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Abstract: In this paper, the well-known Hencky problem—that is, the problem of axisymmetric
deformation of a peripherally fixed and initially flat circular membrane subjected to transverse
uniformly distributed loads—is re-solved by simultaneously considering the improvement of the
out-of-plane and in-plane equilibrium equations. In which, the so-called small rotation angle
assumption of the membrane is given up when establishing the out-of-plane equilibrium equation,
and the in-plane equilibrium equation is, for the first time, improved by considering the effect of the
deflection on the equilibrium between the radial and circumferential stress. Furthermore, the resulting
nonlinear differential equation is successfully solved by using the power series method, and a new
closed-form solution of the problem is finally presented. The conducted numerical example indicates
that the closed-form solution presented here has a higher computational accuracy in comparison
with the existing solutions of the well-known Hencky problem, especially when the deflection of the
membrane is relatively large.

Keywords: circular membrane; axisymmetric deformation; large deflection; equilibrium equation;
power series method

1. Introduction

Membrane structures or structural components have played important roles in many fields of
engineering or technology, for example, the MEMS (Micro-Electro-Mechanical Systems) devices [1],
heat transfer enhancement applications [2], characterization of mechanical properties [3,4], and civil
engineering [5,6]. Mathematical modelling is often necessary to study the mechanical behavior of
structures [7,8]. However, the large deflection phenomenon of the membrane usually gives rise to some
nonlinear differential equations. The boundary value problems of these somewhat intractable nonlinear
equations are usually difficult to deal with analytically [9–15]. Therefore, analytical solutions for
membrane problems are available in a few cases, but it is usually easy to find the numerical solutions
obtained by, for example, the iterative or shooting method in the existing literature. In practice,
however, analytical solutions are often found to be necessary.

Hencky, a famous German scientist, originally dealt with the problem of axisymmetric deformation
of a peripherally fixed circular membrane under uniformly distributed transverse loads and presented its
closed-form solution in the form of power series [16]. A computational error in [16] was corrected by
Chien [17] and Alekseev [18], respectively. This problem is usually called the well-known Föppl–Hencky
membrane problem, or simply the well-known Hencky problem, and its solution is called the well-known
Hencky solution. This solution is the first solution for circular membrane problems and is often cited
in relevant studies [6,13,19–21]. During the derivation of the well-known Hencky solution, however,
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the so-called small rotation angle assumption of the membrane—that is, suppose that the rotation angle
θ of the membrane is so small that sinθ ≈ tanθ—was adopted, which limits the applicability of the
solution to the deflection of the membrane. Consequently, we gave up the small rotation angle assumption
of the membrane and used sinθ =

√
1+ 1/ tan2 θ to establish the out-of-plane equilibrium equation,

re-solved the well-known Hencky problem, and presented the closed-form solution without the small
rotation angle assumption in [21]. However, the effect of the deflection on the in-plane equilibrium
equation was not considered during the derivation of the solution presented in [21], and this still limits the
applicability of solution to the deflection of membrane, which will be seen from the numerical example
conducted in Section 3.

In this study, the well-known Hencky problem was re-solved by simultaneously considering the
improvement of the out-of-plane and in-plane equilibrium equations, and a more refined closed-form
solution of well-known Hencky problem was presented. The numerical example conducted indicates
that the solution presented here has a higher computational accuracy in comparison with the existing
solutions. The detailed derivation of the basic equations was arranged in the next section, in which
the out-of-plane equilibrium equation is established under the condition of sinθ =

√
1 + 1/ tan2 θ,

the in-plane equilibrium equation is, for the first time, improved by considering the effect of deflection
on the equilibrium between radial stress and circumferential stress, the resulting nonlinear differential
equation is successfully solved by using the power series method, and finally, a new closed-form solution
of the well-known Hencky problem is presented. In Section 3, a numerical example is conducted for
the identification of the validity of the closed-form solution presented and the applicability of solution
to the deflection of membrane. Section 4 features the concluding remarks.

2. Membrane Equation and Its Solution

A rotationally symmetric, linearly elastic, initially-flat circular membrane with Poisson’s ratio
ν, Young’s modulus of elasticity E, radius a and thickness h is peripherally clamped. The uniformly
distributed transverse loads q is quasi-statically applied onto the surface of the membrane, as shown
in Figure 1, where r is the radial coordinate in a cylindrical coordinate system (r,ϕ, w) (where the
polar coordinate plane (r,ϕ) is located in the plane in which the geometric middle plane of the
initially-flat circular unstretched membrane is located) and w is the transverse coordinate of the
cylindrical coordinate system as well as the transverse displacement of the membrane.
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Figure 1. Sketch of the circular membrane under transverse loads q. Figure 1. Sketch of the circular membrane under transverse loads q.

