Define a mapping S : M→ CB(M) by

Su =

{
QM, u ∈ M \QM,
M \QM, u ∈ QM,

where QM = Q∩M. Then, S is not compact valued. Now, define θ : (0, ∞)→ (1, ∞) by

θ(β) =

{
e
√

β, β ≤ µ,
e2(µ+1), β > µ.

Clearly, θ ∈ Θ1,2,3 and does not satisfy (Θ4). Next, we show that

θ(H(Su, Sv)) ≤ [θ(ρ(u, v))]1/2, ∀u, v ∈ M with (u, v) ∈ R∗.

Observe that (for all (u, v) ∈ R∗)

H(Su, Sv) = µ and ρ(u, v) = µ + |u− v| > µ

⇒ θ(H(Su, Sv)) = e
√

µ and [θ(ρ(u, v))]1/2 = e(µ+1)

⇒ θ(H(Su, Sv)) ≤ [θ(ρ(u, v))]1/2.

Therefore, S is a multi-valued (θ,R)-contraction with θ ∈ Θ1,2,3. Hence, all the conditions of Theorem 4
are satisfied but still S has no fixed point.

Next, we present the following result employing the relatively larger class CB(M) instead of
K(M).

Theorem 5. Let (M, ρ) be a complete metric space endowed with a locally transitive binary relation R and
S : M→ CB(M). Suppose that the following conditions are fulfilled:

(a) S is monotone of Type (I);
(b) there exists u0 ∈ M such that ({u0}, Su0) ∈ R2;
(c) S is multi-valued (θ,R)-contraction with θ ∈ Θ1,2,4;
(d) M isR-complete; and
(e) one of the following holds:

(e′) either S isRH-continuous; or
(e′′) R is ρ-self-closed.

Then, S has a fixed point.

Proof. In view of Assumption (b), there exists u0 ∈ M such that ({u0}, Su0) ∈ R2. This implies that
there exists u1 ∈ Su0 such that (u0, u1) ∈ R. As S is monotone of Type (I), we have (Su0, Su1) ∈ R1.
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Now, if u1 ∈ Su1, then u1 is a fixed point of S and the proof is completed. Assume that u1 /∈ Su1, then
Su0 6= Su1, i.e.,H(Su0, Su1) > 0. Now, making use of Condition (c), we have

θ(H(Su0, Su1)) ≤ [θ(ρ(u0, u1))]
λ. (11)

In addition, we have
D(u1, Su1) ≤ H(Su0, Su1).

Using (Θ1) and Equation (11), we obtain

θ(D(u1, Su1)) ≤ θ(H(Su0, Su1)) ≤ [θ(ρ(u0, u1))]
λ. (12)

Due to (Θ4), we have
θ(D(u1, Su1)) = inf

v∈Su1
θ(ρ(u1, v)).

This together with Equation (12) gives rise to

inf
v∈Su1

θ(ρ(u1, v)) ≤ [θ(ρ(u0, u1))]
λ < [θ(ρ(u0, u1))]

λ1 , (13)

where λ1 ∈ (c, 1). From Equation (13), there exists u2 ∈ Su1 with (u1, u2) ∈ R such that

θ(ρ(u1, u2)) ≤ [θ(ρ(u0, u1))]
λ1 .

Again, if u2 ∈ Su2, then we are done. Otherwise, by the same way, we can find u3 ∈ Su2 with
(u2, u3) ∈ R such that

θ(ρ(u2, u3)) ≤ [θ(ρ(u1, u2))]
λ1 .

Continuing this process, we construct a sequence {un} in M such that un+1 ∈ Sun with
(un, un+1) ∈ R and if un /∈ Sun, then

θ(ρ(un, un+1)) ≤ [θ(ρ(un−1, un))]
λ1 , for all n ∈ N. (14)

Otherwise, un is a fixed point of S. Denote αn = ρ(un, un+1), for all n ∈ N0. Then, αn > 0, for all
n ∈ N0. Now, in view of Equation (14), we have

θ(αn) ≤ [θ(αn−1)]
λ1 ≤ [θ(αn−1)]

λ2
1 ≤ ... ≤ [θ(α0)]

λn
1 ,

which implies that
1 < θ(αn) ≤ [θ(α0)]

λn
1 , for all n ∈ N0. (15)

Letting n→ ∞ in Equation (15), we obtain

lim
n→∞

θ(αn) = 1. (16)

