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Abstract: In this paper, we study singular ϕ-Laplacian nonlocal boundary value problems with
a nonlinearity which does not satisfy the L1-Carathéodory condition. The existence, nonexistence
and/or multiplicity results of positive solutions are established under two different asymptotic
behaviors of the nonlinearity at ∞.
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1. Introduction

Consider the following singular ϕ-Laplacian boundary value problem (BVP)

(w(t)ϕ(u′(t)))′ + λh(t) f (t, u(t)) = {0, t ∈ (0, 1), (1)

u(0) =
∫ 1

0
u(r)dα1(r), u(1) =

∫ 1

0
u(r)dα2(r), (2)

where w ∈ C([0, 1], (0, ∞)), ϕ : R→ R is an odd increasing homeomorphism, λ ∈ [0, ∞) is a parameter,
h ∈ C((0, 1), (0, ∞)) and f ∈ C([0, 1]× (0, ∞),R).

Throughout this paper, the following hypotheses are assumed, unless otherwise stated.

(A1) there exist increasing homeomorphisms ψ1, ψ2 : [0, ∞)→ [0, ∞) such that

ϕ(x)ψ1(y) ≤ ϕ(yx) ≤ ϕ(x)ψ2(y) for all x, y ∈ [0, ∞). (3)

(A2) For i = 1, 2, αi is monotone increasing on [0, 1] satisfying

α̂i := αi(1)− αi(0) ∈ [0, 1).

All integrals in (2) are meant in the sense of Riemann-Stieljes. By a solution u to BVP (1) and (2),
we mean u ∈ C1(0, 1) ∩ C[0, 1] with wϕ(u′) ∈ C1(0, 1) satisfies the Equation (1) and the boundary
conditions (2).

The condition (A1) on the odd increasing homeomorphism ϕ was first introduced by Wang
in [1] where the existence, nonexistence and/or multiplicity of positive solutions to quasilinear elliptic
equations were studied. Later on, the condition (A1) was weakened by some researchers. For example,
Karakostas ([2,3]) introduced a sup-multiplicative-like function as an odd increasing homeomorphism
ϕ satisfies the following condition.

(F1) There exists an increasing homeomorphism ψ1 : [0, ∞)→ [0, ∞) such that

ϕ(x)ψ1(y) ≤ ϕ(xy) for all x, y ∈ [0, ∞). (4)
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The author investigated several sufficient conditions for the existence of positive solutions to the one
dimensional ϕ-Laplacian equation with deviated arguments. Any function of the form

ϕ(s) =
n

∑
k=1

ck|s|pk−2s

is sup-multiplicative-like, where ck ≥ 0 and pk ∈ (1, ∞) for 1 ≤ k ≤ n and c1cn > 0 for some n ∈ N
(see, e.g., [2,4]). Lee and Xu ([5,6]) generalized the condition (A1) to the one with ψ2 is a function
not requiring that ψ2(0) = 0 and studied the existence of positive solutions to singularly weighted
nonlinear systems. In [7], it was pointed out that the condition (A1) is equivalent to the one (F1).
Consequently, the condition (A1) is equivalent to those in [2,3,5,6].

Due to a wide range of applications in mathematics and physics (see, e.g., [8–14]), p-Laplacian
or more generalized Laplacian problems have been extensively studied. For example, when ϕ(s) =
|s|p−2s for some p ∈ (1, ∞), w ≡ 1 and h ∈ Hϕ, Agarwal, Lü and O’Regan [15] investigated the
existence and multiplicity of positive solutions to BVP (1) and (2) with α̂1 = α̂2 = 0 under various
assumptions on the nonlinearity f = f (t, u) at u = 0 and ∞. When ϕ(s) = s, w ≡ 1 and λ = 1,
Webb and Infante [16] considered problem (1) with various nonlocal boundary conditions involving
a Stieltjes integral with a signed measure and gave several sufficient conditions on the nonlinearity
f = f (t, u) for the existence and multiplicity of positive solutions via fixed point index theory. When
ϕ(s) = |s|p−2s for some p ∈ (1, ∞), w ≡ 1, λ = 1 and h ∈ Hϕ, Kim [17] investigated sufficient
conditions on the nonlinearity f = f (t, u) for the existence and multiplicity of positive solutions to
problem (1) with multi-point boundary conditions.

Xu, Qin and Li [18] studied the following three-point boundary value problem{
(ϕp(u′(t))′ + λg(u(t)) + k(u(t)) = 0, t ∈ (0, 1),
u(0) = 0, u(1) = u(η),

(5)

where p > 1, ϕp(s) = |s|p−2s, η ∈ (0, 1) and g, h ∈ C([0, ∞), [0, ∞)) are strictly increasing. Under the
suitable assumptions on g and k such that g is p-sublinear at 0 and k is p-superlinear at ∞, the exact
number of pseudo-symmetric positive solutions to problem (5) was studied.

Recently, Son and Wang [19] considered the following p-Laplacian system with nonlinear
boundary conditions {

(ϕp(u′i))
′ + λhi(t) fi(uj) = 0, t ∈ (0, 1),

ui(0) = 0 = aiu′i(1) + ci(λ, uj(1), ui(1))ui(1),
(6)

where i, j ∈ {1, 2}, i 6= j, ϕp(s) = |s|p−2s for some p ∈ (1, ∞), ci = ci(λ, r, s)s is nondecreasing for
s ∈ (0, ∞) and fi ∈ C((0, ∞),R). Under several assumptions on hi and fi, the existence and multiplicity
of positive solutions to problem (6) were shown.

Bachouche, Djebali and Moussaoui [20] considered the following ϕ-Laplacian problem with
nonlocal boundary conditions involving bounded linear operators L0, L1{

(ϕ(u′))′ + λ f (t, u, u′) = 0, t ∈ (0, 1),

u(0) = L0(u), u(1) = L1(u).
(7)

Here ϕ satisfies the following inequality

ϕ(sx) ≤ ϕ(s)ϕ(x) for all s, x ∈ [0, ∞)

and the nonlinearity f = f (t, u, v) satisfies L1-Carathéodory condition. The authors showed
the existence of a positive solution or a nonnegative solution to problem (7).
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For more general ϕ which does not satisfy (A1), Kaufmann and Milne [21] considered BVP (1)
and (2) with α̂1 = α̂2 = 0, 0 ≤ h ∈ L1(0, 1) with h 6≡ 0 and f = f (u) ∈ C(R+,R+) and showed
the existence of a positive solution for all λ > 0 under the assumptions on the nonlinearity f which
induce the sublinear nonlinearity provided ϕ(s) = |s|p−1s with p > 1. Recently, for an odd increasing
homeomorphism ϕ satisfying (A1), Kim and Jeong [4] studied various existence results for positive
solutions to BVP (1) and (2) with λ = 1. For other interesting results, we refer the reader to [22–47]
and the references therein.

Let ξ : [0, ∞)→ [0, ∞) be an increasing homeomorphism. Then we denote byHξ the set{
g ∈ C((0, 1), (0, ∞)) :

∫ 1

0
ξ−1

(∣∣∣∣∣
∫ 1

2

s
g(τ)dτ

∣∣∣∣∣
)

ds < ∞

}
.

It is well known that

ϕ−1(x)ψ−1
2 (y) ≤ ϕ−1(xy) ≤ ϕ−1(x)ψ−1

1 (y) for all x, y ∈ R+ (8)

and
L1(0, 1) ∩ C(0, 1) ⊆ Hψ1 ⊆ Hϕ ⊆ Hψ2

(see, e.g., ([7], Remark 1)).
Recall that we say that g : (0, 1)× [0, ∞)→ R satisfies L1-Carathéodory condition if

(i) g(·, u) is measurable for all u ∈ [0, ∞);
(ii) g(t, ·) is continuous for almost all u ∈ [0, ∞);
(iii) for every r > 0, there exists hr ∈ L1(0, 1) such that

|g(t, u)| ≤ hr(t) for a.e. t ∈ (0, 1) and all u ∈ [0, r].

