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Abstract: In this paper, we will obtain the existence of viscosity solutions to the exterior Dirichlet
problem for Hessian equations with prescribed asymptotic behavior at infinity by the Perron’s method.
This extends the Ju–Bao results on Monge–Ampère equations det D2u = f (x).
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1. Introduction

In this paper, we shall study the exterior Dirichlet problem of Hessian equation

Sk(D2u) = f (x), x ∈ Rn \Ω (1)

where Ω ⊂ Rn is a bounded, strictly convex set and 0 ∈ Ω, f ∈ C0(Rn) is a positive function.
If k = 1, (1) is reduced to Poisson’s equation ∆u = f (x). If k ≥ 2, (1) is fully nonlinear

elliptic. When k = n, we can derive the Monge–Ampère equation det D2u = f (x). There are
many results of interior Hessian equations, see [1–7] and the correlative literatures. For example,
Caffarelli–Nirenberg–Spruck [2] obtained the existence result for the interior Dirichlet problem of
Hessian equations.

Besides the interior Dirichlet problems, the exterior Dirichlet problem has also been extensively
studied. The exterior Dirichlet problem is closely related to the classical theorem of Jörgens (n = 2 [8]),
Calabi (n ≤ 5 [9]), and Pogorelov (n ≥ 2 [10]) which states that any classical convex solution of
det D2u = 1 in Rn must be a quadratic polynomial. A more simplified and analytical proof of the
theorem was obtained by Cheng–Yau [11]. Jost–Xin [12] proved the theorem in different ways. Later,
Caffarelli [13] generalized the conclusion to the viscosity solution. However Trudinger–Wang [14]
showed that if u ∈ C2(Ω) is a convex function of det D2u = 1 and Ω is a convex set of Rnwith
limx→∂Ω u(x) = ∞, then u is quadratic and Ω = Rn.

In 2003, Caffarelli–Li [15] proved the existence result to Monge–Ampère equation in Rn(n ≥ 3).
That is, let {

det D2u = 1, x ∈ Rn\Ω,
u = ϕ̃(x), x ∈ ∂Ω,

(2)

where ϕ̃ ∈ C2(∂Ω). Let b̃ ∈ Rn, c̃ ∈ R and

A = {A is a real n× n symmetric positive definite matrice satisfying det A = 1.}
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There is some constant c∗ and A ∈ A, c∗ depends on n, Ω, ϕ̃, b̃, for every c̃ > c∗, then the
problem (2) has a function u ∈ C∞(Rn\Ω) ∩ C0(Rn\Ω) satisfying the asymptotic behavior

lim sup
|x|→∞

(|x|n−2|u(x)− (
1
2

x′Ax + b̃ · x + c̃)|) < ∞. (3)

If n = 2, by complex variable methods, Ferrer et al. [16,17] investigated the Dirichlet problem
earlier. Then the exterior Dirichlet problem of Monge–Ampère equation was investigated by [18–23]
and related literatures. For instance, in [20], Ju–Bao proved the existence result to det D2u = f (x)
with f = f0(|x|) + O(|x|−β), β > 0 on exterior domains. Motivated by [15], the second author and
Bao [24] first studied the Dirichlet problem of Hessian equation Sk(D2u) = 1 on exterior domains.
The existence result with the asymptotic behavior (3) was obtained for A = (Ck

n)
−1/k I and I is the

identity matrix in [24]. More excellent achievements about the exterior problem of Hessian equations
can be referred to [25–27]. Specially, Bao–Li–Li [25] extended the asymptotic behavior (3) to more
general A and Cao–Bao [26] studied the exterior problem of Hessian equation Sk(D2u) = f (x) in Rn

where f = 1 + O(|x|−β) with β > 2.
In this paper, we’ll generalize the outcome of Monge–Ampère equation in [20] to the Hessian

equation (1). We will study the exterior Dirichlet problem{
Sk(D2u) = f (x), x ∈ Rn \Ω,

u = ϕ(x), x ∈ ∂Ω.
(4)

In order to make the Hessian equation to be elliptic, we have to limit a class of functions. Set

Γk = {λ ∈ Rn|σj(λ) > 0, j = 1, 2, · · · , k}.

Let u ∈ C2(Rn\Ω) and λ(D2u) represent the eigenvalues λ1, λ2, · · · , λn of the Hessian matrix
D2u. If λ ∈ Γk, then we call u k-convex.

