

Article

On Hybrid Contractions in the Context of Quasi-Metric Spaces

Andreea Fulga 1,*,† , Erdal Karapınar 2,3,*,† and Gabriela Petruşel 4,†

- Department of Mathematics and Computer Science, Transilvania University of Brasov, Brasov 500036, Romania
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Mathematics, Çankaya University, Ankara 06790, Turkey
- Faculty of Business, Babeş-Bolyai University, Cluj-Napoca 400084, Romania; gabi.petrusel@tbs.ubbcluj.ro
- * Correspondence: afulga@unitbv.ro (A.F.); karapinar@mail.cmuh.org.tw or erdalkarapinar@yahoo.com (E.K.)
- † These authors contributed equally to this work.

Received: 1 April 2020; Accepted: 27 April 2020; Published: 29 April 2020

Abstract: In this manuscript, we will investigate the existence of fixed points for mappings that satisfy some hybrid type contraction conditions in the setting of quasi-metric spaces. We provide examples to assure the validity of the given results. The results of this paper generalize several known theorems in the recent literature.

Keywords: contractions; hybrid contractions; quasi-metric spaces; metric spaces

1. Introduction and Preliminaries

Roughly speaking, a quasi-metric is a distance function that is not symmetry but satisfies both the triangle inequality and self-distance property. The notion of quasi-metric was first introduced by Wilson in 1930s [1]. This is a subject of intensive research not only in the setting of topology [2–4] and functional analysis, but also several qualitative sciences, such as theoretical computer science [5–8], biology [9], and many other qualitative disciplines. In particular, as it is mentioned in [10], the notion of quasi-metric plays crucial roles in several distinct branches of mathematics, such as in the existence and uniqueness of iterated function systems' attractor (fractal), in the existence and uniqueness of Hamilton-Jacobi equations, and so on.

Another crucial notion that has no metric counterpart is that of an engaged partial order. Each partial order can be associated with a quasi-metric, and vice versa. Consequently, quasi-metric not only generalizes the concept of the metric, but also partial orders. This is a crucial fact for both the theoretical computer science applications and also has significance in the framework of biology [9].

For the sake of the completeness, we shall give the formal definition of quasi-metric. Throughout the paper, X is a nonempty set A distance function $q: X \times X \to [0, \infty)$ is called a quasi-metric on X if

$$(q_1)$$
 $q(u,v)=0 \Leftrightarrow u=v;$

$$(q_2)$$
 $q(u, w) \leq q(u, v) + q(v, w)$, for all $u, v, w \in X$.

In addition, the pair (X, q) is called a quasi-metric space.

Mathematics 2020, 8, 675 2 of 19

In what follows, we indicate the close relation between a standard metric and a quasi-metric. Given q be a quasi-metric on X, it is clear that the function $q_*: X \times X \to [0, \infty)$ defined by $q_*(u, v) = q(v, u)$ forms also a quasi-metric and it is also called the dual (conjugate) of q. The functions $d_1, d_2: X \times X \to [0, \infty)$, where

$$d_1(v, u) = q(u, v) + q_*(u, v), d_2(v, u) = \max\{q(u, v), q_*(u, v)\}\$$

form standard metrics on X.

We will provide an overview of quasi-metric spaces, presenting the notions of convergence, completeness, and continuity.

Let $\{u_n\}$ be a sequence in X, and $u \in X$, where (X, q) a quasi-metric space. We say that:

1. $\{u_n\}$ converges to u if and only if

$$\lim_{n\to\infty}q(u_n,u)=\lim_{n\to\infty}q(u,u_n)=0. \tag{1}$$

- 2. $\{u_n\}$ is left-Cauchy if and only if for every $\epsilon > 0$ there exists a positive integer $k = k(\epsilon)$ such that $q(u_n, u_m) < \epsilon$ for all $n \ge m > k$.
- 3. $\{u_n\}$ is right-Cauchy if and only if for every $\epsilon > 0$ there exists a positive integer $k = k(\epsilon)$ such that $q(u_n, u_m) < \epsilon$ for all $m \ge n > k$.
- 4. $\{u_n\}$ is Cauchy if and only if it is left-Cauchy and right-Cauchy.

We would remark here that, in a quasi-metric space (X, q), the limit for a convergent sequence is unique. Indeed, if $u_n \to u$, for all $v \in X$, we have

$$\lim_{n\to\infty}q(u_n,v)=q(u,v) \text{ and } \lim_{n\to\infty}q(v,u_n)=q(v,u).$$

A quasi-metric space (X, q) is said to be: complete (respectively, left-complete or right-complete) if and only if each Cauchy sequence (respectively, left-Cauchy sequence or right-Cauchy sequence) in X is convergent. Notice, in this context, that "right completeness" is equivalent to "Smyth completeness" [11]. See also [12].

A mapping $T: X \to X$ is continuous provided that, for any sequence $\{u_n\}$ in X such that $u_n \to u \in X$, the sequence $\{Tu_n\}$ converges to Tu, that is,

$$\lim_{n \to \infty} q(Tu_n, Tu) = \lim_{n \to \infty} q(Tu, Tu_n) = 0$$
 (2)

If $T: X \to X$, then the fixed point set of T is $\mathcal{F}_T(X) := \{ \chi \in X : T\chi = \chi \}$.

A mapping $\zeta:[0,\infty)\times[0,\infty)\to\mathbb{R}$ is called an *extended simulation function* if the following axioms are fulfilled:

- (z_d) $\zeta(t,s) < s-t$ for all t,s>0;
- (z_0) $\zeta(t,0) \le 0$ for every $t \ge 0$ and $\zeta(t,0) = 0 \Leftrightarrow t = 0$.

Notice that the axiom (z_d) implies that $\zeta(t,t) < 0$ for all t > 0. Let us denote by \mathcal{Z} the family of all extended simulation functions $\zeta : [0,\infty) \times [0,\infty) \to \mathbb{R}$.

A function $\varphi : [0, \infty) \to [0, \infty)$ is called a *comparison function* [13] if:

- (c_1) φ is increasing;
- (c_2) $\lim_{n\to\infty} \varphi^n(t) = 0$, for $t\in [0,\infty)$.

Mathematics 2020, 8, 675 3 of 19

Proposition 1. *If* φ *is a comparison function, then:*

- (i) each φ^k is also a comparison function, for all $k \in \mathbb{N}$;
- (ii) φ is continuous at 0;
- (iii) $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0.

A function $\psi : [0, \infty) \to [0, \infty)$ is called a *c-comparison function* [13,14] if:

(cc_1) ψ is increasing;

$$(cc_2)$$
 $\sum_{n=0}^{\infty} \psi^n(t) < \infty$, for all $t \in (0, \infty)$.

We denote by Ψ the family of *c*-comparison functions. In some papers, instead of a *c*-comparison function, the term of strong comparison function is used. See [13].

Remark 1. Any c-comparison function is a comparison function.

Let $\alpha: X \times X \to [0, \infty)$ be a function. We say that a mapping $T: X \to X$ is α -orbital admissible [15] if for each $u \in X$ we have

$$\alpha(u, Tu) \ge 1 \Rightarrow \alpha(Tu, T^2u) \ge 1.$$

Lemma 1. Let $T: X \to X$ be an α -orbital admissible function. If there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$, then the sequence $(u_n)_{n \in \mathbb{N}}$, defined by $u_n = Tu_{n-1}$, $n \in \mathbb{N}$ satisfies the following relations:

$$\alpha(u_n, u_{n+1}) \geq 1$$
 and $\alpha(u_{n+1}, u_n) \geq 1$, for all $n \in \mathbb{N}_0$.

We say that the set X is *regular* with respect to mapping $\alpha: X \times X \to [0, \infty)$ if the following condition is satisfied: if $\{u_n\}$ is a sequence in X such that $\alpha(u_{n+1}, u_n) \ge 1$ and $\alpha(u_n, u_{n+1}) \ge 1$ for any $n \in \mathbb{N}$ and $u_n \to u \in X$ as $n \to \infty$, then there exists a subsequence $\{u_{n(i)}\}$ of $\{u_n\}$ such that

$$\alpha(u_{n(i)}, u) \geq 1$$
 and $\alpha(u, u_{n(i)}) \geq 1$,

for each i.