We take a piece of circular membrane with radius 0 ≤ r ≤ a in the central portion of the deformed
circular membrane to study the static equilibrium problem of this piece of the deformed circular
membrane under the joint actions of the external loads q within r and the total force 2πrσrh produced
by the membrane force σrh acting on the boundary r, as shown in Figure 2, where σr denotes the radial
stress and θ denotes the slope angle of the deformed membrane. Clearly, there are two vertical forces,
that is, the total force πr2q (in which 0 ≤ r ≤ a) of the external loads q and the total vertical membrane
force 2πrσrh sinθ that is produced by the membrane force σrh. The so-called out-of-plane equilibrium
equation is

2πrσrh sinθ = πr2q, (1)
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where

sinθ = 1/
√

1 + 1/ tan2 θ = 1/
√

1 + 1/(−dw/dr)2. (2)

Substituting Equation (2) into Equation (1), one obtains

1
2

rq
√

1 + 1/(dw/dr)2 = σrh. (3)Mathematics 2020, 8, 653 3 of 21 
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While in the horizontal plane which is parallel to the initially flat circular membrane, there are two
horizontal forces, the circumferential membrane force σth and the horizontal component of the radial
membrane force σrh, where σt denotes the circumferential stress. The classic in-plane equilibrium
equation, i.e., d(rσr)/dr− σt = 0, is modified and replaced by

d
dr

(rσr) − σt[1 + (−
dw
dr

)
2
] = 0. (4)

The effect of deflection on the equilibrium between radial stress and circumferential stress is thus
taken into account, and for brevity, the detailed derivation of Equation (4) is arranged in Appendix A.
Suppose that we denote the radial strain by er, circumferential strain by et, radial displacement by u(r),
and the transversal displacement by w(r). The relations between the strain and displacement for the
large deflection problem, that is, the so-called geometric equations, may be written as

er =
du
dr

+
1
2
(

dw
dr

)
2

(5)

and
et =

u
r

. (6)

Moreover, the relations of the stress and strain, that is, the so-called physical equations, are still
assumed to satisfy linear elasticity and can be written as

σr =
E

1− ν2 (er + νet) (7)

and
σt =

E
1− ν2 (et + νer). (8)

Substituting Equations (5) and (6) into Equations (7) and (8) yields

σr =
E

1− ν2 [
du
dr

+
1
2
(

dw
dr

)
2
+ ν

u
r
] (9)

and

σt =
E

1− ν2 [
u
r
+ ν

du
dr

+
ν
2
(

dw
dr

)
2
]. (10)
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By means of Equations (9) and (10), one has

u
r
=

1
E
(σt − νσr). (11)

After substituting the u of Equation (11) into Equation (9), then the so-called consistency equation
can be written as

(1 + ν)(σt − σr) + r(ν
dσr

dr
−

dσt

dr
) +

E
2
(

dw
dr

)
2
= 0. (12)

Equations (3), (4) and (12) are three equations for the solutions of σr, σt and w(r). Then,
the boundary conditions, under which Equations (3), (4) and (12) may be solved, are

dw
dr

= 0 at r = 0, (13)

u =
r
E
(σt − νσr) = 0 at r = a (14)

and
w = 0 at r = a. (15)

Let us employ the following nondimensionalization

Q =
aq
hE

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

, (16)

and transform Equations (3), (4) and (12)–(15) into

(4S2
r − x2Q2)(

dW
dx

)
2
− x2Q2 = 0, (17)

d
dx

(xSr) − St[1 + (
dW
dx

)
2
] = 0, (18)

(1 + ν)(St − Sr) + x(ν
dSr

dx
−

dSt

dx
) +

1
2
(

dW
dx

)
2
= 0, (19)

dW
dx

= 0 at x = 0, (20)

St − νSr = 0 at x = 1 (21)

and
W = 0 at x = 1. (22)

In view of the physical phenomenon that the values of stress and deflection are both finite at
x = 0, Sr(x), W(x) and St(x) can be expanded into the power series of the x, i.e., let

Sr(x) =
∞∑

i=0

bixi, (23)

W(x) =
∞∑

i=0

cixi (24)

and

St(x) =
∞∑

i=0

dixi. (25)
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After substituting Equations (23)–(25) into Equations (17)–(19), it is found that bi ≡ 0, ci ≡ 0
and di ≡ 0 (i = 1,3,5, . . . ), while the coefficients bi, ci and di (i = 2,4,6, . . . ) can be expressed into the
polynomial with regard to the coefficients b0 and c0, besides d0 ≡ b0 (see Appendix B).

The coefficients b0 and c0, as the undetermined constants depending on the concrete problem, can be
determined by using the boundary conditions of Equations (21) and (22). Substituting Equations (23)–(25)
into Equations (21) and (22) gives

∞∑
i=0

di − ν
∞∑

i=0

bi = 0 (26)

and
∞∑

i=0

ci = 0. (27)

Please note that Equations (26) and (27) contain only the undetermined constants b0 and c0,
because d0 ≡ b0 and the coefficients bi, ci and di (i = 2,4,6, . . . ) were expressed into the polynomial
with regard to the coefficients b0 and c0 at this time. Therefore, for the problem in which the values
of a, h, E, ν and q are known beforehand, the undetermined constants b0 and c0 can be determined
by simultaneous solutions of Equations (26) and (27), and furthermore, with the known b0 and c0 the
other coefficients bi, ci, di (i = 2,4,6, . . . ) and d0 can be easily determined. The problem dealt with here
is thus solved.