Definition 1. [24] A function u ∈ C0(Rn \Ω) is known as a viscosity supersolution (respectively, subsolution)
to Sk(D2u) = f (x), if for any t ∈ Rn \Ω, ε ∈ C2(Rn \Ω) satisfying

ε(t) = u(t) and ε(x) ≤ (respectively, ≥)u(x) on Rn \Ω,

we get
Sk(D2ε(t)) ≤ (respectively, ≥) f (t).

In viscosity supersolution, we need ε(x) to be k−convex.
If u ∈ C0(Rn \ Ω) is a viscosity supersolution, meanwhile, a viscosity subsolution, we call that

u ∈ C0(Rn \Ω) is a viscosity solution to Sk(D2u) = f (x).
If u ∈ C0(Rn \ Ω) is a viscosity supersolution (resp. solution, subsolution) to (1) and

u ≥ (resp. =, ≤)ϕ(x) on ∂Ω, we call that u ∈ C0(Rn \Ω) is a viscosity supersolution (resp. solution,
subsolution) to (4).

Let
f (x) = f0(|x|) + O(|x|−β),

with f0 ∈ C0([0,+∞)), β > 0, |x| large enough and f0 satisfies

b1rα ≤ f0(r) ≤ b2rα, r ≥ r0,

for some positive constants b1, b2, r0.



Mathematics 2020, 8, 666 3 of 11

Theorem 1. Let Ω be a smooth, bounded and strictly convex set of Rn f or n ≥ 3, ϕ ∈ C2(∂Ω), ∂Ω ∈ C2.
Suppose that f satisfies the above assumptions. In case

k(2−min{n, β})
k− 1

< α < ∞, n + α > 0, and α + β > 0, (5)

then for any given b0 ∈ Rn, there is some constant m∗, m∗ depends on n, b0, b1, b2, α, β, ϕ, Ω. For every
m > m∗, there is a locally k−convex viscosity solution u ∈ C0(Rn \Ω) to the exterior Dirichlet problem (4).
In addition, u satisfies

lim
|x|→∞

sup|x|α−
α
k−2+min{n,β}|u(x)− g0(|x|)− b0x−m| < ∞, (6)

where g0(|x|) is the radially symmetric solution of Sk(D2u) = f0(|x|) in Rn with g0(0) = g
′
0(0) = 0, given

by (11).

Theorem 2. Let f , f0, g0 be as in Theorem 1. For any given b0 ∈ Rn, there is some constant m∗, m∗ depends
on b0, b1, b2, n, α, β, then for any m > m∗, the equation

Sk(D2u) = f (x), x ∈ Rn (7)

has an entire k−convex solution u ∈ C0(Rn) in the viscosity sense. In addition, u satisfies (6).

This paper can be divided into the following sections. In the second part, we give the radially
symmetric solution to Sk(D2u) = f0. The third and fourth parts will prove Theorems 1 and 2,
respectively. In the last section, we show the importance of condition (5) by counterexample.

2. Radially Symmetric Solutions of SK(D2U) = F0

Define u(x) = u(r) = u(|x|) to be radially symmetric, where r = |x| = (x2
1 + x2

2 + · · ·+ x2
n)

1
2 .

By direct calculation, we can get

Diju(r) = (ru′′(r)− u′(r))
xixj

r3 + u′(r)
γij

r
, i, j = 1, . . . , n,

where

γij =

{
1, i = j,

0, i 6= j.

We can choose x = (r, 0, · · · 0)T , then

Sk(D2u) = Ck−1
n−1u′′(r)u′(r)k−1r1−k + Ck

n−1u′(r)kr−k = f0(r). (8)

From (8), we can get

(rn−ku′(r)k)′ =
nrn−1 f0(r)

Ck
n

, (9)

and
u(r) = d +

∫ r

2R1

aτ1− n
k [
∫ τ

1
nsn−1 f0(s)ds + b]

1
k dτ, (10)

where R1 is a positive number and

d = u(2R1), a = (
1

Ck
n
)

1
k , b = Ck

n(u
′
(1))k.
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Then the radially symmetric solution g0(r) of Sk(D2u) = f0 with g0(0) = 0, g′0(0) = 0 is

g0(r) =
∫ r

0
aτ1− n

k [
∫ τ

0
nsn−1 f0(s)ds]

1
k dτ. (11)

3. Proof of Theorem 1

Known from [20], by subtracting a linear function from u, let us suppose that b0 = 0 in (6). Set f
and f be two positive functions and satisfy

0 < f (|x|) = f0(|x|)− c1|x|−β ≤ f (x) ≤ f (|x|) = f0(|x|) + c2|x|−β, x ∈ Rn

for some positive numbers c1, c2 and |x| large enough.