In this manuscript, we will investigate the existence of fixed points for mappings that satisfy some hybrid type contraction conditions in the setting of quasi-metric spaces. We provide examples to assure the validity of the given results. The results of this paper generalize several known theorems in the recent literature, see [13,14,16-25].

2. Main Results

We start with the formal definition of hybrid almost contraction of type \mathbb{I} .

Definition 1. Let (X, q) be a quasi-metric space. We say that the mapping $T: X \to X$ is a hybrid almost contraction of type \mathbb{I} , if there exist $\zeta \in \mathcal{Z}$, $\psi \in \Psi$, $p \geq 0$, $L \geq 0$ and $a_1, a_2, a_3 \in [0, 1]$ with $a_1 + a_2 > 0$, $a_1 + a_2 + a_3 = 1$, such that, for all distinct $u, v \in X$, we have

$$\frac{1}{2}\min\left\{q(u,Tu),q(v,Tv)q(Tv,v)\right\} \le q(u,v) \text{ implies}$$

$$\zeta(\alpha(u,v)q(Tu,Tv),\psi(I_{v}(u,v)+L\mathcal{N}(u,v))) \ge 0,$$
(3)

Mathematics 2020, 8, 675 4 of 19

where

$$I_p(u,v) = \begin{cases} [a_1(q(u,v))^p + a_2(q(u,Tu))^p + a_3(q(v,Tv))^p]^{1/p}, & \text{for } p > 0, \\ (q(u,v))^{a_1} \cdot (q(u,Tu))^{a_2} \cdot (q(v,Tv))^{a_3} & \text{for } p = 0 \end{cases}$$

and

$$\mathcal{N}(u,v) = \min \left\{ q(u,Tv), q(v,Tu) \right\}.$$

Theorem 1. *Let* (X, q) *be a complete quasi-metric space and* $\alpha : X \times X \to [0, \infty)$ *be a mapping such that:*

- (i) $u = Tu \text{ implies } \alpha(u, v) > 0 \text{ for every } v \in X;$
- (ii) v = Tv implies $\alpha(u, v) > 0$ for every $u \in X$.

Suppose that $T: X \to X$ is an hybrid almost contraction of type \mathbb{I} and

- (C_1) T is α -orbital admissible;
- (C₂) there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$;
- (C_3) *T is continuous.*

Then, T has a fixed point.

Proof. Let the sequence $\{u_n\}$ in X be defined by

$$u_1 = Tu_0, u_2 = Tu_1, ..., u_n = Tu_{n-1} = T^{n-1}u_0$$

where $u_0 \in X$ is the point such that, from (C_2) , $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$. Indubitably, for all $n \in \mathbb{N}$, we have $u_{n+1} \ne u_n$. As a matter of fact, if we suppose that there is $N_0 \in \mathbb{N}$ such that $u_{N_0} = u_{N_0+1}$, from the manner in which the sequence $\{u_n\}$ was defined, we get

$$u_{N_0} = T u_{N_0} = u_{N_0+1}$$

so that the fixed point of T is u_{N_0} and the proof is completed. Thus, choosing $u = u_{n-1}$ respectively $v = u_n$ and since $\frac{1}{2} \min \{q(u_{n-1}, Tu_{n-1}), q(u_n, Tu_n), q(Tu_n, u_n)\} \le \frac{1}{2} q(u_{n-1}, Tu_{n-1}) < q(u_{n-1}, u_n)$ holds for any $n \in \mathbb{N}$, by (3), we get

$$\zeta(\alpha(u_{n-1}, u_n) q(Tu_{n-1}, Tu_n), \psi(I_p(u_{n-1}, u_n) + L\mathcal{N}(u_{n-1}, u_n))) \ge 0.$$
(4)

In other words, taking into account (z_d) ,

$$0 \le \psi(I_p(u_{n-1}, u_n) + L\mathcal{N}(u_{n-1}, u_n)) - \alpha(u_{n-1}, u_n)q(Tu_{n-1}, Tu_n).$$
(5)

However, T is an α -orbital admissible and, on the strength of Lemma (1), the above inequality yields

$$q(Tu_{n-1}, Tu_n) \le \alpha(u_{n-1}, u_n)q(Tu_{n-1}, Tu_n) \le \psi(I_p(u_{n-1}, u_n) + L\mathcal{N}(u_{n-1}, u_n)). \tag{6}$$

Since

$$\mathcal{N}(u_{n-1}, u_n) = \min \left\{ q(u_{n-1}, Tu_n), q(u_n, Tu_{n-1}) \right\} = \min \left\{ q(u_{n-1}, u_n), q(u_n, u_n) \right\} = 0,$$
(7)

the inequality (6) becomes

$$q(Tu_{n-1}, Tu_n) \le \psi(I_v(u_{n-1}, u_n)). \tag{8}$$

Mathematics 2020, 8, 675 5 of 19

In addition, by taking $u = u_n$, respectively, $v = u_{n-1}$, we have

$$\frac{1}{2}\min\{q(u_n,Tu_n),q(u_{n-1},Tu_{n-1}),q(Tu_{n-1},u_{n-1})\} \leq \frac{1}{2}\min\{q(u_n,u_{n+1}),q(u_{n-1},u_n),q(u_n,u_{n-1})\} < q(u_n,u_{n-1}).$$

As a consequence, (3) becomes

$$\zeta(\alpha(u_n, u_{n-1})q(Tu_n, Tu_{n-1}), \psi(I_p(u_n, u_{n-1}) + L\mathcal{N}(u_n, u_{n-1}))) \ge 0, \tag{9}$$

or, taking into account (z_d) ,

$$0 \le \psi(I_p(u_n, u_{n-1}) + L\mathcal{N}(u_n, u_{n-1})) - \alpha(u_n, u_{n-1})q(Tu_n, Tu_{n-1}).$$

By Lemma (1), the above inequality yields

$$q(u_{n+1}, u_n) = q(Tu_n, Tu_{n-1}) \le \alpha(u_n, u_{n-1}) q(Tu_n, Tu_{n-1}) \le \psi(I_p(u_n, u_{n-1}) + L \mathcal{N}(u_n, u_{n-1})).$$
(10)

However,

$$\mathcal{N}(u_n, u_{n-1}) = \min \{ q(u_n, Tu_{n-1}), q(u_{n-1}, Tu_n) \}$$

= \text{min } \{ q(u_n, u_n), q(u_{n-1}, u_{n+1}) \} = 0, \tag{11}

and then we get

$$q(Tu_n, Tu_{n-1}) \le \psi(I_v(u_n, u_{n-1})). \tag{12}$$

From this point of the proof, we will consider the two cases separately: p > 0 and p = 0. **Case 1.** For the case p > 0,

$$I_{p}(u_{n-1}, u_{n}) = [a_{1}(q(u_{n-1}, u_{n}))^{p} + a_{2}(q(u_{n-1}, Tu_{n-1}))^{p} + a_{3}(q(u_{n}, Tu_{n}))^{p}]^{1/p}$$

$$= [a_{1}(q(u_{n-1}, u_{n}))^{p} + a_{2}(q(u_{n-1}, u_{n}))^{p} + a_{3}(q(u_{n}, u_{n+1}))^{p}]^{1/p}$$

$$= [(a_{1} + a_{2})(q(u_{n-1}, u_{n}))^{p} + a_{3}(q(u_{n}, u_{n+1}))^{p}]^{1/p}$$

and the inequality (6) becomes

$$q(u_n, u_{n+1}) = q(Tu_{n-1}, Tu_n) \le \psi([(a_1 + a_2)(q(u_{n-1}, u_n))^p + a_3(q(u_n, u_{n+1}))^p]^{1/p}).$$
(13)

Onward, being a *c*-comparison function, ψ satisfies (iii) by Proposition 1 that is $\psi(t) < t$ for any t > 0, we obtain

$$q(u_n, u_{n+1}) \leq \psi([(a_1 + a_2)(q(u_{n-1}, u_n))^p + a_3(q(u_n, u_{n+1}))^p]^{1/p})$$

$$< [(a_1 + a_2)(q(u_{n-1}, u_n))^p + (1 - a_1 - a_2)(q(u_n, u_{n+1}))^p]^{1/p},$$

which is equivalent with

$$(a_1 + a_2)[q(u_n, u_{n+1})]^p < (a_1 + a_2)[q(u_{n-1}, u_n)]^p,$$

or (since $a_1 + a_2 > 0$)

$$q(u_n, u_{n+1}) < q(u_{n-1}, u_n). \tag{14}$$

Mathematics 2020, 8, 675 6 of 19

Using the fact that $\psi \in \Psi$ is increasing, by (13), we have

$$q(u_n, u_{n+1}) < \psi(q(u_{n-1}, u_n)) < \psi^2(q(u_{n-2}, u_{n-1})) < \dots < \psi^n(q(u_0, u_1))$$
(15)

Let now $l \ge 1$. By using (15) and the triangle inequality, we get

$$q(u_{n}, u_{n+l}) \leq q(u_{n}, u_{n+1}) + \dots + q(u_{n+l-1}, u_{n+l})$$

$$\leq \sum_{j=n}^{n+l-1} \psi^{j}(q(u_{0}, u_{1}))$$

$$\leq \sum_{j=n}^{\infty} \psi^{j}(q(u_{0}, u_{1})).$$
(16)

Letting $n \to \infty$ in the above inequality, we derive that $\sum_{j=n}^{\infty} \psi^{j}(q(u_0, u_1)) \to 0$. Hence, $q(u_n, u_{n+1}) \to 0$ as $n \to \infty$. Thus, $\{u_n\}$ is a right-Cauchy sequence in (X, q).