3. Results and Discussion

Let us firstly discuss the effectiveness of the solution obtained in Section 2. From the derivation of
Section 2 of this paper and reference [21], we may see that only the in-plane equilibrium equation is
modified to replace the classic in-plane equilibrium equation (i.e., d(rσr)/dr− σt = 0). However, if we
let dw/dr = 0, then Equation (4) in this paper will become d(rσr)/dr− σt = 0, i.e., the classic in-plane
equilibrium equation which was adopted in reference [21]. This indicates that the solution presented
here can regress into the solution presented in reference [21]. Furthermore, from the characteristic of
axisymmetric deformation of the circular membrane, it is not difficult to understand that dw/dr = 0 at
r = 0, i.e., the boundary condition Equation (13), which has not been used yet during the derivation in
Section 2. Now, let us see whether the closed-form solution obtained in Section 2 meets the boundary
condition of Equation (13), i.e., dw/dr = 0 at r = 0. From Equations (16) and (24) the dimensional
form of the deflection w(r) can be written as

w(r) =
∞∑

i=0

ci

ai−1
ri. (28)

Then, the first derivative on both sides of Equation (28) is

dw
dr

=
∞∑

i=1

ici

ai−1
ri−1. (29)

Therefore, it is obvious that dw/dr ≡ 0 at r = 0 because dw/dr = c1 at r = 0 while c1 ≡ 0.
This indicates that the closed-form solution obtained in Section 2 meets the physical phenomenon of
axisymmetric deformation of the circular membrane. As a result, these two aspects discussed above,
to some extent, reflect the effectiveness of the closed-form solution presented here.

Let us consider a circular rubber membrane with radius a = 20 mm, thickness h = 0.2 mm,
Young’s modulus of elasticity E = 7.84 MPa, Poisson’s ratio ν = 0.47 and under the action of transverse
uniformly distributed loads q, as an example, to discuss the applicability of solution to the deflection of
membrane. Figure 3 shows the variations of the deflection w with the radius r when q takes 0.0003 MPa
and 0.03 MPa, respectively, where the solid lines represent the results obtained by the solution presented
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in Section 2, the dashed lines represent the results obtained by the solution presented in [21], and the
dotted lines represent the results obtained by well-known Hencky solution [19].
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From Figure 3 it may be observed that the solid line is very close to the dashed line and dotted
line when q takes 0.0003 MPa. This also indicates that both the closed-form solution presented here
and the one presented [21] are valid, if viewed from the perspective of the well-known Hencky
solution. On the other hand, along with the increase of the transverse uniformly distributed loads
q, the deflection of the deformed membrane will also increase. Therefore, when q takes 0.03 MPa,
from Figure 3, we may also see that the dashed line has a certain distance from the dotted line, while the
solid line has a distinct distance from the dashed line. This indicates that the small rotation angle
assumption adopted in the derivation of the well-known Hencky solution limits the applicability of
the solution to the deflection of the membrane, the solution after giving up the small rotation angle
assumption—that is, the solution presented in [21]—can be applied to the relatively large deflection,
while compared with the solution presented in [21], the solution presented in this study can be applied
to the larger deflection of the membrane. When q takes 0.03 MPa, the maximum deflection is about
9.18 mm, 7.85 mm and 7.41 mm, respectively, which are calculated by the solution presented here,
the solution presented in [21], and the well-known Hencky solution. The error between the maximum
deflections calculated by the well-known Hencky solution and the one by the solution presented
in [21] is about 5.94%, which is brought by the so-called small rotation angle assumption adopted in
the derivation of the well-known Hencky solution. In particular, the error between the maximum
deflection calculated by the solution presented in [21] and the one by the solution presented here
is about 16.94%, which is brought about by the effect of the deflection ignored in the derivation of
the classic in-plane equilibrium equation. It must be noted that such an error exceeds the allowable
error of civil engineering, 15%, while the allowable error of instrument design is usually less than
3%, precision measurement usually less than 1%, including some characterizations of mechanical
properties by bulge or blister test techniques [3–6,9,10].

The above discussions show that the applicability of the closed-form solution presented here to
the deflection of membranes has been greatly improved, in comparison with the solution presented
in [21] and the well-known Hencky solution. However, the convergence of the presented power series
solution still needs to be discussed. The investigation into the convergence has to, perhaps, be arranged
here, due to the fact that the coefficients bi, ci, di (i = 2,4,6, . . . ) are expressed into the somewhat
intractable polynomial with regard to the coefficients b0 and c0 (see Appendix B) and thus there is no
way to discuss the convergence of the general solutions for Sr(x), W(x) and St(x). In other words,
here we can prove only the convergence of the special solutions for Sr(x), W(x) and St(x), rather than
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that of its general solutions, although the convergence of the general solutions, perhaps, receives the
greatest attention because the special solution will converge as long as the general solution converges.

From the derivation in Section 2, we know that the general solutions for Sr(x), W(x) and St(x) are
the power series with regard to the nondimensional independent variable x (see Equations (23)–(25)),
where the domain of the independent variable is 0 ≤ x ≤ 1 and all the coefficients bi, ci and di
(i = 2,4,6, . . . ) are expressed into the polynomial with regard to the coefficients b0 and c0, besides bi ≡ 0,
ci ≡ 0, di ≡ 0 (i = 1,3,5, . . . ) and d0 ≡ b0. Moreover, we also know that the undetermined constants b0

and c0 should be determined by simultaneous solutions of Equations (26) and (27). It seems obvious
that the special solution for Sr(x), W(x) and St(x) can easily be obtained as long as the undetermined
constants b0 and c0 can be determined. However, when solving a specific definite problem it may be
found that we have to substitute the partial sum of former n terms of Equations (23)–(25), rather than
Equations (23)–(25), into Equations (21) and (22), otherwise the resulting Equations (26) and (27) will
contain three infinite series and thus will be difficult to solve. Therefore, it seems that the undetermined
constants b0 and c0 determined by Equations (26) and (27) will depend on the value of terms n and
different n will determine the different value of b0 and c0. Hence, the discussion on convergence should
contain two aspects: the variation of b0 and c0 with terms n, and the variation of bi and ci with i for
every value of terms n.