Throughout this paper, we assume h ∈ Hϕ. Since there may be a function h ∈ Hϕ \ L1(0, 1)
(see, e.g., Remark 2 below), the nonlinearity h(t) f (t, u) in the equation (1) may not satisfy the
L1-Carathéodory condition. Consequently, the solution space should be taken as C[0, 1], since the
solutions to BVP (1) and (2) may not be in C1[0, 1] unlike References [20–22] where the nonlinearity
satisfies the L1-Carathéodory condition. The lack of solution regularity and the boundary conditions
(2) make it difficult to get the desired result.

The rest of this article is organized as follows. In Section 2, we give some preliminaries which are
crucial for proving the main results in this paper. In Section 3, the main results (Theorems 2–4) are
proved and some examples which illustrate the main results are given. Finally, the summary of this
paper is given in Section 4.

2. Preliminaries

Throughout this section, we assume that (A1), (A2), f ∈ C([0, 1] × [0, ∞), (0, ∞)) and h ∈
Hϕ hold. The usual maximum norm in a Banach space C[0, 1] of continuous functions on [0, 1]
is denoted by

‖u‖∞ := max
t∈[0,1]

|u(t)| for u ∈ C[0, 1],

and let

K := {u ∈ P : u(t) ≥ ρw‖u‖∞ for t ∈ [α, β] and u satisfies (2) }

be a cone in C[0, 1]. Here, P := C([0, 1], [0, ∞)), α and β are any fixed constants satisfying
0 < α < β < 1, w0 := min

t∈[0,1]
w(t) > 0 and
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ρw := min{α, 1− β}ψ−1
2

(
1
‖w‖∞

) [
ψ−1

1

(
1

w0

)]−1
∈ (0, 1].

For r > 0, let

Kr := {u ∈ K : ‖u‖∞ < r}, ∂Kr := {u ∈ K : ‖u‖∞ = r}

and

Kr := Kr ∪ ∂Kr.

Now, we introduce a solution operator related to BVP (1) and (2). Let (λ, u) ∈ (0, ∞)× K be
given. Define functions ν1

λ,u, ν2
λ,u : (0, 1)→ (−∞, ∞) by, for x ∈ (0, 1),

ν1
λ,u(x) = A1

∫ 1

0

∫ r

0
Iλ,u(s, x)dsdα1(r) +

∫ x

0
Iλ,u(s, x)ds

and

ν2
λ,u(x) = −A2

∫ 1

0

∫ 1

r
Iλ,u(s, x)dsdα2(r)−

∫ 1

x
Iλ,u(s, x)ds.

Here

Ai := (1− α̂i)
−1 ∈ [1, ∞) for i = 1, 2

and

Iλ,u(s, x) = ϕ−1
(

λ

w(s)

∫ x

s
h(τ) f (τ, u(τ))dτ

)
.

Remark 1. We give the properties of Iλ,u for any given (λ, u) ∈ (0, ∞)×K as follows.

(1) Iλ,u(x, y) > 0 and Iλ,u(y, x) < 0 for any x, y satisfying 0 < x < y < 1.
(2) Iλ,u(s, x1) < Iλ,u(s, x2) for any s ∈ (0, 1) and 0 < x1 < x2 < 1.
(3) Let x ∈ (0, 1) be given. Then Iλ,u(·, x) ∈ L1(0, 1). Moreover, for any ε ∈ [0, min{x, 1− x}), there

exists C∗ = C∗(x, ε, λ, u) > 0 satisfying

∫ 1

0
|Iλ,u(s, x)| ds ≤ C∗. (9)

Indeed, by (8),

∫ 1

0
|Iλ,u(s, x)| ds

=
∫ x

0
|Iλ,u(s, x)| ds +

∫ 1

x
|Iλ,u(s, x)| ds

=
∫ x

0
ϕ−1

(
λ

w(s)

∫ x

s
h(τ) f (τ, u(τ))dτ

)
ds +

∫ 1

x
ϕ−1

(
λ

w(s)

∫ s

x
h(τ) f (τ, u(τ))dτ

)
ds

≤
∫ x

0
ϕ−1

(
λMu

w0

∫ x

s
h(τ)dτ

)
ds +

∫ 1

x
ϕ−1

(
λMu

w0

∫ s

x
h(τ)dτ

)
ds

≤ ψ−1
1

(
λMu

w0

) [∫ x+ε

0
ϕ−1

(∫ x+ε

s
h(τ)dτ

)
ds +

∫ 1

x−ε
ϕ−1

(∫ s

x−ε
h(τ)dτ

)
ds
]
=: C∗.

Here
Mu := max{ f (x, u(x)) : x ∈ [0, 1]} > 0.

The following lemmas (Lemmas 1–3) can be proved by the similar arguments in [4] (Section 2)
and [39] (Section 2). For the sake of completeness, we give the proofs of them.
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Lemma 1. Assume that (A1), (A2), f ∈ C([0, 1] × [0, ∞), (0, ∞)) and h ∈ Hϕ hold, and let (λ, u) ∈
(0, ∞)×K be given. Then there exists a unique point σ = σ(λ, u) ∈ (0, 1) satisfying

ν1
λ,u(σ) = ν2

λ,u(σ).

Proof. From Remark 1, it follows that ν1
λ,u is a strictly increasing continuous function on (0, 1) and

ν2
λ,u is a strictly decreasing continuous function on (0, 1).

Next, we prove
lim

x→0+
ν1

λ,u(x) ∈ [−∞, 0].

In order to show it, we rewrite ν1
λ,u(x) by, for x ∈ (0, 1),

ν1
λ,u(x) = A1

(∫ 1

0

∫ r

0
Iλ,u(s, x)dsdα1(r) +

(
1−

∫ 1

0
dα1(r)

) ∫ x

0
Iλ,u(s, x)ds

)
= A1

(∫ 1

0

∫ r

x
Iλ,u(s, x)dsdα1(r) +

∫ x

0
Iλ,u(s, x)ds

)
.

For any x ∈ (0, 1), by Remark 1 (1),

∫ 1

0

∫ r

x
Iλ,u(s, x)dsdα1(r)

= −
∫ x

0

∫ x

r
Iλ,u(s, x)dsdα1(r) +

∫ 1

x

∫ r

x
Iλ,u(s, x)dsdα1(r) ≤ 0,

which implies

ν1
λ,u(x) ≤ A1

∫ x

0
Iλ,u(s, x)ds for any x ∈ (0, 1). (10)

By (8), for any x ∈ (0, 1/2),

0 ≤
∫ x

0
Iλ,u(s, x)ds =

∫ x

0
ϕ−1

(
λ

w(s)

∫ x

s
h(τ) f (τ, u(τ))dτ

)
≤ ψ−1

1

(
λMu

w0

) ∫ x

0
ϕ−1

(∫ 1
2

s
h(τ)dτ

)
ds,

where
Mu = max{ f (x, u(x)) : x ∈ [0, 1]} > 0.

From h ∈ Hϕ, it follows that

lim
x→0+

∫ x

0
Iλ,u(s, x)ds = 0.

Combining this and (10) yields

lim
x→0+

ν1
λ,u(x) ∈ [−∞, 0].