Similarly, since

$$I_p(u_n, u_{n-1}) = [a_1(q(u_n, u_{n-1}))^p + a_2(q(u_n, Tu_n))^p + a_3(q(u_{n-1}, Tu_{n-1}))^p]^{1/p}$$

= $[a_1(q(u_n, u_{n-1}))^p + a_2(q(u_n, u_{n+1}))^p + a_3(q(u_{n-1}, u_n))^p]^{1/p},$

the inequality (12) becomes

$$q(u_{n+1}, u_n) \leq \psi(I_p(u_n, u_{n-1})) < I_p(u_n, u_{n-1}) = [a_1(q(u_n, u_{n-1}))^p + a_2(q(u_n, u_{n+1}))^p + a_3(q(u_{n-1}, u_n))^p]^{1/p}.$$
(17)

Taking into account (14), we get

$$(q(u_{n+1}, u_n))^p < a_1(q(u_n, u_{n-1}))^p + a_2(q(u_n, u_{n+1}))^p + a_3(q(u_{n-1}, u_n))^p$$

$$= a_1(q(u_n, u_{n-1}))^p + a_2(q(u_n, u_{n+1}))^p + (1 - a_1 - a_2)(q(u_{n-1}, u_n))^p$$

$$< a_1(q(u_n, u_{n-1}))^p + (1 - a_1)(q(u_{n-1}, u_n))^p, \text{ for any } n \in \mathbb{N}.$$

We are able to examine it with the following cases.

a. If $q(u_n, u_{n-1}) < q(u_{n-1}, u_n)$ for any $n \in \mathbb{N}$, the above inequality becomes

$$(q(u_{n+1}, u_n))^p < (q(u_{n-1}, u_n))^p,$$

and then, together with (15),

$$q(u_{n+1}, u_n) < q(u_{n-1}, u_n) < \psi^{n-1}(u_0, u_1), \forall n \ge 1.$$
(18)

From the triangle inequality and (18), for all $l \ge 1$, we get that

$$\begin{split} q(u_{n+l}, u_n) & \leq q(u_{n+l}, u_{n+l-1}) + ... + q(u_{n+1}, u_n) \\ & \leq \sum_{j=n}^{n+l-1} \psi^j(q(u_0, u_1)) \\ & \leq \sum_{j=n}^{\infty} \psi^j(q(u_0, u_1)) \to 0 \text{ as } n \to \infty. \end{split}$$

Mathematics 2020, 8, 675 7 of 19

b. If, for any $n \in \mathbb{N}$, $q(u_n, u_{n-1}) \le q(u_{n-1}, u_n)$, we have

$$q(u_{n+1}, u_n) < q(u_n, u_{n-1})$$

and, from (17), regarding $\psi \in \Psi$, we get that

$$q(u_{n+1}, u_n) < \psi(q(u_n, u_{n-1})) < \dots < \psi^n(q(u_1, u_0)).$$
(19)

Again, by triangle inequality,

$$q(u_{n+l}, u_n) \leq q(u_{n+l}, u_{n+l-1}) + \dots + q(u_{n+1}, u_n)$$

$$\leq \sum_{j=n}^{n+l-1} \psi^j(q(u_1, u_0))$$

$$\leq \sum_{j=n}^{\infty} \psi^j(q(u_1, u_0)) \to 0 \text{ as } n \to \infty.$$

c. If $q(u_i, u_{i-1}) \le q(u_{i-1}, u_i)$ for some $i \in \mathbb{N}$ and $q(u_k, u_{k-1}) > q(u_{k-1}, u_k)$ for some $k \in \mathbb{N}$, then we have for $l \in \mathbb{N}$

$$q(u_{n+l}, u_n) \leq q(u_{n+l}, u_{n+l-1}) + \dots + q(u_{n+1}, u_n)$$

$$\leq \sum_{j=n}^{\infty} \psi^j(q(u_1, u_0)) + \sum_{j=n}^{\infty} \psi^j(q(u_0, u_1)) \to 0 \text{ as } n \to \infty.$$

Therefore, we proved that $\{u_n\}$ is a left-Cauchy in (X, q).

Thus, being left and right Cauchy, the sequence $\{u_n\}$ is a Cauchy in complete quasi-metric space (X, q), which implies that there is $u^* \in X$ such that

$$\lim_{n \to \infty} q(u_n, u^*) = \lim_{n \to \infty} q(u^*, u_n) = 0.$$
 (20)

Using the continuity of T and (q1), we have

$$\lim_{n \to \infty} q(u_n, Tu^*) = \lim_{n \to \infty} q(Tu_{n-1}, Tu^*) = 0,$$

$$\lim_{n\to\infty}q(Tu^*,u_n)=\lim_{n\to\infty}q(Tu^*,Tu_{n-1})=0$$

and so

$$\lim_{n \to \infty} q(u_n, Tu^*) = \lim_{n \to \infty} q(Tu^*, u_n) = 0.$$
 (21)

It follows from (20) and (21) that $Tu^* = u^*$, that is, u^* is a fixed point of T.

Case 2. In the case p = 0, we have

$$I_{p}(u_{n-1}, u_{n}) = (q(u_{n-1}, u_{n}))^{a_{1}} \cdot (q(u_{n-1}, Tu_{n-1}))^{a_{2}} \cdot (q(u_{n}, Tu_{n}))^{a_{3}}$$

$$= (q(u_{n-1}, u_{n}))^{a_{1}} \cdot (q(u_{n-1}, u_{n}))^{a_{2}} \cdot (q(u_{n}, u_{n+1}))^{a_{3}}.$$

Replacing in (6) and taking into account (7), we get

Mathematics 2020, 8, 675 8 of 19

$$q(u_n, u_{n+1}) = q(Tu_{n-1}, Tu_n) \le \alpha(u_{n-1}, u_n) q(Tu_{n-1}, Tu_n) \le \psi(I_p(u_{n-1}, u_n)) < I_p(u_{n-1}, u_n) = (q(u_{n-1}, u_n))^{a_1 + a_2} \cdot (q(u_n, u_{n+1}))^{a_3}$$
(22)

and we deduce that

$$(q(u_n, u_{n+1}))^{a_1+a_2} < (q(u_{n-1}, u_n))^{a_1+a_2}.$$

Thus, taking into account $a_1 + a_2 > 0$, we have

$$q(u_n, u_{n+1}) < q(u_{n-1}, u_n)$$
 (23)

and, from (22), since $\psi \in \Psi$ we are able to say that, for any $n \in \mathbb{N}$,

$$q(u_n, u_{n+1}) \le \psi(q(u_{n-1}, u_n)) < \dots < \psi^n(q(u_0, u_1)). \tag{24}$$

Following the above lines and using the triangle inequality, we obtain that the sequence u_n is right Cauchy. Likewise, because

$$I_p(u_n, u_{n-1}) = (q(u_n, u_{n-1}))^{a_1} \cdot (q(u_n, Tu_n))^{a_2} \cdot (q(u_{n-1}, Tu_{n-1}))^{a_3}]$$

$$= (q(u_n, u_{n-1}))^{a_1} \cdot (q(u_n, u_{n+1}))^{a_2} \cdot (q(u_{n-1}, u_n))^{a_3},$$

taking into account (11) and (23), we have

$$\begin{array}{ll} q(u_{n+1},u_n) &= q(Tu_n,Tu_{n-1}) \leq \alpha(u_n,u_{n-1})q(Tu_n,Tu_{n-1}) \leq \psi(I_p(u_n,u_{n-1})) \\ &< I_p(u_n,u_{n-1}) = (q(u_n,u_{n-1}))^{a_1} \cdot (q(u_n,u_{n+1}))^{a_2} \cdot (q(u_{n-1},u_n))^{a_3} \\ &< (q(u_n,u_{n-1}))^{a_1} \cdot (q(u_{n-1},u_n))^{a_2+a_3} \\ &\leq (\max \left\{ q(u_n,u_{n-1}), q(u_{n-1},u_n) \right\})^{a_1+a_2+a_3} \\ &= \max \left\{ q(u_n,u_{n-1}), q(u_{n-1},u_n) \right\}. \end{array}$$

We must examine two cases.