To this end, we start the numerical computation of b0 and c0 from n = 4, that is, start from the
partial sum of the former four terms of Equations (23)–(25), and recalculate the case of q = 0.0003 MPa
of the above numerical example. The obtained different numerical values of b0 and c0, are listed
in Tables 1 and 2, also including the values of bi and ci corresponding to every value of b0 and c0.
The variation of b0 and c0 with terms n are shown in Figures 4 and 5 separately, and the variation
of bi and ci with i are, only for n = 30, shown in Figures 6 and 7, respectively. From Figures 4 and 5
or Tables 1 and 2 we may see that the undetermined constants b0 and c0 converge reasonably well.
From Figures 6 and 7 or Tables 1 and 2 we may also see that the coefficients bi and ci converge reasonably
well, which indicates that the power series solutions Sr(x) and W(x) converge reasonably well because
of 0 ≤ x ≤ 1. Furthermore, from Figures 4 and 5 we may see that the undetermined constants b0

and c0 are already very close to their exact values when n = 18. So, only the coefficients bi, ci and
di (i = 2,4,6, . . . ,18), which are expressed into the polynomial with regard to b0 and c0, are shown in
Appendix B.Mathematics 2020, 8, 653 10 of 21 
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Table 1. The values of b0–b6, b8–b14, b16–b22 and b24–b30.