Next we will show
lim

x→1−
ν1

λ,u(x) ∈ (0, ∞].
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For any x ∈ (0, 1),

ν1
λ,u(x) = A1

[ ∫ x

0

∫ r

0
Iλ,u(s, x)dsdα1(r)

+
∫ 1

x

∫ x

0
Iλ,u(s, x)dsdα1(r) +

∫ 1

x

∫ r

x
Iλ,u(s, x)dsdα1(r)

]
+
∫ x

0
Iλ,u(s, x)ds.

From

λh(τ) f (τ, u(τ)) > 0 for any τ ∈ (0, 1),

it follows that

lim
x→1−

∫ x

0
Iλ,u(s, x)ds = lim

x→1−

∫ x

0
ϕ−1

(
λ

w(s)

∫ x

s
h(τ) f (τ, u(τ))dτ

)
∈ (0, ∞].

For any x ∈ (0, 1), ∫ x

0

∫ r

0
Iλ,u(s, x)dsdα1(r) +

∫ 1

x

∫ x

0
Iλ,u(s, x)dsdα1(r) > 0.

For any x > 1/2, by (8),∣∣∣∣∫ 1

x

∫ r

x
Iλ,u(s, x)dsdα1(r)

∣∣∣∣ =
∫ 1

x

∫ r

x
ϕ−1

(
λ

w(s)

∫ s

x
h(τ) f (τ, u(τ))dτ

)
dsdα1(r)

≤ ψ−1
1

(
λMu

w0

) ∫ 1

x

∫ 1

x
ϕ−1

(∫ s

1
2

h(τ)dτ

)
dsdα1(r)

≤ ψ−1
1

(
λMu

w0

) ∫ 1

x
dα1(r)

∫ 1

x
ϕ−1

(∫ s

1
2

h(τ)dτ

)
ds.

Combining this and the fact h ∈ Hϕ yields

lim
x→1−

∫ 1

x

∫ r

x
Iλ,u(s, x)dsdα1(r) = 0.

Consequently
lim

x→1−
ν1

λ,u(x) ∈ (0, ∞].

Similarly, it can be shown that

lim
x→0+

ν2
λ,u(x) ∈ (0, ∞] and lim

x→1−
ν2

λ,u(x) ∈ [−∞, 0].

Thus, by continuity and strict monotonicity of ν1
λ,u and ν2

λ,u, there exists a unique point σ ∈ (0, 1)
satisfying

ν1
λ,u(σ) = ν2

λ,u(σ).

Define an operator T : [0, ∞)×K → C[0, 1] by

T(0, u) = 0 for u ∈ K,

and for (λ, u) ∈ (0, ∞)×K,

T(λ, u)(t) =

{
A1
∫ 1

0

∫ r
0 Iλ,u(s, σ)dsdα1(r) +

∫ t
0 Iλ,u(s, σ)ds, if 0 ≤ t ≤ σ,

−A2
∫ 1

0

∫ 1
r Iλ,u(s, σ)dsdα2(r)−

∫ 1
t Iλ,u(s, σ)ds, if σ ≤ t ≤ 1,

(11)
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where σ = σ(λ, u) is the unique point satisfying ν1
λ,u(σ) = ν2

λ,u(σ) in Lemma 1. By the definition of
σ = σ(λ, u), T is well defined and

T(λ, u)(σ) = ν1
λ,u(σ).

Moreover, T(λ, u) is strictly increasing on [0, σ) and is strictly decreasing on (σ, 1].

Lemma 2. Assume that (A1), (A2), f ∈ C([0, 1]× [0, ∞), (0, ∞)) and h ∈ Hϕ hold. Then

T(λ, u) ∈ K for any (λ, u) ∈ [0, ∞)×K

and

T(λ, u)(σ) = ‖T(λ, u)‖∞ > 0 for any (λ, u) ∈ (0, ∞)×K.

Moreover, u is a positive solution to BVP (1) and (2) if and only if T(λ, u) = u for some (λ, u) ∈ (0, ∞)×K.

Proof. First, we show that

T(λ, u) ∈ K for any (λ, u) ∈ [0, ∞)×K.

Clearly,

T(0, u) = 0 ∈ K for any u ∈ K.

Let (λ, u) ∈ (0, ∞)×K be given. Then, by (11),

(T(λ, u))′(s) = Iλ,u(s, σ) for s ∈ (0, 1),

which implies, for r ∈ [0, 1],

T(λ, u)(r) = T(λ, u)(0) +
∫ r

0
Iλ,u(s, σ)ds. (12)

Since

T(λ, u)(0) = A1

∫ 1

0

∫ r

0
Iλ,u(s, σ)dsdα1(r)

=
1

1− α̂1

∫ 1

0

∫ r

0
Iλ,u(s, σ)dsdα1(r),

integrating (12) from 0 to 1,

∫ 1

0
T(λ, u)(r)dα1(r) =

∫ 1

0
T(λ, u)(0)dα1(r) +

∫ 1

0

∫ r

0
Iλ,u(s, σ)dsdα1(r)

= α̂1T(λ, u)(0) + (1− α̂1)T(λ, u)(0)

= T(λ, u)(0).

Similarly, it can be shown that

T(λ, u)(1) =
∫ 1

0
T(λ, u)(r)dα2(r).

Thus T(λ, u) satisfies the boundary conditions (2). Since T(λ, u) is strictly increasing on [0, σ) and is
strictly decreasing on (σ, 1],

T(λ, u)(t) ≥ min{T(λ, u)(0), T(λ, u)(1)} for t ∈ [0, 1].

We only consider the case

min{T(λ, u)(t) : 0 ≤ t ≤ 1} = T(λ, u)(0),
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since the case
min{T(λ, u)(t) : 0 ≤ t ≤ 1} = T(λ, u)(1)

is similar. Then

T(λ, u)(0) =
∫ 1

0
T(λ, u)(r)dα1(r) ≥ α̂1T(λ, u)(0),

which implies
T(λ, u)(0) ≥ 0,

since

α̂1 =
∫ 1

0
dα1(r) ∈ [0, 1).

Consequently,

T(λ, u)(t) ≥ 0 for all t ∈ [0, 1], i.e., T(λ, u) ∈ P .

Clearly
T(λ, u)(σ) = ‖T(λ, u)‖∞ > 0,

since T(λ, u) is strictly increasing on [0, σ) and is strictly decreasing on (σ, 1].
For t ∈ [0, σ], by (8),

T(λ, u)(t) = T(λ, u)(0) +
∫ t

0
ϕ−1

(
λ

w(s)

∫ σ

s
h(τ) f (τ, u(τ))dτ

)
ds

≥ T(λ, u)(0) + ψ−1
2

(
1
‖w‖∞

)
q1(t). (13)

Here

q1(t) :=
∫ t

0
ϕ−1

(
λ
∫ σ

s
h(τ) f (τ, u(τ))dτ

)
ds for t ∈ [0, σ].

Similarly,

‖T(λ, u)‖∞ = T(λ, u)(σ) ≤ T(λ, u)(0) + ψ−1
1

(
1

w0

)
q1(σ). (14)

Since

q′1(t) = ϕ−1
(

λ
∫ σ

t
h(τ) f (τ, u(τ))dτ

)
> 0 for t ∈ (0, σ),

q′1 is a strictly decreasing function on (0, σ]. Consequently, q1 is a strictly increasing concave function
on [0, σ] with q1(0) = 0, so that

q1(t) ≥ tq1(σ) for t ∈ [0, σ].

Consequently, by (13) and (14),

T(λ, u)(t)− T(λ, u)(0) ≥ ψ−1
2

(
1
‖w‖∞

)
q1(t)

≥ tψ−1
2

(
1
‖w‖∞

)
q1(σ)

≥ tρ1(‖T(λ, u)‖∞ − T(λ, u)(0)),

where

ρ1 := ψ−1
2

(
1
‖w‖∞

) [
ψ−1

1

(
1

w0

)]−1
∈ (0, 1].
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Consequently, for t ∈ [0, σ],

T(λ, u)(t) ≥ ρ1t‖T(λ, u)‖∞ + (1− ρ1t)T(λ, u)(0)

≥ ρ1t‖T(λ, u)‖∞.