If $\max \{q(u_n, u_{n-1}), q(u_{n-1}, u_n)\} = q(u_{n-1}, u_n)$, then since $q(u_{n-1}, u_n) > 0$, we get that

$$q(u_{n+1}, u_n) \leq \psi(q(u_{n-1}, u_n)),$$

and recursively

$$q(u_{n+1}, u_n) \le \psi^n(q(u_0, u_1)). \tag{25}$$

If $\max \{q(u_n, u_{n-1}), q(u_{n-1}, u_n)\} = q(u_n, u_{n-1})$, we have

$$q(u_{n+1}, u_n) \le \psi(q(u_n, u_{n-1})) < \dots < \psi^n(q(u_1, u_0)).$$
(26)

Therefore, by combining (25) with (26), we derive (due to (c_2)) that

$$\lim_{n\to\infty} q(u_{n+1}, u_n) = \lim_{n\to\infty} \max \{ \psi^n(q(u_0, u_1)), \psi^n(q(u_1, u_0)) \} = 0.$$

Again, using the triangle inequality, and the above inequalities for all $l \ge 1$, we get

$$q(u_{n+l}, u_n) \leq q(u_{n+l}, u_{n+l-1}) + \dots + q(u_{n+1}, u_n)$$

$$\leq \sum_{j=n}^{\infty} \psi^j(q(u_1, u_0)) + \sum_{j=n}^{\infty} \psi^j(q(u_0, u_1)) \to 0 \text{ as } n \to \infty,$$

Mathematics 2020, 8, 675 9 of 19

that is, the sequence $\{u_n\}$ is left Cauchy, so that is a Cauchy sequence in a complete quasi-metric space (X, q). Thus, there is $u^* \in X$ such that

$$\lim_{n \to \infty} q(u^*, u_n) = 0 = \lim_{n \to \infty} q(u^*, u_n). \tag{27}$$

Of course, using (q_1) and the continuity of T, we have $Tu^* = u^*$. \square

Corollary 1. Let (X, q) be a complete quasi-metric space, a function $\alpha: X \times X \to [0, \infty)$ and a mapping $T: X \to X$ such that there exist $\zeta \in \mathcal{Z}$ and $\psi \in \Psi$ such that, for $p \ge 0$, $L \ge 0$ and $a_1, a_2, a_3 \in [0, 1)$ with $a_1 + a_2 > 0$ and $a_1 + a_2 + a_3 = 1$, we have

$$\zeta(\alpha(u,v)q(Tu,Tv),\psi(I_v(u,v)+L\mathcal{N}(u,v))) \ge 0, \text{ for all distinct } u,v \in X.$$
 (28)

Suppose also that the following assumptions hold:

- (i) $u = Tu \text{ implies } \alpha(u, v) > 0 \text{ for every } v \in X;$
- (ii) $v = Tv \text{ implies } \alpha(u, v) > 0 \text{ for every } u \in X;$
- (i) T is α -orbital admissible;
- (ii) there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$;
- (iv) T is continuous.

Then, T has a fixed point.

Remark 2. Of course, in particular letting L = 0 in the above Corollary, we find Theorem 2.1. in [16].

Corollary 2. Let (X, q) be a complete quasi-metric space and a mapping $T: X \to X$ such that there exist $\zeta \in \mathcal{Z}$ and $\psi \in \Psi$ such that, for $p \ge 0$, $L \ge 0$ and $a_1, a_2, a_3 \in [0, 1)$ with $a_1 + a_2 > 0$ and $a_1 + a_2 + a_3 = 1$, we have

$$\zeta(q(Tu, Tv), \psi(I_p(u, v) + L\mathcal{N}(u, v))) \ge 0, \text{ for all distinct } u, v \in X.$$
(29)

Then, T has a fixed point.

Proof. Let $\alpha(u, v) = 1$ in Corollary 1. \square

Corollary 3. Let (X, q) be a complete quasi-metric space, a function $\alpha: X \times X \to [0, \infty)$ and a continuous mapping $T: X \to X$ such that there exist $\psi \in \Psi$ such that, for $p \ge 0$ and $a_1, a_2, a_3 \in [0, 1)$ with $a_1 + a_2 > 0$ and $a_1 + a_2 + a_3 = 1$, we have

$$\alpha(u, v)q(Tu, Tv) \le \psi(I_n(u, v)), \text{ for all distinct } u, v \in X.$$
 (30)

Suppose that there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$. Then, T has a fixed point.

Proof. Let
$$\zeta(t,s) = \psi(s) - t$$
 in Corollary 1. \square

Moreover, it easy to see that Theorem 1 is a generalization of Theorem 2.1 in [18] in the context of quasi-metric space. Indeed, if we take L = 0 and p = 0 in Corollary 3, we find:

Corollary 4. Let (X, q) be a complete quasi-metric space, a function $\alpha: X \times X \to [0, \infty)$, and a continuous mapping $T: X \to X$ such that there exists $\psi \in \Psi$ such that, for $a_1, a_2, a_3 \in [0, 1)$ with $a_1 + a_2 > 0$ and $a_1 + a_2 + a_3 = 1$, we have

$$\alpha(u,v)q(Tu,Tv) \le \psi((q(u,v))^{a_1} \cdot (q(u,Tu))^{a_2} \cdot (q(v,Tv))^{a_3}), \text{ for all distinct } u,v \in X.$$
(31)

Suppose that there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$. Then, T has a fixed point.

Inspired by the example of [10], we consider the following:

Example 1. Let the set $X = [1, \infty)$ and the quasi-metric $q: X \times X \to [0, \infty)$ given by

$$q(u,v) = \begin{cases} \ln v - \ln u, & \text{if } u \le v \\ \frac{1}{3} (\ln u - \ln v), & \text{if } u > v \end{cases}.$$

(see Example 4.1 in [10].) Let the mapping $T: X \to X$, be defined by

$$Tu = \begin{cases} 1, & \text{if } u \in [1, 2] \\ e^{u-2}, & \text{if } u \in (2, \infty) \end{cases}$$

and the function $\alpha: X \times X \to [0, \infty)$ be defined by

$$\alpha(u, v) = \begin{cases} 2, & \text{if } u, v \in [1, 2) \\ 3, & \text{if } u = 1, v = 2 \text{ or } u = 2, v = 1 \\ 6, & \text{if } u = 3, v = 2 \\ 0, & \text{otherwise} \end{cases}.$$

Since the mapping T is continuous and for u=2, $\alpha(2,T2)=\alpha(2,1)=3$ and $\alpha(T2,2)=\alpha(1,2)=3$, we have that the assumptions (C_2) , (C_3) are satisfied. Moreover, for any $u\in[1,2)$, we have

$$\alpha(u, Tu) = \alpha(u, 1) = 2 \Rightarrow \alpha(T1, T^21) = \alpha(1, 1) = 2$$

and

$$\alpha(2, T2) = \alpha(2, 1) = 3 \Rightarrow \alpha(T2, T^22) = \alpha(1, 1) = 2,$$

so that T is α -orbital admissible.

Choosing $\psi(t) = \frac{1}{3}t$, p = 2, $a_1 = a_2 = a_3 = \frac{1}{3}$ and L = 24, we have the following cases:

Case 1. If $u, v \in [1, 2]$, then q(u, v) = q(1, 1) = 0 and (3) holds for every $\zeta \in \mathcal{Z}$.