n b0 b2 b4 b6

4 1.0954809 × 10−2
−1.7614908 × 10−3

−2.3599430 × 10−4 —
6 1.1099103 × 10−2

−1.7141283 × 10−3
−2.2121798 × 10−4

−4.7183462 × 10−5

8 1.1139261 × 10−2
−1.7012775 × 10−3

−2.1730552 × 10−4
−4.5871671 × 10−5

10 1.1151884 × 10−2
−1.6972670 × 10−3

−2.1609292 × 10−4
−4.5467874 × 10−5

12 1.1156122 × 10−2
−1.6959237 × 10−3

−2.1568767 × 10−4
−4.5333218 × 10−5

14 1.1157603 × 10−2
−1.6954547 × 10−3

−2.1554628 × 10−4
−4.5286270 × 10−5

16 1.1158134 × 10−2
−1.6952864 × 10−3

−2.1549554 × 10−4
−4.5269429 × 10−5

18 1.1158329 × 10−2
−1.6952247 × 10−3

−2.1547697 × 10−4
−4.5263264 × 10−5

20 1.1158401 × 10−2
−1.6952018 × 10−3

−2.1547007 × 10−4
−4.5260973 × 10−5

22 1.1158428 × 10−2
−1.6951932 × 10−3

−2.1546747 × 10−4
−4.5260111 × 10−5

24 1.1158439 × 10−2
−1.6951899 × 10−3

−2.1546648 × 10−4
−4.5259783 × 10−5

26 1.1158443 × 10−2
−1.6951887 × 10−3

−2.1546610 × 10−4
−4.5259657 × 10−5

28 1.1158444 × 10−2
−1.6951882 × 10−3

−2.1546596 × 10−4
−4.5259608 × 10−5

30 1.1158445 × 10−2
−1.6951880 × 10−3

−2.1546590 × 10−4
−4.5259590 × 10−5

n b8 b10 b12 b14

8 −1.1940058 × 10−5 — — —
10 −1.1796657 × 10−5

−3.4390107 × 10−6 — —
12 −1.1748940 × 10−5

−3.4213780 × 10−6
−1.0729630 × 10−6 —

14 −1.1732316 × 10−5
−3.4152393 × 10−6

−1.0706309 × 10−6
−3.5319449 × 10−7

16 −1.1726354 × 10−5
−3.4130384 × 10−6

−1.0697950 × 10−6
−3.5287054 × 10−7

18 −1.1724172 × 10−5
−3.4122330 × 10−6

−1.0694891 × 10−6
−3.5275200 × 10−7

20 −1.1723361 × 10−5
−3.4119336 × 10−6

−1.0693754 × 10−6
−3.5270795 × 10−7

22 −1.1723055 × 10−5
−3.4118209 × 10−6

−1.0693326 × 10−6
−3.5269137 × 10−7

24 −1.1722939 × 10−5
−3.4117781 × 10−6

−1.0693164 × 10−6
−3.5268507 × 10−7

26 −1.1722895 × 10−5
−3.4117617 × 10−6

−1.0693101 × 10−6
−3.5268266 × 10−7

28 −1.1722878 × 10−5
−3.4117553 × 10−6

−1.0693077 × 10−6
−3.5268172 × 10−7

30 −1.1722871 × 10−5
−3.4117529 × 10−6

−1.0693068 × 10−6
−3.5268136 × 10−7

n b16 b18 b20 b22

16 −1.2079246 × 10−7 — — —
18 −1.2074584 × 10−7

−4.2508129 × 10−8 — —
20 −1.2072852 × 10−7

−4.2501239 × 10−8
−1.5294069 × 10−8 —

22 −1.2072200 × 10−7
−4.2498646 × 10−8

−1.5293029 × 10−8
−5.6007703 × 10−9

24 −1.2071952 × 10−7
−4.2497661 × 10−8

−1.5292633 × 10−8
−5.6006106 × 10−9

26 −1.2071857 × 10−7
−4.2497283 × 10−8

−1.5292482 × 10−8
−5.6005494 × 10−9

28 −1.2071820 × 10−7
−4.2497137 × 10−8

−1.5292423 × 10−8
−5.6005256 × 10−9

30 −1.2071806 × 10−7
−4.2497080 × 10−8

−1.5292400 × 10−8
−5.6005165 × 10−9

n b24 b26 b28 b30

24 −2.0808221 × 10−9 — — —
26 −2.0807972 × 10−9

−7.8239857 × 10−10 — —
28 −2.0807875 × 10−9

−7.8239463 × 10−10
−2.9717720 × 10−10 —

30 −2.0807839 × 10−9
−7.8239312 × 10−10

−2.9717659 × 10−10
−1.1385721 × 10−10
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Table 2. The values of c0–c6, c8–c14, c16–c22 and c24–c30.

n c0 c2 c4 c6

4 9.5012072 × 10−2
−8.7325363 × 10−2

−7.6867089 × 10−3 —
6 9.4930058 × 10−2

−8.6190091 × 10−2
−7.2958154 × 10−3

−1.4651512 × 10−3

8 9.4861056 × 10−2
−8.5879367 × 10−2

−7.1914770 × 10−3
−1.4289971 × 10−3

10 9.4818023 × 10−2
−8.5782156 × 10−2

−7.1590654 × 10−3
−1.4178443 × 10−3

12 9.4800124 × 10−2
−8.5749571 × 10−2

−7.1482256 × 10−3
−1.4141226 × 10−3

14 9.4792979 × 10−2
−8.5738190 × 10−2

−7.1444425 × 10−3
−1.4128247 × 10−3

16 9.4790167 × 10−2
−8.5734105 × 10−2

−7.1430850 × 10−3
−1.4123591 × 10−3

18 9.4789066 × 10−2
−8.5732609 × 10−2

−7.1425880 × 10−3
−1.4121887 × 10−3

20 9.4788634 × 10−2
−8.5732053 × 10−2

−7.1424033 × 10−3
−1.4121253 × 10−3

22 9.4788465 × 10−2
−8.5731844 × 10−2

−7.1423338 × 10−3
−1.4121015 × 10−3

24 9.4788399 × 10−2
−8.5731765 × 10−2

−7.1423074 × 10−3
−1.4120924 × 10−3

26 9.4788373 × 10−2
−8.5731734 × 10−2

−7.1422972 × 10−3
−1.4120890 × 10−3

28 9.4788362 × 10−2
−8.5731722 × 10−2

−7.1422933 × 10−3
−1.4120876 × 10−3

30 9.4788358 × 10−2
−8.5731718 × 10−2

−7.1422918 × 10−3
−1.4120871 × 10−3

n c8 c10 c12 c14

8 −3.6121541 × 10−4 — — —
10 −3.5721690 × 10−4

−1.0174043 × 10−4 — —
12 −3.5588553 × 10−4

−1.0124963 × 10−4
−3.1069854 × 10−5 —

14 −3.5542159 × 10−4
−1.0107873 × 10−4

−3.1005500 × 10−5
−1.0015532 × 10−5

16 −3.5525519 × 10−4
−1.0101745 × 10−4

−3.0982432 × 10−5
−1.0006703 × 10−5

18 −3.5519429 × 10−4
−1.0099502 × 10−4

−3.0973990 × 10−5
−1.0003472 × 10−5

20 −3.5517166 × 10−4
−1.0098669 × 10−4

−3.0970852 × 10−5
−1.0002272 × 10−5

22 −3.5516314 × 10−4
−1.0098355 × 10−4

−3.0969672 × 10−5
−1.0001820 × 10−5

24 −3.5515990 × 10−4
−1.0098236 × 10−4

−3.0969223 × 10−5
−1.0001648 × 10−5

26 −3.5515866 × 10−4
−1.0098190 × 10−4

−3.0969051 × 10−5
−1.0001582 × 10−5

28 −3.5515818 × 10−4
−1.0098172 × 10−4

−3.0968984 × 10−5
−1.0001557 × 10−5

30 −3.5515799 × 10−4
−1.0098166 × 10−4

−3.0968959 × 10−5
−1.0001547 × 10−5

n c16 c18 c20 c22

16 −3.3561200 × 10−6 — — —
18 −3.3548675 × 10−6

−1.1579367 × 10−6 — —
20 −3.3544020 × 10−6

−1.1577544 × 10−6
−4.0875404 × 10−7 —

22 −3.3542269 × 10−6
−1.1576858 × 10−6

−4.0872695 × 10−7
−1.4697409 × 10−7

24 −3.3541603 × 10−6
−1.1576597 × 10−6

−4.0871665 × 10−7
−1.4696999 × 10−7

26 −3.3541348 × 10−6
−1.1576497 × 10−6

−4.0871270 × 10−7
−1.4696842 × 10−7

28 −3.3541249 × 10−6
−1.1576458 × 10−6

−4.0871116 × 10−7
−1.4696781 × 10−7

30 −3.3541211 × 10−6
−1.1576444 × 10−6

−4.0871058 × 10−7
−1.4696758 × 10−7

n c24 c26 c28 c30

24 −5.3655393 × 10−8 — — —
26 −5.3654764 × 10−8

−1.9838915 × 10−8 — —
28 −5.3654520 × 10−8

−1.9838817 × 10−8
−7.4153521 × 10−9 —

30 −5.3654427 × 10−8
−1.9838779 × 10−8

−7.4153369 × 10−9
−2.7977182 × 10−9
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4. Concluding Remarks

In this paper, the well-known Hencky problem was re-solved by simultaneously considering the
improvement of the out-of-plane and in-plane equilibrium equations. From this study, the following
conclusions can be drawn.