Lemma 1. Let D be a smooth, bounded subset of Rn, f be a positive function on D and a function u ∈ C0(D) be
a k−convex viscosity subsolution to Sk(D2u) = f (x), then there is a k−convex viscosity solution u ∈ C0(D)

which satisfies {
Sk(D2u) = f (x), in D,

u = u, on ∂D.
(12)

Lemma 2. Let D1 ⊂ D2 be two smooth, bounded sets in Rn and f ∈ C0(Rn) be positive. In the viscosity sense,
assume that k−convex functions w ∈ C0(D2), u ∈ C0(Rn \ D1) satisfy

Sk(D2w) ≥ f (x), x ∈ D2,

Sk(D2u) ≥ f (x), x ∈ Rn \ D1,

respectively, besides
u < w, on ∂D1,

u > w, on ∂D2.

Define

v(x) :=


w(x), in D1,

max{w(x), u(x)}, in D2 \ D1,

u(x), in Rn \ D2.

Then in the viscosity sense, v ∈ C0(Rn) is a k−convex function and satisfies

Sk(D2v) ≥ f (x), x ∈ Rn.

The proofs of Lemma 1 and Lemma 2 can be referred to [20,24], here we omit the proofs.
For some constant m̄, let Sm̄ be a set satisfying that a function w ∈ Sm̄ if and only if

(1) w ∈ C0(Rn \Ω) is a locally k−convex viscosity subsolution of Sk(D2u) = f (x) in Rn \Ω, w ≤ ϕ

on ∂Ω;
(2) w(x) ≤ m̄ + v(x), for any x ∈ Rn \Ω, with

v(x) :=
∫ |x|

1
aτ1− n

k [
∫ τ

1
nsn−1 f (s)ds]

1
k dτ. (13)

Lemma 3. There is some constant m̃, m̃ depends on Ω, n, ϕ, α, β, then for any m̄ > m̃, there is a viscosity
subsolution u ∈ Sm̄.
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Proof. Set R2 > R1 > 1 such that R2 > 3R1, Ω ⊂⊂ BR1(0). Define

C := max
x∈BR2

f (x) > 0.

According to [15], for any ε ∈ ∂Ω, there exists a k−convex solution wε(x) to the following equation

Sk(D2u) = C, in Rn

with
wε(ε) = ϕ(ε), wε < ϕ on ∂Ω \ {ε}.

Let
W(x) := sup

ε∈∂Ω
wε(x), x ∈ BR2(0).

Accordingly, W(x) is a k−convex viscosity subsolution of Sk(D2u) = f (x) in BR2(0), and satisfies

W(ε) ≤ ϕ(ε), ε ∈ ∂Ω.

Through the definition of W, for any ε ∈ ∂Ω,

W(ε) ≥ wε(ε) = ϕ(ε),

so we have
W = ϕ, on ∂Ω.

For b ≥ 0, let

vb(x) = inf
x∈BR1

W(x) +
∫ |x|

2R1

aτ1− n
k [
∫ τ

1
nsn−1 f (s)ds + b]

1
k dτ.

Obviously, vb is a locally k−convex viscosity subsolution of Sk(D2u) = f (x) in Rn \ B1(0) and
satisfies

vb(x) ≤W(x), f or 1 ≤ |x| ≤ R1.

Fix b1 > 0 large enough such that for b ≥ b1, with R2 > 3R1, we can get

vb(x) ≥ inf
x∈BR1

W(x) +
∫ 3R1

2R1

aτ1− n
k [
∫ τ

1
nsn−1 f (s)ds + b]

1
k dτ ≥ 1 + W(x), |x| = R2.