This together with (Θ2) gives rise to limn→∞ αn = 0+, that is

lim
n→∞

ρ(un, un+1) = 0. (17)

Now, we show that {un} is a Cauchy sequence. Let on the contrary {un} not be Cauchy; then,
there exist an ε > 0 and two subsequences {un(k)} and {um(k)} of {un} such that

k ≤ n(k) < m(k), ρ(um(k)−1, un(k)) < ε ≤ ρ(um(k), un(k)) for all k ≥ 0, (18)
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and
lim
k→∞

ρ(um(k), un(k)) = ε. (19)

Now, observe that

ε ≤ ρ(um(k), un(k))

≤ ρ(um(k), u(m(k)−1)) + ρ(um(k)−1, un(k)−1) + ρ(un(k)−1, un(k))

≤ ρ(um(k), u(m(k)−1)) + ρ(um(k)−1, un(k)) + 2ρ(un(k)−1, un(k)).

Making use of Equations (17)–(19) and letting k→ ∞, we have

lim
k→∞

ρ(um(k)−1, un(k)−1) = ε. (20)

Which implies that there exists n0 ∈ N0 such that ρ(um(k), un(k)) > 0 for all k ≥ n0 (due to
Equation (19)). SinceR is locally transitive, we have (un(k)−1, um(k)−1) ∈ R (as n(k)− 1 < m(k)− 1).
Using Condition (c), we have (for all k ≥ n0)

θ(ρ(un(k), um(k))) ≤ θ(H(Sun(k)−1, Sum(k)−1)) ≤ [θ(ρ(un(k)−1, um(k)−1))]
λ. (21)

Letting k→ ∞ in Equation (21) and making use of (Θ4) and Equations (19) and (20), we obtain
θ(ε) ≤ θ(ε)λ, which is a contradiction. Thus, {un} is anR-preserving Cauchy sequence. The rest of
the proof follows same lines as in the proof of Theorem 4.

Now, we present the following example to exhibit the utility of our results.

Example 4. Let M = (0, ∞) equipped with the usual metric ρ. Define a sequence {σn} in M by

σn = 1 + 2 + · · ·+ n =
n(n + 1)

2
, for all n ∈ N.

Now, consider a binary relationR on M as follows:

R := {(σ1, σ1), (σi, σj) : f or 1 ≤ i < j, where i, j ∈ N}.

Then, it is obvious thatR is locally transitive and ρ-self-closed. In addition, M isR-complete. Now, define
a mapping S : M→ CB(M) by

Su =


{u}, i f 0 < u ≤ σ1;
{σ1}, i f σ1 ≤ u ≤ σ2;

{σ1, σi +
(

σi+1−σi
σi+2−σi+1

)
(u− σi+1)}, i f σi+1 ≤ u ≤ σi+2, i = 1, 2, · · · .

Clearly, S is a monotone mapping of Type (I) and ({σ1}, Sσ1) ∈ R2. Now, observe that

(σi, σj) ∈ R, Sσi 6= Sσj ⇔ (i ≥ 1, j > 3).

Define a function θ : (0, ∞)→ (1, ∞) by

θ(β) := e
√

βeβ
, for all β > 0.

Then, θ ∈ Θ1,2,3,4. Now, we show that S satisfies Equation (3), that is

H(Sσi, Sσj) 6= 0⇒ e
√
H(Sσi ,Sσj)e

H(Sσi ,Sσj) ≤ eλ

√
ρ(σi ,σj)e

ρ(σi ,σj)
, for some λ ∈ (0, 1),
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or

H(Sσi, Sσj) 6= 0⇒
H(Sσi, Sσj)e

H(Sσi ,Sσj)−ρ(σi ,σj)

ρ(σi, σj)
≤ λ2, for some λ ∈ (0, 1). (22)

Now, consider two cases as follows:

Case 1: When i = 1or2 and j > 3. In this case, we get

H(Sσ1, Sσj)e
H(Sσ1,Sσj)−ρ(σ1,σj)

ρ(σ1, σj)
=

j2 − j− 2
j2 + j− 2

e−j

≤ e−1. (23)

Case 2: When j > i > 2. We have

H(Sσi, Sσj)e
H(Sσi ,Sσj)−ρ(σi ,σj)

ρ(σi, σj)
=

j + i− 1
j + i + 1

ei−j

≤ e−1. (24)

Therefore, the inequality in Equation (22) is satisfied with λ = e−1/2. Hence, all the requirements of
Theorem 4 (as well as Theorem 5) are fulfilled (Fix(S) = (0, σ1]).