The well-known Hencky solution applies only to the case where the deflection of the membrane
is relatively small.

Compared with the well-known Hencky solution, the solution after improving the out-of-plane
equilibrium equation can be applied to the case where the deflection of the membrane is relatively large.

However, compared with the well-known Hencky solution and the solution that only the
out-of-plane equilibrium equation is improved, the solution that the out-of-plane and in-plane
equilibrium equations are simultaneously improved can be applied to the larger deflection of
the membrane.

The large deflection phenomenon of the membrane is possible in many fields of engineering or
technical application, for example, the delamination studies for the characterization of the surface and
interfacial or thin-film/substrate mechanical properties by a so-called pressurized blister test, where the
maximum deflection of the blistering thin film may reach half the radius of the circular blistering
thin film, or even larger. Clearly, such a large deflection is not applicable to the solutions in existing
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literature. Therefore, in this sense, the work presented here should be of positive significance to these
fields of technical applications.
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Appendix A

Suppose that the polar coordinate (r,ϕ) is set at the geometric middle-plane of the initially-flat
circular membrane, and the original point of the w coordinate (i.e., transverse coordinate) is set at the
center point of the geometric mid-plane, thus the cylindrical coordinate system (r,ϕ, w) is established,
where r and ϕ are the radial and circumferential coordinate, respectively. We take a differential element

ABCD that is surrounded by two meridians (
_

AB,
_

CD) and two parallels (
_

AC,
_

BD) from the deformed
membrane, to study the in-plane equilibrium of this piece under the joint actions of the radial forces
σrh and circumferential force σth, as shown in Figure A1, where A′B′C′D′ is the projection of ABCD
on the polar coordinate plane, σr and σt are the radial and circumferential stress, ∆r and ∆ϕ are
the radial and circumferential increment of the element A′B′C′D′, wm is the maximum deflection of
the circular membrane, a is the radius of the circular membrane, h is the thickness of the deformed
circular membrane.Mathematics 2020, 8, 653 13 of 21 
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Figure A1. Diagram of the cylindrical coordinate system and the differential element ABCD.

In this section, the basic assumptions are made as follows: (1) the thickness of the deformed circular
membrane h is supposed to be constant; (2) both the radial stress and circumferential stress refer to the
mean stress on the cross section of the deformed circular membrane. Subsequently, we study the static
equilibrium problem of the differential element ABCD under the total force in the horizontal direction,
i.e., the direction parallel to the polar coordinate plane, as shown in Figure A2, where θ(r + ∆r) and
θ(r) denote the slope angles of the boundaries r + ∆r and r of the differential element ABCD, om is
the angular bisector of ∠A′oC′. Clearly, there are four horizontal forces, i.e., the total force F(r + ∆r)
produced by the horizontal component of radial force σr(r + ∆r)h cosθ(r + ∆r) acting on the boundary
r + ∆r, the total force F(r) produced by the horizontal component of radial force σr(r)h cosθ(r) acting
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on the boundary r, two total forces F′ produced by the circumferential force σt(r)h acting on the

boundaries
_

AB and
_

CD. The total force F(r + ∆r) acting on the boundary r + ∆r is

F(r + ∆r) = σr(r + ∆r)h cosθ(r + ∆r) · (r + ∆r)∆ϕ, (A1)

Similarly, the total force F(r) acting on the boundary r is

F(r) = σr(r)h cosθ(r) · r∆ϕ. (A2)
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Assuming that, after the membrane is deflecting, the length of the meridian
_

AB is approximately

equal to the length of the straight line AB, i.e.,
_

AB ≈ AB ≈ ∆r/ cosθ(r), we obtain

F′ = σt(r)h ·
∆r

cosθ(r)
· cos

π− ∆ϕ
2

. (A3)

To sum up, the in-plane equilibrium equation can be written as

F(r + ∆r) − F(r + ∆r) − 2F′ = 0. (A4)

Due to ∆r→ 0, we can assume that θ(r + ∆r) ≈ θ(r) and record them as θ.
Substituting Equations (A1)–(A3) into Equation (A4), we can obtain

σr(r + ∆r)h(r + ∆r)∆ϕ cosθ− σr(r)hr∆ϕ cosθ− 2σt(r)h
∆r

cosθ
cos

π− ∆ϕ
2

= 0, (A5)

then we expand σr(r + ∆r) into the Taylor series as

σr(r + ∆r) = σr(r) +
dσr(r)

dr
∆r +

1
2!

d2σr(r)
dr2 (∆r)2 + . . . . (A6)

The second-order and higher-order differential items in Equation (A6) may be ignored,
and substituting Equation (A6) into Equation (A5) yields

[σrh +
dσrh

dr
∆r](r + ∆r)∆ϕ cosθ− σrhr∆ϕ cosθ− 2σth

∆r
cosθ

sin
∆ϕ
2

= 0, (A7)
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after ignoring the third-order differential item and dividing the equation by ∆r∆ϕ, we obtain

(σrh + r
dσrh

dr
) cosθ−

σth
cosθ

= 0, (A8)

where

cosθ = 1/
√

1 + tan2 θ = 1/
√

1 + (−dw/dr)2. (A9)

Substituting Equation (A9) into Equation (A8) yields

d
dr

(rσrh) − σth[1 + (−
dw
dr

)
2
] = 0. (A10)

Thus, we establish a new in-plane equilibrium equation, which is improved by considering the
effect of deflection on the equilibrium between radial stress and circumferential stress.