Moreover, vb(x) can be rewritten as

vb(x) = d +
∫ ∞

2R1

aτ1− n
k [
∫ τ

1
nsn−1 f (s)ds + b]

1
k dτ −

∫ ∞

|x|
aτ1− n

k [
∫ τ

1
nsn−1 f (s)ds + b]

1
k dτ

= d +
∫ ∞

2R1

aτ1− n
k [
∫ τ

1
nsn−1 f (s)ds + b]

1
k dτ −

∫ ∞

2R1

aτ1− n
k [
∫ τ

0
nsn−1 f0(s)ds]

1
k dτ

+
∫ ∞

2R1

aτ1− n
k [
∫ τ

0
nsn−1 f0(s)ds]

1
k dτ −

∫ ∞

|x|
aτ1− n

k [
∫ τ

1
nsn−1 f (s)ds + b]

1
k dτ

= d +
∫ ∞

2R1

aτ1− n
k [(

∫ τ

1
nsn−1 f (s)ds + b)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ]dτ

−
∫ 2R1

0
aτ1− n

k [
∫ τ

0
nsn−1 f0(s)ds]

1
k dτ +

∫ |x|
0

aτ1− n
k [
∫ τ

0
nsn−1 f0(s)ds]

1
k dτ

−
∫ ∞

|x|
aτ1− n

k [(
∫ τ

1
nsn−1 f (s)ds + b)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ]dτ.
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So

vb(x) = µ(b) + g0(|x|)−
∫ ∞

|x|
aτ1− n

k [(
∫ τ

1
nsn−1 f (s)ds + b)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ]dτ, (14)

where

µ(b) = d +
∫ ∞

2R1

aτ1− n
k [(

∫ τ

1
nsn−1 f (s)ds + b)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ]dτ − g0(2R1).

When τ is large enough, we can get

aτ1− n
k [(

∫ τ

1
nsn−1 f (s)ds + b)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ]

=aτ1− n
k [(

∫ τ

τ0

nsn−1(O(sα) + C3s−β)ds + d1)
1
k − (

∫ τ

τ0

nsn−1(O(sα))ds + d2)
1
k ]

=a(d3)
1
k τ1+ α

k [(1 +
d4

d3
τ−α−β +

d5

d3
τ−n−α)

1
k − (1 +

d6

d3
τ−n−α)

1
k ]

≈a(d3)
1
k τ1+ α

k [
d5 − d6

kd3
τ−n−α +

d4

kd3
τ−α−β]

=O(τ1−n−α+ α
k ) + O(τ1−β−α+ α

k )

=O(τ
α
k +1−α−min{n,β}),

where C3 is a constant, di(i = 1, 2, . . . , 6) depends on n, τ0, α, β, k, b, C3. In view of − k(min{n,β}−2)
k−1 <

α < ∞ , then 2 + α
k − α−min{n, β} < 0 and we have

vb(x) = µ(b) + g0(|x|) + O(|x|
α
k−α+2−min{n,β}), |x|→ ∞. (15)

Moreover, from (13) and the above, we can see that

v(x) = µ
0
+ g0(|x|)−

∫ ∞

|x|
aτ1− n

k [(
∫ τ

1
nsn−1 f (s)ds)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ]dτ, (16)

where
µ

0
=

∫ ∞

1
aτ1− n

k [(
∫ τ

1
nsn−1 f (s)ds)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ]dτ − g0(1).

Similarly, we can get

v(x) = µ
0
+ g0(|x|) + O(|x|

α
k +2−min{n,β}−α), |x| → ∞. (17)

Since

aτ1− n
k [(

∫ τ

1
nsn−1 f (s)ds + b)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ] (18)

≥aτ1− n
k [(

∫ τ

1
nsn−1 f (s)ds)

1
k − (

∫ τ

0
nsn−1 f0(s)ds)

1
k ], (19)

therefore
vb(x) ≤ v(x) + µ(b)− µ

0
, ∀x ∈ Rn \ B1(0). (20)

Obviously, µ(b) for b is continuous, monotonic increasing, and µ(b)→ ∞ as b→ ∞. Fix b2 > 0
large enough such that for b > b2,

W(x) ≤ v(x) + µ(b)− µ
0
, |x| ≤ R2. (21)



Mathematics 2020, 8, 666 7 of 11

Let b∗ = max{b1, b2}, for any b > b∗, we define

ub(x) :=


W(x), |x| < R1,

max{W(x), vb(x)}, R1 ≤ |x| < R2,

vb(x). |x| ≥ R2.

(22)

We know that
ub(x) = W(x) = ϕ(x), on ∂Ω.

Obviously, ub(x) is a k−convex viscosity subsolution of Sk(D2u) = f (x). For any m > m∗ := µ(b∗),
there is a constant b > b∗, and m = µ(b). According to (20) and (21), we can know, for m > m∗,

ub(x) ≤ v(x) + m− µ
0
, ∀x ∈ Rn.

Therefore, ub ∈ Sm−µ
0
. In addition, according to (15) , we have

ub(x) = µ(b) + g0(|x|) + O(|x|
α
k−α+2−min{n,β}), |x| → ∞. (23)

Then the lemma can be proved with m̃ = m∗ − µ
0
.