Case 2. If u = 3, v = 2, then we have

$$\begin{array}{ll} q(3,T3)=q(3,e)=\frac{1}{3}\ln\frac{3}{e}, & q(2,T2)=q(2,1)=\frac{1}{3}\ln2, q(T2,2)=q(1,2)=\ln2, \\ q(3,2)=\frac{1}{3}\ln\frac{3}{2}, & q(T3,T2)=q(e,1)=\frac{1}{3}, \\ q(3,T2)=q(3,1)=\frac{1}{3}\ln3, & q(2,T3)=q(2,e)=\ln\frac{e}{2}. \end{array}$$

Thus, we have

$$\frac{1}{2}\min\{q(3,T3),q(2,T2),q(T2,2)\} = \frac{1}{6}\ln\frac{3}{e} < \frac{1}{3}\ln\frac{3}{2} = q(3,2)$$

and

$$\alpha(3,2)q(T3,T2) = \frac{6}{3} < \frac{1}{3} \left[\sqrt{\frac{1}{3}} \left((\frac{1}{3} \ln \frac{3}{2})^2 + (\frac{1}{3} \ln \frac{3}{e})^2 + (\frac{1}{3} \ln 2)^2 \right)^{1/2} + 24 \ln \frac{e}{2} \right] = \psi(I_p(3,2) + L\mathcal{K}(3,2)),$$

so that T is a hybrid almost contraction for any $\zeta \in \mathcal{Z}$.

The other cases are not interesting, while $\alpha(u, v) = 0$. (Consequently, the mapping T has two fixed points, $u_1 = 1$ and $u_2 \in (3, 4)$.)

On the other hand, since

$$\begin{array}{ll} \alpha(3,2) \, q(T3,T2) &= 2 > (\frac{1}{3} \ln \frac{3}{2})^{\gamma} (\frac{1}{3} \ln \frac{3}{e})^{\beta} (\frac{1}{3} \ln 2)^{1-\gamma-\beta} \\ &> \psi \left((q(3,2))^{\gamma} (q(3,T3))^{\beta}, (q(2,T2))^{1-\gamma-\beta} \right) \end{array}$$

for every $\gamma, \beta \in (0,1)$ and $\psi \in \Psi$, Theorem 2.1 in [18] can not be applied.

In particular, for the case p = 0, the continuity condition of T can be replaced with the regularity condition of the space X.

Theorem 2. Let (X, q) be a complete quasi-metric space, a function $\alpha: X \times X \to [0, \infty)$ and a mapping $T: X \to X$ such that there exist $\zeta \in \mathcal{Z}$, $\psi \in \Psi$, $L \ge 0$ and $a_1, a_2, a_3 \in [0, 1]$ with $a_1 + a_2 + a_3 = 1$, such that, for all distinct $u, v \in X$, we have

$$\frac{1}{2} \min \{ q(u, Tu), q(v, Tv), q(Tv, v) \} \le q(u, v) \text{ implies}
\zeta(\alpha(u, v) q(Tu, Tv), \psi((q(u, v))^{a_1} \cdot (q(u, Tu))^{a_2} \cdot (q(v, Tv))^{a_3} + L\mathcal{N}(u, v))) \ge 0.$$
(32)

Suppose also that

- (i) $u = Tu \text{ implies } \alpha(u, v) > 0 \text{ for every } v \in X;$
- (ii) $v = Tv \text{ implies } \alpha(u, v) > 0 \text{ for every } u \in X;$
- (C_1) T is α -orbital admissible;
- (C₂) there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$;
- (C_3) X is regular with respect to the mapping α .

Then, T has a fixed point.

Proof. From the above theorem, there exists $u^* \in X$ such that (27) hold. In what follows, we claim that

$$\frac{1}{2} \min \left\{ q(u^*, Tu^*), q(u_{n(i)}, Tu_{n(i)}), q(Tu_{n(i)}, u_{n(i)}) \right\} \le q(u^*, u_{n(i)}) \quad \text{or} \\
\frac{1}{2} \min \left\{ q(u_{n(i)-1}, Tu_{n(i)-1}), q(u^*, Tu^*), q(Tu^*, u^*) \right\} \le q(u_{n(i)-1}, u^*).$$
(33)

Indeed, using the method of Reductio ad Absurdum, we assume that that there exists $k \in \mathbb{N}$ such that

$$\frac{1}{2}\min\{q(u^*,Tu^*),q(u_k,Tu_k),q(Tu_k,u_k)\}>q(u^*,u_k) \text{ and } \frac{1}{2}\min\{q(u_{k-1},Tu_{k-1}),q(u^*,Tu^*),q(Tu^*,u^*)\}>q(u_{k-1},u^*)$$

Therefore, we have

$$\begin{array}{ll} q(u_{k-1},u_k) & \leq q(u_{k-1},u^*) + q(u^*,u_k) \\ & < \frac{1}{2} \min \left\{ q(u_{k-1},Tu_{k-1}), q(u^*,Tu^*), q(Tu^*,u^*) \right\} + \frac{1}{2} \min \left\{ q(u^*,Tu^*), q(u_{k-1},Tu_{k-1}), q(Tu_{k-1},u_{k-1}) \right\} \\ & < \frac{1}{2} [\min \left\{ q(u_{k-1},u_k), q(u^*,Tu^*), q(Tu^*,u^*) \right\} + \min \left\{ q(u^*,Tu^*), q(u_{k-1},u_k), q(u_k,u_{k-1}) \right\}] \\ & \leq \frac{1}{2} [q(u_{k-1},u_k) + q(u_{k-1},u_k)] \\ & = q(u_{k-1},u_k), \end{array}$$

which is a contradiction.

In the alternative hypothesis, if the space X is regular with respect to mapping α , we have $\alpha(u^*, u_{n(i)}) \ge 1$, where $\{u_{n(i)}\}$ is a sub-sequence of $\{u_n\}$, for $i \in \mathbb{N}$. We will suppose by *reductio ad absurdum* that $u^* \ne Tu^*$. Then, for $u = u^*$ and $v = u_{n(i)}$ in (3), we get

$$\zeta(\alpha(u^*, u_{n(i)})q(Tu^*, Tu_{ni})), \psi(\mathcal{A}_{\nu}(u^*, u_{n(i)}))) \geq 0.$$

Taking into account the properties of function ζ , ψ , and α , the above relation becomes

$$q(Tu^*, u^*) \leq q(Tu^*, Tu_n) + q(Tu_n, u^*) \leq \alpha(u^*, u_n) q(Tu^*, Tu_{n(i)}) + q(u_{n(i)+1}, u^*)$$

$$\leq \psi((q(u^*, u_{n(i)}))^{a_1} \cdot (q(u^*, Tu^*))^{a_2} \cdot (q(u_{n(i)}, Tu_{n(i)}))^{a_3} + \mathcal{N}(u^*, u_{n(i)})) + q(u_{n(i)+1}, u^*),$$

Letting $i \to \infty$, we have

$$0 < q(Tu^*, u^*) < \lim_{i \to \infty} \psi((q(u^*, u_{n(i)}))^{a_1} \cdot (q(u^*, Tu^*))^{a_2} \cdot (q(u_{n(i)}, Tu_{n(i)}))^{a_3} + \mathcal{N}(u^*, u_{n(i)})) + q(u_{n(i)+1}, u^*)$$

and, since ψ is continuous in 0, $\psi(0) = 0$, we get $q(Tu^*, u^*) = 0$. \square

Corollary 5. Let (X, q) be a complete quasi-metric space and $T: X \to X$ be a given mapping. Assume that there exist $L \ge 0$, $\zeta \in \mathcal{Z}$ and $\psi \in \Psi$ such that, for all distinct $u, v \in X$, we have

$$\frac{1}{2}\min\left\{q(u,Tu),q(v,Tv)q(Tv,v)\right\} \leq q(u,v) \text{ implies}$$

$$\zeta(q(Tu,Tv),\psi(I_p(u,v)+L\mathcal{N}(u,v))) \geq 0,$$

for all distinct $u, v \in X$. Then, T has a fixed point.