Similarly, it can be shown that

T(λ, u)(t) ≥ ρ1(1− t)‖T(λ, u)‖∞ for t ∈ [σ, 1].

Then
T(λ, u)(t) ≥ ρ1 min{t, 1− t}‖T(λ, u)‖∞ for t ∈ [0, 1], (15)

and consequently

T(λ, u)(t) ≥ ρw‖T(λ, u)‖∞ for t ∈ [α, β],

i.e.,

T(λ, u) ∈ K.

Assume that

T(λ, u) = u for some (λ, u) ∈ (0, ∞)×K.

From direct differentiation and the definition of K, it follows that u is a nonnegative solution to BVP
(1) and (2). Since λ > 0, T(λ, u) 6= 0, and by (15),

u(t) = T(λ, u)(t) > 0 for t ∈ (0, 1).

Consequently, u is a positive solution to BVP (1) and (2) with λ > 0.
Let uλ be a positive solution to BVP (1) and (2). Then

0 ≤ uλ(0) < ‖uλ‖∞.

Indeed, assume on the contrary that uλ(0) = ‖uλ‖∞ > 0. Since

0 ≤ uλ(0) =
∫ 1

0
uλ(r)dα1(r) ≤ α̂1‖uλ‖∞ = α̂1uλ(0).

Then ‖uλ‖∞ = uλ(0) = 0, which contradicts the fact that uλ is a positive solution to BVP (1) and (2).
Similarly, it can be shown that

0 ≤ uλ(1) < ‖uλ‖∞.

Consequently, there exists a point σλ ∈ (0, 1) satisfying

‖uλ‖∞ = uλ(σλ).

Integrating the Equation (1) with u = uλ yields

uλ(r) = uλ(0) +
∫ r

0
Iλ,uλ

(s, σλ)ds = uλ(1)−
∫ 1

r
Iλ,uλ

(s, σ)ds for r ∈ [0, 1].

By boundary conditions (2) with u = uλ,

uλ(0) = A1

∫ 1

0

∫ r

0
I1
λ,uλ

(s, σλ)dsdα1(r)

and

uλ(1) = −A2

∫ 1

0

∫ 1

r
I1
λ,uλ

(s, σλ)dsdα2(r).
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Consequently
uλ ≡ T(λ, uλ) ∈ K.

Clearly λ > 0, since

T(0, u) = 0 for all u ∈ K.

Thus, the proof is complete.

Lemma 3. Assume that (A1), (A2), f ∈ C([0, 1]× [0, ∞), (0, ∞)) and h ∈ Hϕ hold. Let L > 0 be given and
let (λn, un) be a bounded sequence in (0, ∞)×K with

|λn|+ ‖un‖∞ ≤ L.

If lim
n→∞

σn ∈ {0, 1}, then

T(λn, un)(σn) = ‖T(λn, un)‖∞ → 0

and

λn → 0 as n→ ∞.

Here σn = σ(λn, un) is the unique point satisfying

ν1
λn ,un

(σn) = ν2
λn ,un

(σn) for each n ∈ N.

Proof. We only prove the case
lim

n→∞
σn = 0,

since the case lim
n→∞

σn = 1 can be dealt similarly. Since there exist positive constants N1, N2 satisfying

λnN1 ≤ λn f (t, u) ≤ N2 for all (t, u) ∈ [0, 1]× [0, L] and all n,

by (8) and (10),

‖T(λn, un)‖∞ = A1

∫ 1

0

∫ r

0
Iλn ,un(s, σn)dsdα1(r) +

∫ σn

0
Iλn ,un(s, σn)ds

≤ A1

∫ σn

0
Iλn ,un(s, σn)ds

≤ A1ψ−1
1

(
N2

w0

) ∫ σn

0
ϕ−1

(∫ σn

s
h(τ)dτ

)
ds.

Then, from h ∈ Hϕ, it follows that

‖T(λn, un)‖∞ → 0 as n→ ∞. (16)

Since T(λn, un)(1) ≥ 0 for all n, by (8),

‖T(λn, un)‖∞ = T(λn, un)(σN)

= T(λn, un)(1)−
∫ 1

σn
Iλn ,un(s, σn)ds

≥ −
∫ 1

σn
Iλn ,un(s, σn)ds

=
∫ 1

σn
ϕ−1

(
λn

w(s)

∫ s

σn
h(τ) f (τ, un(τ))dτ

)
ds

≥ ψ−1
2

(
λnN1

‖w‖∞

) ∫ 1

σn
ϕ−1

(∫ s

σn
h(τ)dτ

)
ds ≥ 0.
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Since h(t) > 0 for all t ∈ (0, 1), by (16),

λn → 0 as n→ ∞.

Using Lemma 3 and (8), by the similar arguments in the proof of [17] (Lemma 2.4) and [48]
(Lemma 3.3) , one can prove the complete continuity of the operator T = T(λ, u). We only state the
result as follows.

Lemma 4. Assume that (A1), (A2), f ∈ C([0, 1] × [0, ∞), (0, ∞)) and h ∈ Hϕ hold. Then the operator
T : [0, ∞)×K → K is completely continuous, i.e., compact and continuous.

We recall a well-known theorem for the existence of a global continuum of solutions by Leray and
Schauder [49]:

Theorem 1. (see, e.g., [50] (Corollary 14.12)) Let X be a Banach space with X 6= {0} and let K be a cone in
X. Consider

x = T(λ, x), (17)

where λ ∈ [0, ∞) and u ∈ K. If T : [0, ∞)×K → K is completely continuous and T(0, u) = 0 for all u ∈ K,
there exists an unbounded solution component C of (17) in [0, ∞)×K emanating from (0, 0).

Since

T(0, u) = 0 for all u ∈ K,

by Lemmas 2–4 and Theorem 1, one has the following proposition.

Proposition 1. Assume that (A1), (A2), f ∈ C([0, 1]× [0, ∞), (0, ∞)) and h ∈ Hϕ hold. Then there exists
an unbounded solution component C emanating from (0, 0) in [0, ∞)×K satisfying (i) C ∩ ({0} × K) =

{(0, 0)} and (ii) for any (λ, u) ∈ C \ {(0, 0)}, u is a positive solution to BVP (1) and (2) with λ > 0.

3. Main Results

First, we give a list of hypotheses on f = f (t, s) which are used in this section:

(F0) lim
s→∞

min
t∈[0,1]

f (t, s)
ψ1(s)

= 0.

(F′0) lim
s→∞

max
t∈[0,1]

f (t, s)
ϕ(s)

= 0.

(F∞) There exists a nondegenerate interval [α, β] ⊆ (0, 1) satisfying

lim
s→∞

min
t∈[α,β]

f (t, s)
ϕ(s)

= ∞.

For convenience, let

γ :=
α + β

2
.

Since α and β are any fixed constants in the cone K satisfying 0 < α < β < 1,

0 < α < γ < β < 1.

When we need the assumption (F∞), let α and β in the cone K be the same constants in the assumption
(F∞).
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Lemma 5. Assume that (A1), (A2), f ∈ C([0, 1]× [0, ∞), (0, ∞)), (F∞) and h ∈ Hϕ hold. Then there exists
λ̄ > 0 such that BVP (1) and (2) has no positive solutions for any λ > λ̄.