Set m > m∗, define

um(x) := sup{w(x) : w ∈ Sm−µ
0
}, x ∈ Rn \Ω.

Lemma 4. The function um ∈ C0(Rn \ Ω) is a locally k−convex solution to (4) and um ≤ v + m − µ
0
,

x ∈ Rn \Ω, in the viscosity sense.

Proof. According to the definition of um and Sm−µ
0
, it is clear that um is a locally k−convex viscosity

subsolution to (1) and um ≤ v + m− µ
0

in Rn \Ω.
Firstly, we just have to show that um = ϕ on ∂Ω. We can get by the proof of Lemma 3,

um(x) ≥ ub(x), in Rn \Ω,

with m = µ(b). Since ub is continuous on ∂Ω, then, for any ε0 ∈ ∂Ω, we have

lim inf
x→ε0

um(x) ≥ ub(ε0) = ϕ(ε0). (24)

Now we prove
lim sup

x→ε0

um(x) ≤ ϕ(ε0).

For any w ∈ Sm−µ
0
, w is a viscosity subsolution in Rn \Ω, that is, for every t ∈ Rn \Ω and

σ ∈ C2(Rn \Ω) satisfying
σ(t) = w(t), σ ≥ w on Rn \Ω,

then, Sk(D2σ(t)) ≥ f (t) > 0. So,

∆σ(t) ≥ n[
1

Ck
n

Sk(D2σ(t))]
1
k > 0.

From the above equation, we can see that w is a viscosity subsolution of ∆w = 0 in Rn \Ω and
w ≤ ϕ on ∂Ω.

Fix a ball BR(0) ⊃ Ω. For the Dirichlet problem
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
∆w+ = 0, x ∈ BR(0) \Ω,

w+ = ϕ , x ∈ ∂Ω,

w+ = um, x ∈ ∂BR(0),

there exists a classical solution w+ ∈ C2(BR(0) \ Ω)
⋂

C0(BR(0) \Ω). Using the comparison
principle ([28,29]) for w+ and w ∈ Sm−µ

0
, we have

w ≤ w+ in BR(0) \Ω,

then, um ≤ w+ in BR(0) \Ω and

lim sup
x→ε0

um(x) ≤ w+(ε0) = ϕ(ε0).

Secondly, we want to verify that um(x) is a k−convex viscosity solution of Sk(D2u) = f (x).
Fix a ball Bλ(x0) ⊂ Rn \Ω, for any x0 ∈ Rn \Ω. Then the Dirichlet problem{

Sk(D2û) = f (x), x ∈ Bλ(x0),

û = um, x ∈ ∂Bλ(x0).

contains a k−convex viscosity solution û ∈ C0(Bλ(x0)).
From the definition of um and v(x), thenSk(D2(v + m− µ

0
)) ≤ f (x), in Bλ(x0),

v + m− µ
0
≥ um, on ∂Bλ(x0).

Applying the comparison principle to viscosity solutions, we have û ≥ um and û ≤ v + m− µ
0

on Bλ(x0).

Set

ŵm(x) =

{
û(x), in Bλ(x0),

um(x), in Rn \ (Ω ∪ Bλ(x0)).

Then, ŵm(x) is a locally k−convex viscosity subsolution, um ≤ v + m− µ
0

in Rn \Ω and ŵm = ϕ

on ∂Ω. So ŵm ∈ Sm−µ
0
. By the definition of um, we have um ≥ ŵm on Bλ(x0). We can know that

um ≡ û on Bλ(x0) and um ∈ C0(Rn \Ω) is a k-convex viscosity solution of (4).

Proof of Theorem 1. According to the above, we just have to show that um satisfies (6). According
to Lemma 4 and the definition of um, we have

ub ≤ um ≤ v + m− µ
0
, in Rn \Ω,

with m = µ(b), by (17) and (23), we can know

lim
|x|→∞

sup |x|α−
α
k−2+min{n,β}|um(x)− g0(|x|)−m|< ∞.

The theorem can be proved.
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4. Proof of Theorem 2

For some constant m̄, let Ŝm̄ be a set satisfying that a function w ∈ Ŝm̄ if and only if

(1) w ∈ C0(Rn) is a k−convex viscosity subsolution of Sk(D2u) = f (x) in Rn
.

(2) w(x) ≤ v(x) + m̄, for any x ∈ Rn.