Proof. It is sufficient to take $\alpha(u, v) = 1$ for $u, v \in X$ in Theorem 5. \square

Corollary 6. Let (X, q) be a complete quasi-metric space and $T: X \to X$ be a given mapping. Assume that there exist $L \ge 0$, $\zeta \in \mathcal{Z}$ and $\psi \in \Psi$ such that, for all distinct $u, v \in X$, we have

$$\frac{1}{2}\min\left\{q(u,Tu),q(v,Tv)q(Tv,v)\right\} \leq q(u,v) \text{ implies } q(Tu,Tv) \leq kI_v(u,v)$$

for all distinct $u, v \in X$. Then, T has a fixed point.

Proof. It is sufficient to take L=0, $\zeta(t,s)=k_1s-t$, $\psi(u)=k_2u$ with $k_1,k_2\in(0,1)$ and $k=k_1k_2$ in Corollary 5. \square

Corollary 7. Let (X, q) be a complete quasi-metric space and $T: X \to X$ a continuous mapping such that

$$\frac{1}{2}\min\{q(u,Tu),q(v,Tv)q(Tv,v)\} \le q(u,v) \text{ implies}
q(Tu,Tv) \le \frac{k}{\sqrt{3}} \cdot \sqrt{(q(u,v))^2 + (q(u,Tu))^2 + (q(v,Tv))^2}$$
(34)

for all distinct $u, v \in X$ and some $k \in (0,1)$. Then, T has a fixed point in X.

Proof. Let p = 2 and $a_1 = a_2 = a_3 = \frac{1}{3}$ in Corollary 6. \square

In the next theorem, we involve a Jaggi type expression with the hybrid contractions.

Definition 2. Let (X, q) be a quasi-metric space. A mapping $T: X \to X$ is called a hybrid almost contraction of type \mathbb{J} , if there exist $\zeta \in \mathcal{Z}$ and $\psi \in \Psi$ such that, for $p \geq 0$, $L \geq 0$ and $a_1, a_2 > 0$ with $a_1 + a_2 < 1$, we have

$$\frac{1}{2}\min\left\{q(u,Tu),q(v,Tv)q(Tv,v)\right\} \leq q(u,v) \text{ implies}$$

$$\zeta(\alpha(u,v)q(Tu,Tv),\psi(\mathcal{I}_{\mathcal{V}}(u,v)+L\mathcal{K}(u,v))) \geq 0,$$
(35)

for all distinct $u, v \in X$, where

$$\mathcal{I}_{p}(u,v) = \begin{cases} [a_{1}(q(u,v))^{p} + a_{2}(\frac{q(u,Tu))\cdot(q(v,Tv)}{q(u,v)})^{p}]^{1/p}, & \text{for } p > 0 \\ (q(u,v))^{a_{1}} \cdot (q(u,Tu))^{a_{1}} \cdot (q(v,Tv))^{1-a_{1}-a_{2}}, & \text{for } p = 0 \end{cases}$$

and

$$\mathcal{N}(u,v) = \min \left\{ q(u,Tv), q(v,Tu) \right\}.$$

Theorem 3. *Let* (X, q) *be a complete quasi-metric space and* $\alpha : X \times X \to [0, \infty)$ *be a mapping such that:*

- (i) $u = Tu \text{ implies } \alpha(u, v) > 0 \text{ for every } v \in X;$
- (ii) v = Tv implies $\alpha(u, v) > 0$ for every $u \in X$.

Suppose that $T: X \to X$ is a hybrid almost contraction of type \mathbb{J} such that the following assumptions hold:

- (i) T is α -orbital admissible;
- (ii) there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$;
- (iii) there exists $\Delta > 0$ such that, $(a_1 + a_2 \Delta^{2p})^{1/p} \leq 1$ (where p > 0) and

$$\frac{1}{\Delta}q(u,v) \leq q(v,u) \leq \Delta q(u,v), \text{ for all } u,v \in X;$$

(iv) T is continuous.

Then, T has a fixed point.

Proof. We will consider only the case p > 0 because, for p = 0, the expression is similar to the one in Theorem 1. By verbatim of the first lines in the proof of Theorem 1, starting from a point u_0 , we are able to build a sequence $\{u_n\} \subset X$. Onward, as in the proof of Theorem 1, we suppose that $u_{n+1} \neq u_n$ for all $n \in \mathbb{N}$ and from (35), we have $\frac{1}{2} \min \{q(u_{n-1}, Tu_{n-1}), q(u_n, Tu_n), q(Tu_n, u_n)\} \leq q(u_{n-1}, u_n)$, which implies

$$\zeta(\alpha(u_{n-1}, u_n)q(Tu_{n-1}, Tu_n), \psi(\mathfrak{I}_p(u_{n-1}, u_n) + L\mathfrak{N}(u_{n-1}, u_n))) \ge 0.$$

Mathematics 2020, 8, 675 14 of 19

By the axiom (z_d) , Lemma 1 and taking into account (7), this inequality becomes

$$q(u_{n}, u_{n+1}) \leq \alpha(u_{n-1}, u_{n}) q(Tu_{n-1}, Tu_{n}) \leq \psi(\mathcal{I}_{p}(u_{n-1}, u_{n}) + L\mathcal{N}(u_{n-1}, u_{n})) < \mathcal{I}_{p}(u_{n-1}, u_{n})$$

$$= [a_{1}(q(u_{n-1}, u_{n}))^{p} + a_{2}(\frac{q(u_{n-1}, Tu_{n-1}) \cdot q(u_{n}, Tu_{n})}{q(u_{n-1}, u_{n})})^{p}]^{1/p}$$

$$= [a_{1}(q(u_{n-1}, u_{n}))^{p} + a_{2}(\frac{q(u_{n-1}, u_{n}) \cdot (qu_{n}, u_{n+1})}{q(u_{n-1}, u_{n})})^{p}]^{1/p}$$

$$= [a_{1}(q(u_{n-1}, u_{n}))^{p} + a_{2}(q(u_{n}, u_{n+1}))^{p}]^{1/p}.$$
(36)

Thereupon,

$$q(u_n, u_{n+1}) < \left(\frac{a_1}{1-a_2}\right)^{1/p} q(u_{n-1}, u_n) < q(u_{n-1}, u_n)$$

and then, from (36), we have $q(u_n, u_{n+1}) < \psi(q(u_{n-1}, u_n))$. Since $\psi \in \Psi$, recursively, we get

$$q(u_n, u_{n+1}) < \psi(q(u_{n-1}, u_n)) < \dots < \psi^n(q(u_0, u_1)).$$
(37)

In order to prove that $\{u_n\}$ is a right-Cauchy sequence, let $l \in \mathbb{N}$. From (37) and the triangle inequality, we get that

$$q(u_n, u_{n+l}) \leq q(u_n, u_{n+1}) + \dots + q(u_{n+l-1}, u_{n+l})$$

$$\leq \sum_{j=n}^{n+l-1} \psi^j(q(u_0, u_1))$$

$$\leq \sum_{j=n}^{\infty} \psi^j(q(u_0, u_1)) \to 0, \text{ as } n \to \infty.$$

We conclude that $\{q_n\}$ is a right-Cauchy sequence in (X, q).

Substituting in (35) $u = u_n$ and $v = u_{n-1}$ and since $\frac{1}{2} \min \{q(u_n, Tu_n, q(u_{n-1}, Tu_{n-1}), q(Tu_{n-1}, u_{n-1}))\} \le q(u_n, u_{n-1})$, we have (taking into account (11)

$$\begin{split} q(u_{n+1}, u_n) & \leq \alpha(u_n, u_{n-1}) q(Tu_n, Tu_{n-1}) \leq \psi(\mathcal{I}_p(u_n, u_{n-1}) + L \mathcal{N}(u_n, u_{n-1})) < \mathcal{I}_p(u_n, u_{n-1}) \\ & = [a_1(q(u_n, u_{n-1}))^p + a_2(\frac{q(u_n, u_{n+1})) \cdot (q(u_{n-1}, u_n)}{q(u_n, u_{n-1})})^p]^{1/p} \end{split}$$

i.e.,

$$(q(u_{n+1},u_n))^p < a_1(q(u_n,u_{n-1}))^p + a_2(\frac{q(u_n,u_{n+1})) \cdot (q(u_{n-1},u_n))^p}{q(u_n,u_{n-1})^p})^p.$$