Proof. Let u be a positive solution to BVP (1) and (2) with λ > 0 and let σ ∈ (0, 1) be the unique point
satisfying u(σ) = ‖u‖∞. Since f ∈ C([0, 1]× [0, ∞), (0, ∞)), by (F∞), there exists Ĉ > 0 satisfying

f (t, s) > Ĉϕ(s) for (t, s) ∈ [α, β]× [0, ∞).

We only give the proof for the case σ ≥ γ, since the case σ < γ can be dealt similarly. Then

u(t) ≥ u(α) for t ∈ [α, γ],

which implies

f (t, u(t)) > Ĉϕ(u(t)) ≥ Ĉϕ(u(α)) for t ∈ [α, γ].

By Lemma 2 and (8),

u(α) = u(0) +
∫ α

0
Iλ,u(s, σ)ds

≥
∫ α

0
ϕ−1

(
λ

w(s)

∫ σ

s
h(τ) f (τ, u(τ))dτ

)
ds

≥
∫ α

0
ϕ−1

(
λ

w(s)

∫ γ

α
h(τ) f (τ, u(τ))dτ

)
ds

≥
∫ α

0
ϕ−1

(∫ γ

α
h(τ)dτ

λĈϕ(u(α))
‖w‖∞

)
ds

≥
∫ γ

α
ϕ−1

(∫ γ

α
h(τ)dτϕ(u(α))

)
dsψ−1

2 (
λĈ
‖w‖∞

)

≥
∫ γ

α
ϕ−1

(∫ γ

α
h(τ)dτ

)
dsψ−1

2

(
λĈ
‖w‖∞

)
u(α)

≥ Chψ−1
2

(
λĈ
‖w‖∞

)
u(α).

Here

Ch := min
{∫ γ

α
ϕ−1

(∫ γ

α
h(τ)dτ

)
ds,
∫ β

γ
ϕ−1

(∫ β

γ
h(τ)dτ

)
ds
}

> 0.

Thus

λ ≤ ψ2

(
1

Ch

)
‖w‖∞

Ĉ
=: λ̄.

Lemma 6. Assume that (A1), (A2), f ∈ C([0, 1] × [0, ∞), (0, ∞)), (F∞) and h ∈ Hϕ hold. Let I > 0
be given. Then there exists MI > 0 such that ‖u‖∞ ≤ MI for any positive solutions u to BVP (1) and (2) with
λ ∈ [I, ∞).

Proof. Suppose to the contrary that there exists a sequence {(λn, un)} satisfying un is a positive
solutions to BVP (1) and (2) with λ = λn ∈ [I, ∞) and ||un||∞ → ∞ as n→ ∞.

Take

C∗ =
‖w‖∞ψ2(α

−1)

(γ− α)Ih0
+ 1,

where
h0 := min{h(t) : t ∈ [α, β]} > 0.
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By (F∞), there exists K > 0 such that

f (t, s) > C∗ϕ(s) for (t, s) ∈ [α, β]× (K, ∞).

By Lemma 2,

un(t) ≥ ρw‖un‖∞ for t ∈ [α, β].

Then, for sufficiently large N > 0,

uN(t) ≥ K for t ∈ [α, β],

which implies

λNh(t) f (t, uN(t)) ≥ Ih0C∗ϕ(uN(t)) for all t ∈ [α, β].

Let σN ∈ (0, 1) be a unique point satisfying

uN(σN) = ‖uN‖∞.

We only consider the case σN ≥ γ, since the case σN < γ can be dealt in a similar manner. By (8) and
the fact that

uN(t) ≥ uN(α) for t ∈ [α, σN ],

one has

uN(α) = uN(0) +
∫ α

0
ϕ−1

(
λN

w(s)

∫ σN

s
h(τ) f (τ, uN(τ))dτ

)
ds

≥
∫ α

0
ϕ−1

(
λN

w(s)

∫ γ

α
h(τ) f (τ, uN(τ))dτ

)
ds

≥ αϕ−1(‖w‖−1
∞ (γ− α)Ih0C∗ϕ(uN(α)))

≥ αψ−1
2 (‖w‖−1

∞ (γ− α)Ih0C∗)uN(α),

which implies

C∗ ≤ ‖w‖∞ψ2(α
−1)

(γ− α)Ih0
.

However, this contradicts the choice of C∗. Thus the proof is complete.

Theorem 2. Assume that (A1), (A2), f ∈ C([0, 1]× [0, ∞), (0, ∞)), (F∞) and h ∈ Hϕ hold. Then there
exists λ∗ > 0 such that BVP (1) and (2) has at least two positive solutions u1

λ and u2
λ for λ ∈ (0, λ∗), at least

one positive solution for λ = λ∗ and no positive solutions for λ > λ∗. Moreover, for λ ∈ (0, λ∗), two positive
solutions u1

λ and u2
λ satisfy

‖u1
λ‖∞ → 0 and ‖u2

λ‖∞ → ∞ as λ→ 0+.

Proof. Set

λ∗ := sup{λ̂ > 0 : BVP (1) and (2) has at least two positive solution for all λ ∈ (0, λ̂)}.

Then, by Proposition 1, Lemmas 5 and 6, λ∗ ∈ (0, ∞) is well-defined. Indeed, let {(λn, un)} be a
sequence in the unbounded solution component C defined in Proposition 1 satisfying

λn + ‖un‖∞ → ∞ as n→ ∞.

By Lemma 5,
λn ≤ λ̄,

which implies
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‖un‖∞ → ∞ as n→ ∞.

From Lemma 6, it follows that λn → 0+ as n→ ∞. Consequently, the shape of the continuum of C is
determined, so that BVP (1) and (2) has two positive solutions u1

λ, u2
λ for all small λ > 0 such that

‖u1
λ‖∞ → 0 and ‖u2

λ‖∞ → ∞ as λ→ 0+.

By Lemma 5, there are no positive solutions to BVP (1) and (2) for all λ > λ̄. Thus, λ∗ ∈ (0, ∞) is
well-defined.

By the definition of λ∗, BVP (1) and (2) has at least two positive solutions for λ ∈ (0, λ∗).
Let {(λn, un)} be a sequence such that

un = T(λn, un) for each n and λn → λ∗ as n→ ∞.

By the compactness of T and Lemma 5, there exists a subsequence, say it again {(λn, un)}, satisfying

un = T(λn, un)→ u∗ in C[0, 1] as n→ ∞.

Since

(λn, un)→ (λ∗, u∗) in [0, ∞)×K,

from the continuity of T, it follows that

u∗ = T(λ∗, u∗).

Thus BVP (1) and (2) has at least one positive solution for λ = λ∗.
To complete the proof of Theorem 2, it suffices to show that there are no positive solutions to BVP

(1) and (2) for λ > λ∗. Assume on the contrary that there exists λ1 ∈ (λ∗, ∞) such that BVP (1) and (2)
has a positive solution u1 for λ = λ1. We will show that there are two positive solutions to BVP (1) and
(2) for all λ ∈ (0, λ1), which contradicts the definition of λ∗.

Let λ ∈ (0, λ1) be fixed and set

ε =
1
2

(
λ1

λ
− 1
)

min
t∈[0,1]

f (t, u1(t)) > 0.

By the continuity of f = f (t, s), there exists δ = δ(λ) > 0 such that if x, y ∈ [0, ‖u1‖ + 1] and
|x− y| < 2δ, then

| f (t, x)− f (t, y)| < ε, t ∈ [0, 1].

We claim that β(t) = u1(t) + δ satisfies

(w(t)ϕ(β′(t)))′ + λh(t) f (t, β(t)) < 0, t ∈ (0, 1). (18)

Indeed, assume on the contrary that β does not satisfy (18), i.e., there exists t0 ∈ (0, 1) such that

(w(t0)ϕ(β′(t0)))
′ + λh(t0) f (t0, β(t0)) ≥ 0.