Remark 6. Observe that the results due to Hançer et al. [22] are not usable in the context of Example 4 as S
does not satisfy Equation (2) on (0, σ1] and also the underlying space is incomplete.

By putting Su = {Su} (for all u ∈ M), every single valued map can be treated as a multi-valued
map. Therefore, using Theorems 4 and 5, we deduce two fixed point results for single valued mappings
as follows:

Corollary 1. Let (M, ρ) be a metric space endowed with a binary relation R and S : M → M. Suppose the
following conditions are fulfilled:

(a) R is S-closed;
(b) there exists u0 ∈ M such that (u0, Su0) ∈ R;
(c) S is (θ,R)-contraction with θ ∈ Θ2,3;
(d) M isR-complete; and
(e) one of the following holds:

(e′) S isR-continuous; or
(e′′) R is ρ-self-closed.

Then, S has a fixed point.

Corollary 2. Let (M, ρ) be a complete metric space endowed with a locally transitive binary relation R and
S : M→ M. Suppose the following conditions are fulfilled:

(a) R is S-closed;
(b) there exists u0 ∈ M such that (u0, Su0) ∈ R;
(c) S is (θ,R)-contraction with θ ∈ Θ2,4;
(d) M isR-complete; and
(e) one of the following holds:

(e′) S isR-continuous; or
(e′′) R is ρ-self-closed.
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Then, S has a fixed point.

Remark 7. The monotonicity assumption on θ (namely, (Θ1)) can be removed in the context of single-valued
mappings and hence it is omitted in Corollaries 1 and 2.

Next, we obtain a corresponding uniqueness result in this sequel as follows.

Theorem 6. Besides the assumptions of Corollary 1 (or Corollary 2), if Fix(S) isRs-connected, then the fixed
point of S is unique.

Proof. On the contrary, let us suppose that u, v ∈ Fix(S) such that u 6= v. Then, we construct a path of
some finite length n from u to v inRs, say {u = u0, u1, u2, · · · , un = v} ⊆ Fix(S) (where ui 6= ui+1 for
each i, (0 ≤ i ≤ n− 1), otherwise u = v, a contradiction) with [ui, ui+1] ∈ R for each i (0 ≤ i ≤ n− 1).
As ui ∈ Fix(S), Sui = ui, for each i ∈ {0, 1, 2, · · · , n}. By using the fact that S is (θ,R)-contraction, we
have (for all i, (0 ≤ i ≤ n− 1))

θ(ρ(ui, ui+1)) = θ(ρ(Sui, Sui+1)) ≤ [θ(ρ(ui, ui+1))]
λ, where λ ∈ (0, 1),

a contradiction. This concludes the proof.

Remark 8. If we take θ(β) = e
√

β (θ ∈ Θ2,3), then Theorem 6 is a sharpened version of the main result due to
Alam and Imdad [3].

4. Some Consequences in Ordered Metric Spaces

This section is devoted to obtaining some ordered-theoretic corollaries of our newly obtained
results. We recall some relevant definitions and notions before presenting our results. Let X be a
non-empty set. If (M, ρ) is a metric space and (M,�) is partially ordered, then (M, ρ,�) is called an
ordered metric space. Then, u, v ∈ M are said to be comparable if u � v or v � u holds. Further, a
self-mapping S on M is called non-decreasing if Su � Sv whenever u � v for all u, v ∈ M. Moreover,
an ordered metric space (M, ρ,�) is regular for every non-decreasing sequence {un} ⊂ M convergent
to some u ∈ M if there is a subsequence {unk} of {un} with unk � u, ∀k ∈ N0.

If we takeR :=� in Definition 10, then we deduce to the following ordered theoretic definition
due to Beg and Butt [28].

Definition 14. Let (M, ρ) be a partially ordered set. Let U and V be any two nonempty subsets of M. The
relation between U and V is denoted and defined as follows: U ≺1 V, if for each u ∈ U there exists v ∈ V such
that u � v. In addition, we say that U ≺2 V whenever for each u ∈ U and v ∈ V we have u � v.

In addition, by takeR :=� in Definition 11 we have the following definition.