Appendix B

b2 =
Q2

64b02 (2νb0 + 6b0 − 1)

b4 =
Q4

6144b05 (2ν
2b0

2 + 16νb0
2 + νb0 + 30b0

2
− 7b0 − 1)

b6 = −
Q6

4718592b08 (48ν3b0
3 + 576ν2b0

3
− 56ν2b0

2 + 1968νb0
3
− 952νb0

2 + 2016b0
3

−10νb0 − 1104b0
2 + 322b0 + 13)

b8 = −
Q8

1509949440b011 (1680ν3b0
4 + 704ν3b0

3 + 24240ν2b0
4+10600ν2b0

3

+94320νb0
4
− 574ν2b0

2
− 14304νb0

3 + 110160b0
4
− 13808νb0

2

−45000b0
3
− 59νb0 + 414b0

2 + 4009b0 + 85)

b10 = Q10

724775731200b014 (5600ν5b0
5 + 152880ν4b0

5
− 1648ν4b0

4 + 1428000ν3b0
5

−148008ν3b0
4 + 5387200ν2b0

5
− 12886ν3b0

3
− 3113592ν2b0

4 + 8332800νb0
5

−217146ν2b0
3
− 7230872νb0

4 + 4047120b0
5 + 8567ν2b0

2 + 1945542νb0
3

−4643160b0
4 + 262408νb0

2 + 2257162b0
3 + 644νb0 − 368727b0

2
− 67814b0

−925)

b12 = −
Q12

974098582732800b017 (201600ν6b0
6 + 4750560ν5b0

6
− 9112347265280ν3b0

9

−700096ν5b0
5 + 26174880ν4b0

6
− 23198544ν4b0

5
− 77054400ν3b0

6

+172124ν4b0
4
− 266429952ν3b0

5
− 907185600ν2b0

6
− 15912528ν3b0

4

−253080416ν2b0
5
− 2223862560νb0

6 + 623486ν3b0
3 + 403273272ν2b0

4

+770175168νb0
5
− 1700131680b0

6 + 11245950ν2b0
3 + 370590640νb0

4

+1091214000b0
5
− 355426ν2b0

2
− 213748110νb0

3
− 144001428b0

4

−13185080νb0
2
− 112129166b0

3
− 22468νb0 + 37668090b0

2 + 3091708b0

+30125)
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b14 = −
Q14

6982338641028710400b020 (11827200ν7b0
7 + 1144535040ν6b0

7 + 147915776ν6b0
6

+28339153920ν5b0
7 + 3483331584ν5b0

6 + 279025612800ν4b0
7

−307693184ν5b0
5 + 1472758272ν4b0

6 + 1234029772800ν3b0
7
− 11876431616ν4b0

5

−656063650304ν3b0
6 + 2561630607360ν2b0

7 + 64711744ν4b0
4
− 152665297280ν3b0

5

−2487731378688ν2b0
6 + 2255454305280νb0

7 + 6778443904ν3b0
4 + 475602146688ν2b0

5

−3206499678720νb0
6 + 507331123200b0

7 + 156866016ν3b0
3 + 197522332864ν2b0

4

+1547910084096νb0
5
− 1274120340480b0

6 + 2974393872ν2b0
3
− 115095078912νb0

4

+964311384960b0
5
− 78610952ν2b0

2
− 92246943872νb0

3
− 304498643328b0

4
− 3427569064νb0

2

+3254553488b0
3
− 4538390νb0 + 14845266576b0

2 + 738329990b0 + 5481025)

b16 = Q16

8043654114465074380800b023 (2227097600ν8b0
8 + 108823270400ν7b0

8
− 2399569920ν7b0

7

+1878512230400ν6b0
8
− 243147747840ν6b0

7 + 13267527270400ν5b0
8
− 11390177024ν6b0

6

−6811784716800ν5b0
7 + 28109830528000ν4b0

8
− 259744124032ν5b0

6
− 79310439820800ν4b0

7

−78699638451200ν3b0
8 + 18079234432ν5b0

5 + 2207463970560ν4b0
6
− 190261226956800ν3b0

7

−458250126796800ν2b0
8 + 793705014912ν4b0

5 + 130773595767296ν3b0
6
− 1889385331200ν2b0

7

−728427566131200νb0
8
− 3300405248ν4b0

4 + 10920660593344ν3b0
5 + 272873400553984ν2b0

6

+437119353745920νb0
7
− 384859852416000b0

8
− 398122324336ν3b0

4
− 90921607890880ν2b0

5

+81644790542976νb0
6 + 363979673418240b0

7
− 6257467656ν3b0

3
− 13031706280848ν2b0

4

−143819212960320νb0
5
− 100052889960960b0

6
− 123995787760ν2b0

3 + 28210788456944νb0
4

−30567607066816b0
5 + 2799562406ν2b0

2 + 5507430601544νb0
3 + 25686949330192b0

4

+140586644296νb0
2
− 3180188927248b0

3 + 154924777νb0 − 815299694478b0
2

−28068966787b0 − 165851725)