Since β′(t) = u′1(t) for all t ∈ (0, 1),

λh(t0) f (t0, β(t0)) ≥ −(w(t0)ϕ(β′(t0)))
′

= −(w(t0)ϕ(u′1(t0)))
′

= λ1h(t0) f (t0, u1(t0)),

which implies

f (t0, β(t0)) ≥
λ1

λ
f (t0, u1(t0)). (19)



Mathematics 2020, 8, 680 15 of 25

From
|β(t0)− u1(t0)| = δ < 2δ,

it follows that

ε + f (t0, u1(t0)) > f (t0, β(t0)).

Consequently, by (19),

ε ≥
(

λ1

λ
− 1
)

f (t0, u1(t0)),

which contradicts the choice of ε. Thus, β(t) = u1(t) + δ satisfies (18).
Consider the following modified problem{

(w(t)ϕ(u′(t)))′ + λh(t) f (t, γ(t, u(t))) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0 u(r)dα1(r), u(1) =
∫ 1

0 u(r)dα2(r),
(20)

where γ : [0, 1]×R→ R is defined by, for t ∈ [0, 1],

γ(t, s) =


β(t), if s ≥ β(t),

s, if 0 < s < β(t),

0, if s ≤ 0.

Let u be a positive solution to problem (20). We show that u(t) ≤ β(t) for t ∈ [0, 1]. If not, there
exists t0 ∈ [0, 1] satisfying

x(t0) = max{x(t) : t ∈ [0, 1]} > 0,

where

x(t) = u(t)− β(t) for t ∈ [0, 1].

If α̂1 = 0, then u(0) = 0 < δ = β(0) and x(0) < 0 < x(t0). If α̂1 ∈ (0, 1), then

x(0) = u(0)− β(0) = u(0)− (u1(0) + δ)

=
∫ 1

0
u(r)dα1(r)−

(∫ 1

0
u1(r)dα1(r) + δ

)
<

∫ 1

0
x(r)dα1(r) ≤ α̂1x(t0) < x(t0).

Similarly, x(1) < x(t0). Consequently, t0 ∈ (0, 1) and x′(t0) = 0, i.e.,

u′(t0) = β′(t0). (21)

For some t∗ ∈ (0, t0),
x(t∗) < x(t0) (22)

and x(t) > 0 for t ∈ [t∗, t0], i.e.,
u(t) > β(t), t ∈ [t∗, t0]. (23)

By (18) and (23), for t ∈ [t∗, t0],

−(w(t)ϕ(u′(t)))′ = λh(t) f (t, γ(t, u(t)))

= λh(t) f (t, β(t))

< −(w(t)ϕ(β′(t)))′.
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Integrating this from t to t0, by (21),

u′(t) ≤ β′(t) for t ∈ [t∗, t0).

Integrating it again from t∗ to t0,

u(t0)− u(t∗) ≤ β(t0)− β(t∗),

which contradicts (22). Thus

u(t) ≤ β(t) for t ∈ [0, 1],

which implies

γ(t, u(t)) = u(t) for all t ∈ [0, 1].

Consequently u is a positive solution to BVP (1) and (2).
Since α̂1 ∈ [0, 1), it is easy to see that u(0) < β(0) and u(1) < β(1). Indeed,

u(0) =
∫ 1

0
u(r)dα1(r)

≤
∫ 1

0
β(r)dα1(r) =

∫ 1

0
(u1(r) + δ)dα1(r) =

∫ 1

0
u1(r)dα1(r) + δα̂1

< u1(0) + δ = β(0).

Similarly, it can be shown that u(1) < β(1).
Set

Ω = {u ∈ C[0, 1] : − 1 < u(t) < β(t), t ∈ [0, 1]}.

Then Ω is a bounded open subset in C[0, 1]. We claim that u ∈ Ω ∩ K. Assume on the contrary that
there exist t1, t2 and δ1 > 0 such that

0 < t1 − δ1 < t1 ≤ t2 < t2 + δ1 < 1,

u(t) = β(t) for t ∈ [t1, t2]

and

u(t) < β(t) for t ∈ [t1 − δ1, t1) ∪ (t2, t2 + δ1].

Since β satisfies (18),

max{(w(t)ϕ(β′(t)))′ + λh(t) f (t, β(t)) : t ∈ [t1 − δ1, t2 + δ1]} =: −ε1 < 0. (24)

Set
ε2 =

ε1

λh∗
> 0, (25)

where
h∗ := max{h(t) : t ∈ [t1 − δ1, t2 + δ1]}.

Then there exists δ2 > 0 such that if |x− y| < δ2 and x, y ∈ [0, ||β||∞ + 1], then

| f (t, x)− f (t, y)| < ε2,

and there exists an interval [a, b] ⊂ (t1 − δ1, t2 + δ1) such that

(u− β)′(a) > 0, (u− β)′(b) < 0

and
−δ2 < γ(t, u(t))− β(t) = u(t)− β(t) ≤ 0, t ∈ [a, b].
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Consequently

w(a)[ϕ(u′(a))− ϕ(β′(a))] > 0, w(b)[ϕ(u′(b))− ϕ(β′(b))] < 0

and

f (t, γ(t, u(t))) = f (t, u(t)) < f (t, β(t)) + ε2, t ∈ [a, b].

Then, by (24) and (25),

0 > w(b)[ϕ(u′(b))− ϕ(β′(b))]− w(a)[ϕ(u′(a))− ϕ(β′(a))],

=
[
w(b)ϕ(u′(b))− w(a)ϕ(u′(a))

]
−
[
w(b)ϕ(β′(b))− ϕ(β′(a))

]
=

∫ b

a
((w(t)ϕ(u′(t)))′ − (w(t)ϕ(β′(t)))′)dt

=
∫ b

a
(−λh(t) f (t, γ(t, u(t)))− (w(t)ϕ(β′(t)))′)dt

>
∫ b

a
(−λh(t)[ f (t, β(t)) + ε2]− (w(t)ϕ(β′(t)))′)dt

=
∫ b

a

(
−λh(t)ε2 −

[
(w(t)ϕ(β′(t)))′ + λh(t) f (t, β(t))

])
dt

≥
∫ b

a
(−λε2h(t) + ε1)dt ≥

∫ b

a
(−λε2h∗ + ε1)dt = 0.

This is a contradiction. Thus u ∈ Ω ∩K.
Since BVP (1) and (2) is equivalent to problem (20) on Ω ∩K, by Lemmas 5 and 6 and the same

argument in the proof of [51] (Theorem 1.1), one can conclude that BVP (1) and (2) has at least two
positive solutions for λ∗ < λ < λ1. Thus the proof is complete.

Lemma 7. Assume that (A1), (A2), f ∈ C([0, 1] × [0, ∞), (0, ∞)), either (F0) and h ∈ Hϕ or (F′0) and
h ∈ Hψ1 hold. Let L > 0 be given. Then there exists ML > 0 such that ‖u‖∞ ≤ ML for any positive solutions
u to BVP (1) and (2) with λ ∈ [0, L].

Proof. We give the proof for the case that (F0) and h ∈ Hϕ, since the case (F′0) and h ∈ Hψ1 can be
proved in a similar manner.

Set
M := (4L)−1w0ψ1(h−1

∗ ) > 0,

where

h∗ = max
{

A1

∫ γ

0
ϕ−1

(∫ γ

s
h(τ)dτ

)
ds, A2

∫ 1

γ
ϕ−1

(∫ s

γ
h(τ)dτ

)
ds
}

.