Definition 15. Let (M, ρ,�) be an ordered metric space and S : M→ CB(M). Then, S is called monotone of
Type (I) if

u, v ∈ M, u � v implies that Su ≺1 Sv;

and monotone of Type (II) if
u, v ∈ M, u � v implies that Su ≺2 Sv.

If we takeR :=� in Theorem 4, we obtain the following corollary.

Corollary 3. Let (M, ρ,�) be an ordered metric space and S : M → K(M). Suppose that the following
conditions are fulfilled:

(a) S is monotone of Type (I);
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(b) there exists u0 ∈ M such that {u0} ≺2 Su0;
(c) S is multi-valued (θ,�)-contraction with θ ∈ Θ1,2,3;
(d) M is �-complete; and
(e) one of the following holds:

(e′) S is �H-continuous; or
(e′′) (M, ρ,�) is regular.

Then, S has a fixed point.

On settingR :=� in Theorem 5, we obtain the following corollary.

Corollary 4. Let (M, ρ,�) be an ordered metric space and S : M → CB(M). Suppose that the following
conditions are fulfilled:

(a) S is monotone of Type (I);
(b) there exists u0 ∈ M such that {u0} ≺2 Su0;
(c) S is multi-valued (θ,�)-contraction with θ ∈ Θ1,2,4;
(d) M is �-complete; and
(e) one of the following holds:

(e′) S is �H-continuous; or
(e′′) (M, ρ,�) is regular.

Then, S has a fixed point.

Similarly, by takingR :=� in Corollaries 1 and 2 and Theorem 6, we obtain the following results
for single valued mapping.

Corollary 5. Let (M, ρ,�) be an ordered metric space and S : M→ M. Suppose the following conditions are
fulfilled:

(a) S is non-decreasing;
(b) there exists u0 ∈ M such that u0 � Su0;
(c) S is (θ,�)-contraction with θ ∈ Θ2,3;
(d) M is �-complete; and
(e) one of the following holds:

(e′) S is �-continuous; or
(e′′) (M, ρ,�) is regular.

Then, S has a fixed point.

Corollary 6. Let (M, ρ,�) be an ordered metric space and S : M→ M. Suppose the following conditions are
fulfilled:

(a) S is non-decreasing;
(b) there exists u0 ∈ M such that (u0, Su0) ∈ R;
(c) S is (θ,R)-contraction with θ ∈ Θ2,4;
(d) M is �-complete; and
(e) one of the following holds:

(e′) S is �-continuous; or
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(e′′) (M, ρ,�) is regular.

Then, S has a fixed point.

Corollary 7. In addition to the assumptions of Corollary 5 (or Corollary 6), if u, v ∈ Fix(T) implies that u � v
or v � u, then the fixed point of S is unique.

5. Application to Integral Equation

In this section, we show the applicability of some of our newly obtained results by proving
existence and uniqueness of a positive solution for the integral equation of Volterra type as follows:

u(t) =
∫ t

0
g(t, r, u(r))dr + β(t), ∀t ∈ I = [0, 1], (25)

where g : I × I ×R→ R is an integrable function and β : I → [1, ∞) is a given function.
Consider M = {u ∈ C(I,R) : u(t) > 0, f or all t ∈ I}, where C(I,R) is the space of all continuous

functions u : I → R equipped with the Bielecki’s norm

‖u‖ = sup
t∈I

e−t|u(t)|.

Define a metric ρ on M by ρ(u, v) = ‖u− v‖, for all u, v ∈ M. Then, (M, ρ) is a metric space
which is not complete.

Now, we are equipped to state and prove our result of the section, which runs as follows:

Theorem 7. Assume that the following conditions are satisfied:

(a1) g(t1, r1, u) > 0, for all u > 0 and t1, r1 ∈ I; and
(a2) g is non-decreasing in the third variable and there exists h > 0 such that

|g(t, r, u)− g(t, r, v)| ≤ |u(t)− v(t)|
h‖u− v‖+ 1

,

∀ t, r ∈ I and u, v > 0 with uv ≥ (u ∨ v), where u ∨ v = u or v.

Then, the integral in Equation (25) has a positive solution.

Proof. Let us define a binary relationR on M as follows:

R := {(u, v) ∈ R ⇔ u(t)v(t) ≥ (u(t) ∨ v(t)), for all t ∈ I}.