On one hand, we have already proved that $q(u_n, u_{n+1}) < q(u_{n-1}, u_n)$. On the other hand, by (*iii*), there exists a positive constant Δ such that $q(u_{n-1}, u_n) \le \Delta q(u_n, u_{n-1})$ for $n \in \mathbb{N}$. Thus, we have

$$(q(u_{n+1}, u_n))^p < a_1(q(u_n, u_{n-1}))^p + a_2(\frac{(q(u_{n-1}, u_n))^2}{q(u_n, u_{n-1})}))^p$$

$$< a_1(q(u_n, u_{n-1}))^p + a_2(\frac{(\Delta \cdot q(u_n, u_{n-1}))^2}{q(u_n, u_{n-1})})^p$$

$$= (a_1 + a_2\Delta^{2p}) \cdot (q(u_n, u_{n-1}))^p,$$

which is equivalent to the next inequality

$$q(u_{n+1}, u_n) < (a_1 + a_2 \Delta^{2p})^{1/p} q(u_n, u_{n-1}) < q(u_n, u_{n-1}).$$

Mathematics 2020, 8, 675 15 of 19

Thus,

$$q(u_{n+1}, u_n) < \psi(q(u_n, u_{n-1})) < \dots < \psi^n(q(u_1, u_0))$$
(38)

Again, considering triangle inequality, together with (38), for $l \in \mathbb{N}$, we have

$$q(u_{n+l}, u_n) \le q(u_{n+l}, u_{n+l-1}) + ... + q(u_{n-1}, u_n)$$

 $\le \sum_{j=n}^{\infty} \psi^j(q(u_0, u_1)) \to 0$, as $n \to \infty$.

Analogously, we deduce that $\{u_n\}$ is left-Cauchy, so that it is a Cauchy sequence in complete quasi-metric space.

Thus, there exists $u^* \in X$ such that

$$\lim_{n \to \infty} q(u_n, u^*) = \lim_{n \to \infty} q(u^*, u_n) = 0.$$
(39)

Under the assumption (iv), from the continuity of T and (q_1), we have

$$\lim_{n\to\infty}q(u_n,Tu^*)=\lim_{n\to\infty}q(Tu_{n-1},Tu^*)=0,$$

$$\lim_{n\to\infty}q(Tu^*,u_n)=\lim_{n\to\infty}q(Tu^*,Tu_{n-1})=0$$

so that

$$\lim_{n \to \infty} q(u_n, Tu^*) = \lim_{n \to \infty} q(Tu^*, u_n) = 0.$$
(40)

Hence, $Tu^* = u^*$ that is, u^* is a fixed point of T. \square

The following is a special case for p = 0.

Corollary 8. Let (X, q) be a complete quasi-metric space, a function $\alpha: X \times X \to [0, \infty)$ and a mapping $T: X \to X$ such that there exist $\zeta \in \mathcal{Z}$ and $\psi \in \Psi$ such that, for $p \ge 0$, $L \ge 0$ and $a_1, a_2, \in [0, 1)$ with $a_1 + a_2 < 1$, we have

$$\zeta(\alpha(u,v)q(Tu,Tv),\psi(\mathcal{I}_{v}(u,v)+L\mathcal{N}(u,v))) \geq 0, \text{ for all distinct } u,v \in X.$$
(41)

Suppose also that the following assumptions hold:

- (i) $u = Tu \text{ implies } \alpha(u, v) > 0 \text{ for every } v \in X;$
- (ii) $v = Tv \text{ implies } \alpha(u, v) > 0 \text{ for every } u \in X;$
- (i) T is α -orbital admissible;
- (ii) there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$;
- (iii) there exists $\Delta > 0$ such that, $(a_1 + a_2 \Delta^{2p})^{1/p} \leq 1$ (where p > 0) and

$$\frac{1}{\Lambda}q(u,v) \leq q(v,u) \leq \Delta q(u,v)$$
, for all $u,v \in X$;

(iv) T is continuous.

Then, T has a fixed point.

Example 2. Let X = [0, 1] and the function

$$q(u, v) = \begin{cases} u - v, & \text{for } u \ge v \\ 2(v - u), & \text{for } u < v \end{cases}$$

It is easy to see that the pair (X, q) forms a quasi-metric space. Let the map $T: X \to X$ defined by

$$Tu = \begin{cases} \frac{1}{8}, & \text{for } u \in [0, \frac{1}{2}] \\ \frac{u}{4}, & \text{for } u \in [\frac{1}{2}, 1] \end{cases}$$

and choose $\zeta(u,v) = \frac{1}{2}v - u$ and $\psi(t) = \frac{1}{2}t$. For p = 2, L = 0, $\Delta = 2$, $a_1 = \frac{1}{4}$ and $a_2 = \frac{1}{32}$ because $(a_1 + a_2 \cdot \Delta^{2p})^{1/p} = \frac{1}{4} + \frac{1}{32} \cdot 2^4 = \frac{3}{4} \le 1$, the assumption (iii) is satisfied. In this case, (41) becomes

$$\alpha(u,v)q(u,v) \le \mathcal{I}_p(u,v) = \frac{1}{4}\sqrt{\frac{1}{4}(q(u,v))^2 + \frac{1}{32}(\frac{q(u,Tu)q(v,Tv)}{q(u,v)})^2}.$$
(42)

Define $\alpha: X \times X \rightarrow [0, \infty)$ *such that*

$$\alpha(u, v) = \begin{cases} 3, & \text{for } u, v \in [0, \frac{1}{2}) \\ 1, & \text{for } u = 1, v = 0 \\ 0, & \text{otherwise} \end{cases}$$

It is easy to see that T is α -admissible. Indeed, we have

$$\alpha(u, v) = 3 \Rightarrow \alpha(Tu, Tv) = \alpha(1/8, 1/8) = 3, \text{ for } u, v \in [0, \frac{1}{2})$$

and

$$\alpha(1,0) = 1 \Rightarrow \alpha(T1,T0) = \alpha(1/4,1/8) = 3.$$

On the other hand, for $q_0 = 0$,

$$\alpha(0, T0) = \alpha(T0, 0) = \alpha(0, 0) = 3$$

so that the presumptions (i), (ii), and (iv) are satisfied. Of course, if $u, v \in [0, \frac{1}{2})$, we have $q(Tu, Tv) = q(\frac{1}{8}, \frac{1}{8}) = 0$ and (41) is verified. For u = 1 and v = 0, we have $q(T1, T0) = \frac{1}{4} - \frac{1}{8} = \frac{1}{8}$, q(0, T0) = q(0, 1/8) = 2(1/8 - 0) = 1/4, q(1, T1) = q(1, 1/4) = 3/4 and

$$\alpha(1,0)q(T1,T0) = \frac{1}{8} \le \frac{1}{4}\sqrt{\frac{1}{4} + \frac{1}{32}(\frac{3}{16})^2}$$

$$= \frac{1}{4}\sqrt{\frac{1}{4}(q(1,0))^2 + \frac{1}{32}(\frac{q(0,T0)q(1,T1)}{q(1,0)})^2}$$
(43)

The other cases are not interesting since $\alpha(u, v) = 0$ and the condition (42) is fulfilled trivially. Thus, the presumptions of Theorem 8 are provided and $u = \frac{1}{8}$ is the fixed point of T.

Corollary 9. *Let* (X, q) *be a complete quasi-metric space and* T *be a continuous self-mapping on* X. *Suppose that there exist* $\zeta \in \mathcal{Z}$, $\psi \in \Psi$ *such that*

$$\zeta(q(Tu, Tv), \psi(\mathfrak{I}_n(u, v))) \geq 0,$$

Mathematics 2020, 8, 675 17 of 19

for each distinct $u, v \in X$. If there exists $\Delta > 0$ such that $(a_1 + a_2 \cdot \Delta^{2p})^{1/p} \le 1$ for p > 0, and $\frac{1}{\Delta}q(u, v) \le q(v, u) \le \Delta q(u, v)$ for all $u, v \in X$, then T has a fixed point.

Proof. It is sufficient to take L = 0 and $\alpha(u, v) = 1$ for $u, v \in X$ in Corollary 8. \square

Corollary 10. Let (x,q) be a complete quasi-metric space and T be a self-mapping on X. Suppose that there exists $\Delta > 0$ such that $(a_1 + a_2 \cdot \Delta^{2p})^{1/p} \le 1$ for p > 0, and $\frac{1}{\Delta}q(u,v) \le q(v,u) \le \Delta q(u,v)$ for all $u,v \in X$. The mapping T has a fixed point provided that

$$q(Tu, Tv) \le c \cdot \mathcal{I}_p(u, v)$$

for each distinct $u, v \in X$ and some $c \in (0, 1)$.