By (F0), there exists sM > 0 such that

f (t, s) ≤ Mψ1(s) for (t, s) ∈ [0, 1]× [sM, ∞). (26)

Assume to the contrary that there exists a sequence {(λn, un)} such that un is a positive solution to
BVP (1) and (2) with λ = λn ∈ (0, L] and ‖un‖∞ → ∞ as n→ ∞. Set

CM = max{ f (t, s) : (t, s) ∈ [0, 1]× [0, sM]} > 0.

Then there exists N > 0 satisfying

‖uN‖∞ ≥ ψ−1
1

(
CM
M

)
,

which implies
CM ≤ Mψ1(‖uN‖∞).
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Consequently, by the definition of CM and (26),

f (t, s) ≤ CM + Mψ1(s) ≤ 2Mψ1(‖uN‖∞) for (t, s) ∈ [0, 1]× [0, ‖uN‖∞]. (27)

Let σN be a unique point satisfying ‖uN‖∞ = uN(σN). Assume that σN ≤ γ, since the case σN > γ

can be dealt in a similar manner. Then, by (8), (10) and (27),

‖uN‖∞ = uN(σN) = T(λN , uN)(σN) = ν1
λN ,uN

(σN)

≤ A1

∫ σN

0
IλN ,uN (s, σN)ds

= A1

∫ σN

0
ϕ−1

(
λn

w(s)

∫ σN

s
h(τ) f (τ, uN(τ))dτ

)
ds

≤ A1

∫ γ

0
ϕ−1

(
2LM
w0

∫ γ

s
h(τ)dτψ1(‖uN‖∞))

)
ds

≤ A1

∫ γ

0
ϕ−1

(
2LM
w0

∫ γ

s
h(τ)dτ

)
ds‖uN‖∞

≤ A1

∫ γ

0
ϕ−1

(∫ γ

s
h(τ)dτ

)
dsψ−1

1

(
2LM
w0

)
‖uN‖∞

≤ h∗ψ−1
1

(
2LM
w0

)
‖uN‖∞ < ‖uN‖∞.

Here the choice of M is used in the last inequality. This contradiction completes the proof.

Remark 2. The assumptions (F0) and h ∈ Hϕ are different from the ones (F′0) and h ∈ Hψ1 in Theorem 3.
Indeed, let

ϕ(s) = s + s2 and ψ1(s) = min{s, s2} for s ∈ [0, ∞).

Then the first inequality in (3) is satisfied. Clearly, (F0) implies (F′0), since

ϕ(1)ψ1(s) ≤ ϕ(s) for all s ∈ [0, ∞).

Let f (t, s) = 1 + s
3
2 for (t, s) ∈ [0, 1]× [0, ∞). Then

lim
s→∞

1 + s
3
2

ϕ(s)
= 0, but lim

s→∞

1 + s
3
2

ψ1(s)
= ∞.

Consequently, (F′0) does not imply (F0). SinceHψ1 ⊆ Hϕ, we give an example of h satisfying h ∈ Hϕ \ Hψ1 .
Let

h(t) = t−2 for t ∈ (0, 1].

From

ϕ−1(s) =
−1 +

√
1 + 4s

2
and ψ−1

1 (s) = max{
√

s, s} for s ∈ [0, ∞).

it follows that

ϕ−1

(∫ 1
2

s
τ−2dτ

)
= ϕ−1

(
s−1 − 2

)
=
−1 +

√
1 + 4(s−1 − 2)

2
∈ L1

(
0,

1
2

)
and

ψ−1
1

(∫ 1
2

s
τ−2dτ

)
= ψ−1

1

(
s−1 − 2

)
= s−1 − 2 6∈ L1

(
0,

1
3

)
.

Consequently
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h ∈ Hϕ \ Hψ1 ,

since h ∈ C(0, 1].

Theorem 3. Assume that (A1), (A2), f ∈ C([0, 1]× [0, ∞), (0, ∞)), either (F0) and h ∈ Hϕ or (F′0) and
h ∈ Hψ1 hold. Then for any λ ∈ (0, ∞), there exists a positive solution uλ to BVP (1) and (2) such that

‖uλ‖∞ → 0 as λ→ 0+ and ‖uλ‖∞ → ∞ as λ→ ∞.

Proof. Set
λ∗ = sup{λ ∈ [0, ∞) : (λ, uλ) ∈ C}.

Here C is the unbounded solution component in Proposition 1. Then, by Lemma 7, λ∗ = ∞. Indeed,
assume on the contrary that λ∗ < ∞. Then, by Lemma 7, all solutions uλ to problem (1) satisfying
(λ, uλ) ∈ C are bounded in C[0, 1]. This contradicts the fact that the solution component C is unbounded
in [0, ∞)×K. Thus, λ∗ = ∞, and for any λ ∈ (0, ∞), there exists a positive solution uλ to BVP (1)
and (2) satisfying

(λ, uλ) ∈ C and ‖uλ‖∞ → 0 as λ→ 0+.

Next we show that

‖uλ‖∞ → ∞ as λ→ ∞.

Assume to the contrary that there exists a sequence {(λn, un)} in C such that

λn → ∞ as n→ ∞,

but there exists m > 0 satisfying

‖un‖∞ ≤ m for all n.

Since f ∈ C([0, 1]× [0, ∞), (0, ∞), there exists δm > 0 satisfying

f (t, un(t)) ≥ δm for all t ∈ [0, 1] and all n.

For each n, let σn be the unique point satisfying un(σn) = ‖un‖∞. Suppose that σn ≥ γ (the case σn < γ

is similar). Then, by (8),

‖un‖∞ ≥ un (γ)

= un(0) +
∫ γ

0
ϕ−1

(
1

w(s)

∫ σn

s
λnh(τ) f (τ, un(τ))dτ

)
ds

≥
∫ γ

0
ϕ−1

(
1

w(s)

∫ γ

0
h(τ)dτλnδm

)
ds

≥
∫ γ

0
ϕ−1

(
1

w(s)

∫ γ

0
h(τ)dτ

)
dsψ−1

2 (λnδn)→ ∞ as n→ ∞,

which contradicts the fact that ‖un‖∞ ≤ m for all n. Thus, the proof is complete.

Remark 3. Assume that f ∈ C([0, 1] × R+, (0, ∞)) and α̂i ∈ (0, 1) for i = 1, 2. Then, for any positive
solutions u to BVP (1) and (2),

u(t) ≥ ρ̂‖u‖∞ for all t ∈ [0, 1]. (28)

Here

ρ̂ := ρ1 min
{∫ 1

0
min{r, 1− r}dαi(r) : i = 1, 2

}
∈ (0, 1)

and

ρ1 = ψ−1
2

(
1
‖w‖∞

) [
ψ−1

1

(
1

w0

)]−1
∈ (0, 1].
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In fact, by (2) and (15), for t ∈ [0, 1],

u(t) ≥ min{u(0), u(1)}

= min
{∫ 1

0
u(r)dαi(r) : i = 1, 2

}
= min

{∫ 1

0
T(λ, u)(r)dαi(r) : i = 1, 2

}
≥ min

{∫ 1

0
ρ1 min{r, 1− r}‖T(λ, u)‖∞dαi(r) : i = 1, 2

}
= ρ1 min

{∫ 1

0
min{r, 1− r}dαi(r) : i = 1, 2

}
‖u‖∞ = ρ̂‖u‖∞.

Theorem 4. Assume that (A1), (A2), α̂i ∈ (0, 1) for i = 1, 2 and f ∈ C([0, 1] × (0, ∞),R) satisfies
f (t, s) > 0 for all (t, s) ∈ [0, 1]× [M, ∞) and for some M > 0.

(1) Assume that (F∞) and h ∈ Hϕ hold. Then there exists λ∞ > 0 such that BVP (1) and (2) has at least one
positive solution uλ for any λ ∈ (0, λ∞) satisfying

‖uλ‖∞ → ∞ as λ→ 0+.