Since C(I,R) is a Banach space with Bielecki’s norm, then, for anyR-preserving Cauchy sequence
{un} in M, it converges to some point u ∈ C(I,R). Now, fix t ∈ I, then, by the definition ofR, we have

un(t)un+1(t) ≥ (un(t) ∨ un+1(t)), for all n ∈ N.

As un(t) > 0, ∀ n ∈ N, there exists a subsequence {unk} of {un} such that unk (t) ≥ 1, ∀k ∈ N.
This subsequence {unk (t)} of real numbers converges to u(t), which gives rise to u(t) ≥ 1. As t ∈ I
is arbitrary, we have u ≥ 1 and consequently u ∈ M. Therefore, (M, ρ) is R-complete. In a similar
fashion, one may prove thatR is ρ-self-closed.

Now, consider a mapping S : M→ M defined by

S(u(t)) =
∫ t

0
g(t, r, u(r))dr + β(t), u ∈ C(I,R).

Clearly, the solutions of Equation (25) are nothing but fixed points of S.
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Now, for all u, v ∈ M with (u, v) ∈ R and t ∈ I, we have

S(u(t)) =
∫ t

0
g(t, r, u(r))dr + β(t) ≥ 1

⇒ S(u(t))S(v(t)) ≥ S(u(t))

so that by the definition of R, we have (Su, Sv) ∈ R, i.e., R is S-closed. By the definition of R, it is
clear thatR is also locally transitive. Furthermore, for any u ∈ M, (u, Su) ∈ R.
Next, for all u, v ∈ M with (u, v) ∈ R and t ∈ I, consider

|S(u(t))− S(v(t))| =

∣∣∣∣∫ t

0
(g(t, r, u(r))− g(t, r, v(r)))dr

∣∣∣∣
≤

∫ t

0
|(g(t, r, u(r))− g(t, r, v(r)))| dr

≤
∫ t

0

1
h‖u− v‖+ 1

(|u− v|e−t)etdr

≤ 1
h‖u− v‖+ 1

∫ t

0
‖u− v‖etdr

≤ ‖u− v‖
h‖u− v‖+ 1

et.

Thus, we obtain

|S(u(t))− S(v(t))|e−t ≤ ‖u− v‖
h‖u− v‖+ 1

, ∀t ∈ I.

Taking supremum over both the sides, we have

‖Su− Sv‖ ≤ ‖u− v‖
h‖u− v‖+ 1

,

−1
‖Su− Sv‖ ≤

−1
‖u− v‖ − h,

or
−1

ρ(Su, Sv)
≤ −1

ρ(u, v)
− h.

Now, define θ : (0, ∞) → (1, ∞) by θ(β) = ee
− 1

β , then θ ∈ Θ1,2,4. In addition, S satisfies
Equation (13) with this θ (and λ = e−h, h > 0). Therefore, all the requirements of Corollary 2 are
fulfilled. Consequently, S has a fixed point.

Next, we obtain a corresponding uniqueness result of Theorem 7 as follows.

Theorem 8. Besides the assumptions of Theorem 7, if Fix(S) ⊆ {u ∈ M : u(t) ≥ 1, ∀t ∈ I}, then the
solution of the integral in Equation (25) is unique.

Proof. Due to Theorem 7, the set Fix(S) is nonempty. Now, if Fix(S) ⊆ {u ∈ M : u(t) ≥ 1, ∀t ∈ I},
then, by the definition ofR, we have Fix(S) isRs-connected. Hence, Theorem 6 ensures that Fix(S)
is a singleton set. Thus, the solution of the integral in Equation (25) is unique. This establishes
our result.

6. Conclusions

In this paper, we present two fixed point results for a special class of multi-valued mappings
proposed by Baghani and Ramezani [23] via (θ,R)-contractions employing an amorphous binary
relation on metric spaces without completeness, which in turn generalize and extend the results
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obtained by Hançer et al. [22] in respect of underlying space, involved binary relation, and contractive
condition. Some illustrative examples are also furnished to exhibit the utility of our obtained results
besides deducing some relation-theoretic existence and uniqueness results for single-valued mappings.
In addition, we show the applicability of our results by investigating the existence and uniqueness
of a positive solution for Volterra type integral equation under some suitable conditions. For future
research, we propose to study these problems in relatively larger classes of metric spaces particularly
in semi-metric spaces and partial metric spaces.
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