Proof. We set $\zeta(t,s) = c_1 s - t$, $\psi(u) = c_2 u$ with $c_1, c_2 \in [0,1)$ and $c = c_1 + c_2$ in Corollary 9. \square

Remark 3. Letting p = 0 in Corollary 10, we find Theorem 2.2. in [20].

Example 3. Let (X, q) be the quasi-metric space, where $X = [1, \infty)$ and

$$q(u, v) = \begin{cases} u - v, & \text{for } u \ge v \\ 2(v - u), & \text{for } u < v \end{cases}$$

Let

$$Tu = \begin{cases} u^3 - 8u^2 + 19u - 9, & \text{for } u \in [1, 5] \\ ln(u^2 - 24) + u + 6, & \text{for } u \in (5, \infty). \end{cases}$$

Consider the function ζ be arbitrary in \mathcal{Z} , $\psi \in \Psi$ with $\psi(t) = \frac{t}{\sqrt{3}}$ and $\alpha: X \times X \to [0, \infty)$ such that

$$\alpha(u,v) = \begin{cases} u^2 + 1, & \text{for } (u,v) \in \{(3,3), (3,4), (4,3), (3,1), (1,3)\} \\ 1, & \text{for } (u,v) = (2,1) \\ 0, & \text{otherwise }. \end{cases}$$

It is easily verified that T is α -orbital admissible. Whereas T1 = T3 = T4 = 3, taking into account the definition of function α , we have that the inequality (41) holds for every pair $(u, v) \in X^2 \setminus \{(2, 1)\}$. For the case u = 2 and v = 1, choosing $a_1 = \frac{1}{2}$, $a_2 = \frac{1}{48}$ and p = 2, we find that axiom (iii) holds. On the other hand,

$$\mathcal{J}_p(2,1) = \left[\frac{1}{2}(q(2,1))^2 + \frac{1}{48} \left(\frac{q(2,T2) \cdot q(1,T1)}{q(2,1)}\right)^2\right]^{1/2}$$
$$= \sqrt{\frac{1}{2} + \frac{1}{48} \cdot \left(\frac{q(2,5) \cdot q(1,3)}{q(2,1)}\right)^2} = \sqrt{\frac{25}{2}}$$

and

$$\alpha(2,1)q(T2,T1) = q(5,3) = 2 < \sqrt{\frac{25}{6}} = \psi(\mathcal{I}_p(2,1)).$$

Consequently, by Theorem 8, we have that the mapping T has a fixed point in X.

Mathematics 2020, 8, 675 18 of 19

On the other hand, we can observed that, for u = 1 and v = 5,

$$q(T1, T(4.5)) = q(2, 5.625) = 7.25, \ q(1, T1) = q(1, 2) = 2, \ q(4.5, T(4.5)) = q(4.5, 5.625) = 1.125,$$

so that, since

$$q(T1, T(4.5)) > \lambda(q(1, T1))^{\alpha}(q(4.5, T(4.5)))^{1-\alpha}$$

for any $\lambda \in [0,1)$ and $\alpha \in (0,1)$, Theorem 2.2 in [20] can not be applied.

Corollary 11. Let (X, q) be a complete quasi-metric space and $T: X \to X$ a continuous mapping. Then, T has a fixed point provided that

$$q(Tu, Tv) \le k_1 \cdot q(u, v) + k_2 \cdot \frac{q(u, Tu)q(v, Tv)}{q(u, v)}$$
(44)

for each $u, v \in X$ and $k_1, k_2 \in (0,1)$ with $k_1 + k_2 < 1$

Proof. Let p = 1 and $k_i = c \cdot a_i$, for $i \in \{1, 2\}$ in Corollary 10. \square

Author Contributions: All authors contributed equally and significantly in writing this article. Writing—original draft, A.F. and E.K.; writing—review and editing, A.F., G.P., and E.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank the anonymous referees for their remarkable comments, suggestions, and ideas that helped to improve this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Wilson, W.A. On quasi-metric spaces. Am. J. Math. 1931, 53, 675–684.
- 2. Künzi, H.-P.A. Nonsymmetric distances and their associated withpologies: about the origins of basic ideas in the area of asymmetric topology. In *Handbook of the History of General Topology*; volume 3 of Hist. Topol.; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2001; pp. 853–968.
- 3. Künzi, H.-P.A.; Vajner, V. Weighted quasi-metrics. In *Papers on General Topology and Applications (Flushing, NY, 1992)*; New York Acad. Sci.: New York, NY, USA, 1994; pp. 64–77.
- 4. Künzi, H.-P.A.; Romaguera, S. Quasi-Metric Spaces, Quasi-Metric Hyperspaces and Uniform Local Compactness. *Rend. Istit. Mat. Univ. Trieste Suppl.* **1999**, XXX, 133–144.
- 5. Romaguera, S.; Schellekens, M. On the structure of the dual complexity space: the general case. *Extracta Math.* **1998**, *13*, 249–253.
- 6. Romaguera, S.; Schellekens, M. Quasi-metric properties of complexity spaces. *Topology Appl.* **1999**, *98*, 311–322.
- 7. Romaguera, S.; Schellekens, M. Duality and quasi-normability for complexity spaces. *Appl. Gen. Topol.* **2002**, *3*, 91–112.
- 8. Romaguera, S.; Schellekens, M.P. Weightable quasi-metric semigroups and semilattices. *Electr. Notes Theor. Comput. Sci.* **2001**, *40*, 347–358.
- 9. Stojmirović, A. Quasi-metrics, Similarities and Searches: aspects of geometry of protein datasets. *arXiv* **2018**, arXiv:0810.5407.
- 10. Secelean, N.A.; Mathew, S.; Wardowski, D. New fixed point results in quasi-metric spaces and applications in fractals theory. *Adv. Differ. Equ.* **2019**, 2019, 177.
- 11. Romaguera, S.; Tirado, P. A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem. *Fixed Point Theory Appl.* **2015**, 2015, 183.

Mathematics 2020, 8, 675 19 of 19

12. Romaguera , S.; Tirado, P. The Meir-Keeler fixed point theorems for quasi-metric spaces and some consequences. *Symmetry* **2019**, *11*, 741.

- 13. Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj-Napocca, Romania, 2001.
- 14. Bianchini, R.M.; Grandolfi, M. Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. *Atti Acad. Naz. Lincei, VII. Ser. Rend. Cl. Sci. Fis. Mat. Natur.* **1968**, 45, 212–216.
- 15. Popescu, O. Some new fixed point theorems for α -Geraghty contractive type maps in metric spaces. *Fixed Point Theory Appl.* **2014**, 2014, 190.
- 16. Agarwal, R.P.; Karapinar, E. Interpolative Rus-Reich-Ciric type contractions via simulation functions. *An. St. Univ. Ovidius Constanta Ser. Mat.* **2020**, in press.
- 17. Aydi, H.; Chen, C.M.; Karapinar, E. Interpolative Ciric-Reich-Rus type contractions via the Branciari distance. *Mathematics* **2019**, *7*, 84.
- 18. Aydi, H.; Karapinar, E.; Roldán López de Hierro, A.F. ω Interpolative Ciric-Reich-Rus type contractions. *Mathematics* **2019**, *7*, 57.
- 19. Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230.
- 20. Karapinar, E. Revisiting the Kannan type contractions via interpolation. *Adv. Theory Nonlinear Anal. Appl.* **2018**, 2, 85–87.
- 21. Karapinar, E.; Alqahtani, O.; Aydi, H. On Interpolative Hardy-Rogers type contractions. Symmetry 2019, 11, 8.
- 22. Karapinar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ciric type contractions on partial metric spaces. *Mathematics* **2018**, *6*, 256.
- 23. Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theorems via simulation functions. *Filomat* **2015**, **29**, 1189–1194.
- 24. Petruşel, A.; Rus, I.A. Fixed point theory in terms of a metric and of an order relation. *Fixed Point Theory* **2019**, 20, 601–622.
- 25. Rus, I.A.; Petruşel, A.; Petruşel, G. Fixed Point Theory; Cluj University Press: Cluj-Napocca, Romania, 2008.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).