(2) Assume that either (F0) and h ∈ Hϕ or (F′0) and h ∈ Hψ1 hold. Then there exists λ0 > 0 such that BVP
(1) and (2) has at least one positive solution uλ for any λ ∈ (λ0, ∞) satisfying

‖uλ‖∞ → ∞ as λ→ ∞.

Proof. We only give the proof of (2) with the case (F0) and h ∈ Hϕ, since other cases can be proved in
a similar manner.

Consider the following modified problem{
(w(t)ϕ(u′(t)))′ + λh(t) f1(t, u(t)) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0 u(r)dα1(r), u(1) =
∫ 1

0 u(r)dα2(r),
(29)

where

f1(t, s) =

{
f (t, M), for (t, s) ∈ [0, 1]× [0, M),
f (t, s), for (t, s) ∈ [0, 1]× [M, ∞).

Then, by (F0), f1 ∈ C([0, 1]× [0, ∞), (0, ∞)) satisfies

lim
s→∞

min
t∈[0,1]

f1(t, s)
ψ1(s)

= 0.

By Theorem 3, problem (29) has at least one positive solution uλ for any λ ∈ (λ0, ∞) satisfying
‖uλ‖∞ → ∞ as λ→ ∞. Since

‖uλ‖∞ → ∞ as λ→ ∞,

there exists λ0 > 0 such that positive solutions uλ satisfy

‖uλ‖∞ ≥ ρ̂−1M for any λ ∈ (λ0, ∞).

By Remark 3, for λ ∈ (λ0, ∞),

uλ(t) ≥ M for t ∈ [0, 1].

Consequently

f1(t, uλ(t)) = f (t, uλ(t)) for t ∈ [0, 1]
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and uλ becomes the positive solution to BVP (1) and (2) for λ ∈ (λ0, ∞). Thus the proof is complete.

Finally, we give some examples to illustrate the main results (Theorem 2, Theorems 3 and 4)
obtained in this section.

Example 1. Consider the following problem{
((t + 1)−1 ϕ(u′(t)))′ + λh(t) f (t, u(t)) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0 u(r)dα1(r), u(1) =
∫ 1

0 u(r)dα2(r),
(30)

where ϕ is defined by

ϕ(s) = s + |s|s for s ∈ (−∞, ∞)

and

α1(r) =
1
2

r2 and α2(r) =
1
3

r3 for r ∈ [0, 1].

Then it is easy to see that (A1) is satisfied with

ψ1(y) = min{y, y2} and ψ2(y) = max{y, y2} for y ∈ [0, ∞)

and (A2) holds with

α̂1 =
1
2

and α̂2 =
1
3

.

Note that

ψ−1
1 (s) = max{

√
s, s} and ψ−1

2 (s) = min{
√

s, s} for s ∈ [0, ∞).

From

w0 =
1
2

and ‖w‖∞ = 1,

it follows that
ψ−1

2 (‖w‖∞) = ψ−1
2 (1) = 1 and ψ−1

1 (w0) = ψ−1
1 (2) = 2.

Consequently

ρw =
1
2

min{α, 1− β} ∈ (0, 1) for any α, β ∈ (0, 1).

(1) Let

h(t) = t−2 for t ∈ (0, 1].

Then h ∈ Hϕ \ Hψ1 (see Remark 2).
(i) Let f be any positive continuous function satisfying

f (t, s) =
(

7
8
+ sin s + t

)
(1 + s3) for (t, s) ∈

[
1
4

,
3
4

]
× [0, ∞).

Then (F∞) is satisfied with

α =
1
4

and β =
3
4

.

By Theorem 2, there exists λ∗ > 0 such that problem (30) has at least two positive solutions u1
λ, u2

λ for any
λ ∈ (0, λ∗), at least one positive solution for λ = λ∗ and no positive solutions for λ > λ∗. Moreover, two
positive solutions u1

λ and u2
λ for λ ∈ (0, λ∗) satisfy
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‖u1
λ‖∞ → 0 and ‖u2

λ‖∞ → ∞ as λ→ 0+.

(ii) Let f : (0, ∞)→ R be defined by

f (t, s) =

{
3s−2+t

2s , for (t, s) ∈ [0, 1]× (0, 2],
4+t

4 + (s− 2)3, for (t, s) ∈ [0, 1]× (2, ∞).

Then (F∞) is satisfied for any α, β satisfying

0 < α < β < 1 and f (t, s) > 0 for all (t, s) ∈ [0, 1]× [2, ∞).

By Theorem 4 (1), there exists λ∞ > 0 such that problem (30) has at least one positive solution uλ for all
λ ∈ (λ∞, ∞) satisfying

‖uλ‖∞ → ∞ as λ→ 0+.

(2) Let

h(t) = t−
3
2 for t ∈ (0, 1].

Then h ∈ Hψ1 , since ψ−1
1 (s) = s for s ≥ 1.

(i) Let f be defined by

f (t, s) =
(

cos t + s
3
2

)
for (t, s) ∈ [0, 1]× (0, ∞).

Then (F′0) are satisfied. By Theorem 3, problem (30) has at least one positive solution uλ for any λ ∈ (0, ∞)

satisfying

‖uλ‖∞ → 0 as λ→ 0+ and ‖uλ‖∞ → ∞ as λ→ ∞.

(ii) Let f be defined by

f (t, s) =
3s− 2 + t

2s
for (t, s) ∈ [0, 1]× (0, ∞).

Then (F′0) is satisfied and f (t, s) > 0 for all (t, s) ∈ [0, 1]× [1, ∞). By Theorem 4 (2), there exists λ0 > 0 such
that problem (30) has at least one positive solution uλ for any λ ∈ (λ0, ∞) satisfying

‖uλ‖∞ → ∞ as λ→ ∞.

4. Conclusions

In this work, the existence, nonexistence and/or multiplicity of positive solutions to BVP (1) and (2)
were studied. If the nonlinearity f = f (t, u) ∈ C([0, 1]× [0, ∞), (0, ∞)) is superlinear at u = ∞, it is
not hard to show the result that, for some λ1

∗, λ2
∗ > 0, BVP (1) and (2) has at least two positive solutions

u1
λ and u2

λ for λ ∈ (0, λ1
∗), at least one positive solution for λ ∈ [λ1

∗, λ2
∗] and no positive solutions for

λ > λ2
∗. This result is partial since there is no information on the multiplicity of positive solutions for

λ ∈ [λ1
∗, λ2
∗). By the lack of solution regularity and the boundary conditions (2), it is not obvious to show

λ1
∗ = λ2

∗. In Theorem 2, when the nonlinearity f = f (t, u) ∈ C([0, 1]× [0, ∞), (0, ∞)) is superlinear at
u = ∞, the global result for positive solutions to BVP (1) and (2) with respect to the parameter λ (i.e.,
λ1
∗ = λ2

∗) was shown. In Theorem 3, when the nonlinearity f = f (t, u) ∈ C([0, 1]× [0, ∞), (0, ∞)) is
sublinear at u = ∞, the existence of one positive solution for all λ > 0 was shown. Theorems 2 and
3 extend the results in [7] for problem (1) with Dirichlet boundary conditions (α̂1 = α̂2 = 0) to the
ones for problem (1) with Riemann-Stieltjes integral boundary conditions in some ways. In Theorem 4,
when α̂1α̂2 6= 0 and the sign-changing nonlinearity f = f (t, u) ∈ C([0, 1]× (0, ∞),R) may be singular
at u = 0, the existence of one positive solution was shown for all small λ > 0 when f = f (t, u) is
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superlinear at u = ∞, and the existence of one positive solution was shown for all large λ > 0 when
f = f (t, u) is sublinear at u = ∞.
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