According to Lemma 3, ub is a k−convex viscosity subsolution of (1), ub(x) ≤ v(x) + m− µ
0
,

where m = µ(b) and b > b∗. Then ub ∈ Ŝm−µ
0

for m > m∗. Therefore,

ub(x) = g0(|x|) + µ(b) + O(|x|
α
k +2−α−min{n,β}), |x| → ∞. (25)

Lemma 5. Define for m > m∗,

ûm(x) := sup{w(x) : w ∈ Ŝm−µ
0
}, x ∈ Rn.

It is clear that ûm is a k−convex viscosity solution of Sk(D2u) = f (x) with ûm ≤ v(x) + m− µ
0

in Rn
.

Proof. A similar method to prove this Lemma can be acquired in Lemma 4.

Proof of Theorem 2. Known from Lemma 5, for any m > m∗, ûm ∈ C0(Rn) is a k−convex solution
to (1). We need to prove (6). According to Lemma 5 and ûm , then,

ub ≤ ûm ≤ v + m− µ
0
, in Rn,

with m = µ(b), by (17) and (25), we can know

lim
|x|→∞

sup |x|α−
α
k−2+min{n,β}|ûm(x)− g0(|x|)−m|< ∞.

Theorem 2 can be proved.

5. Example

In the last part, we demonstrate the importance of α >
k(2−min{n, β})

1− k
by a counterexample.

Choose a ball B1(0) ⊆ BH(0) ⊂ Rn(n ≥ 2) and a constant c, let α = − k(β− 2)
k− 1

f or 0 < β < n.

We shall obtain a locally k−convex radially symmetric solution which satisfies{
Sk(D2u) = f (|x|), in Rn \ BH(0),

u = c, on ∂BH(0),
(26)

and
lim
|x|→∞

sup|x|n−β|u(|x|)− g0(|x|)− b1 − b2ln|x|| < ∞, (27)

with b2 = a(1 + α
n )
− 1

k (
n + α

kn− kβ
), b1 depends on n, α, H, β, a, b, c.

Let
f (|x|) = f0(|x|) + |x|−β, |x| ≥ H, (28)

where f0(|x|) = |x|α.

Theorem 3. Suppose α = − k(β− 2)
k− 1

f or 0 < β < n. Define u(x) = u(r) = g(|x|), where r = |x|.

Let the locally k−convex function u(x) ∈ C0(Rn \ BH(0))
⋂

C2(Rn \ BH(0)) be a solution to (26). Then u
satisfies (27).
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Proof. Suppose that u(r) = u(x) = g(|x|), r = |x|, and u(x) ∈ C0(Rn \ BH(0))
⋂

C2(Rn \ BH(0)) is a
locally k−convex radial solution. For H < r, g′′(r) and g′(r) are positive, respectively, and

g′(r) = ar1− n
k (n

∫ r

H
vn−1 f (v)dv + b)

1
k

with a = ( 1
Ck

n
)

1
k , b = Ck

n Hn−kg′(H)k ≥ 0.

Set
h(r) = n

∫ r

H
vn−1 f (v)dv, h0(r) = n

∫ r

0
vn−1 f0(v)dv.

According to (28) and H ≤ r, we obtain

h(r) = h0(r)− b0 +
n

n− β
rn−β,

where b0 = h0(H) +
n

n− β
Hn−β. We can give g(|x|) as follows

g(|x|) =
∫ |x|

H
aτ1− n

k [b + h(τ)]
1
k dτ + g(H)

= g0(|x|)− g0(H) + c +
∫ |x|

H
aτ1− n

k [h0(τ)]
1
k [(1 +

h(τ)− h0(τ) + b
h0(τ)

)
1
k − 1]dτ.

In view of α = − k(β− 2)
k− 1

for 0 < β < n, with h(τ) = h0(τ)− b0 +
n

n− β
rn−β, we can obtain

aτ1− n
k [(1 +

n
n−β τn−β − b0 + b

h0(τ)
)

1
k − 1][h0(τ)]

1
k

=a(1 +
α

n
)−

1
k (

n + α

kn− kβ
)τ−1 + a(1 +

α

n
)1− 1

k (
b− b0

k
)τβ−1−n + O(τβ−1−n), as τ → ∞.

Then,
g(|x|) = O(|x|β−n) + g0(|x|) + b1 + b2ln|x|, as |x| → ∞,

with b2 = a(1 + α
n )
− 1

k (
n + α

kn− kβ
) and b1 depends on n, β, H, a, α, c, b, k.
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