b18 = −
Q18

11582861924829707108352000b026 (82521600000ν9b0
9 + 2791917696000ν8b0

9

−490169600000ν8b0
8 + 7525588915200ν7b0

9
− 26549488125440ν7b0

8

−669181959014400ν6b0
9 + 326631988992ν7b0

7
− 487996757703680ν6b0

8

−9404290182835200ν5b0
9 + 35988418084992ν6b0

7
− 2939510419379200ν5b0

8

−51857650021785600ν4b0
9 + 906752178560ν6b0

6 + 1122793643039616ν5b0
7

+18838468088092160ν4b0
8
− 139636699743667200ν3b0

9 + 19651432790656ν5b0
6

+14303124769549056ν4b0
7 + 129320656124817920ν3b0

8
− 183453230880921600ν2b0

9

−1197071148064ν5b0
5
− 431531580582336ν4b0

6
− 4303110444384768ν3b0

7

+268484901098065920ν2b0
8
− 95191090043212800νb0

9
− 58845962379216ν4b0

5

−19749232522110848ν3b0
6
− 111065560497168768ν2b0

7 + 224712678446622720νb0
8

−1859336216294400b0
9 + 191504777096ν4b0

4
− 845342149358944ν3b0

5

−11212313071318144ν2b0
6
− 164017148601075840νb0

7 + 55857256923225600b0
8

+26635749339112ν3b0
4 + 12375426137201344ν2b0

5 + 39323359612614912νb0
6

−66804601345620480b0
7 + 309438419622ν3b0

3 + 965291702347368ν2b0
4

+7942512227920512νb0
5 + 32229819508758720b0

6 + 6407801066242ν2b0
3

−3668457367445672νb0
4
− 4818509029340144b0

5
− 124952860073ν2b0

2

−375594850314806νb0
3
− 1513254300975664b0

4
− 7120400770504νb0

2

+417413159812942b0
3
− 6817796410νb0 + 51591741009657b0

2

+1326733996960b0 + 6440470375)

c2 = −
1
4

Q
b0

c4 =
Q3

512b04
(2νb0 − 2b0 − 1)

c6 = −
Q5

147456bo7 (8ν
2bo

2
− 104νbo

2
− 14νbo − 96bo

2 + 50bo + 5)
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c8 = −
Q7

75497472bo10 (3216ν2bo
3 + 160ν2bo

2 + 672νbo
3
− 3976νbo

2
− 3888bo

3
− 190νbo

−600bo
2 + 1174bo

2 + 55)

c10 = −
Q9

30198988800b013 (800ν4b0
4 + 41840ν3b0

4
− 304ν3b0

3
− 204400ν2b0

4

−109240ν2b0
3
− 512880νb0

4
− 2186ν2b0

2 + 201104νb0
3
− 246960b0

4 + 81168νb0
2

+259800b0
3 + 2119νb0 − 48214b0

2
− 18469b0 − 525)

c12 = −
Q11

34789235097600b016 (22400ν5b0
5 + 524640ν4b0

5
− 82944ν4b0

4

−25368000ν3b0
5
− 4565264ν3b0

4
− 38892800ν2b0

5 + 27132ν3b0
3

+47745424ν2b0
4 + 21825600νb0

5 + 7246852ν2b0
3 + 51345424νb0

4

+41888160b0
5 + 83486ν2b0

2
− 28488284νb0

3
− 7950480b0

4
− 4117416νb0

2

−15997604b0
3
− 70308νb0 + 5465194b0

2 + 784548b0 + 15375)

c14 = −
Q13

109099041266073600b019

(
537600ν6b0

6 + 95569920ν5b0
6 + 6967808ν5b0

5 + 4108999680ν4b0
6

+117889920ν4b0
5
− 5941056000ν3b0

6
− 15598656ν4b0

4
− 13529655936ν3b0

5
− 43855603200ν2b0

6

−895835072ν3b0
4 + 4527264640ν2b0

5
− 51193105920νb0

6 + 4503504ν3b0
3 + 14806321024ν2b0

4

+46199787648νb0
5
− 14692078080b0

6 + 1109267440ν2b0
3 + 638704192νb0

4 + 26583333120b0
5

+8617304ν2b0
2
− 6693760592νb0

3
− 11987671488b0

4
− 526821480νb0

2
− 708808304b0

3

−6494634νb0 + 1079360848b0
2 + 87711654b0 + 1278825

)
c16 = Q15

223434836512918732800b022 (171315200ν7b0
7 + 10546508800ν6b0

7
− 194672640ν6b0

6

+197223398400ν5b0
7
− 32903308800ν5b0

6
− 3046134348800ν4b0

7
− 929164032ν5b0

5

−1387953146880ν4b0
6
− 9506996684800ν3b0

7
− 8465584512ν4b0

5 + 7069457303040ν3b0
6

−4264563225600ν2b0
7 + 1604448896ν4b0

4 + 2675117507712ν3b0
5 + 18457540600320ν2b0

6

+9209933798400νb0
7 + 95661764736ν3b0

4
− 5771991623808ν2b0

5 + 6869318952960νb0
6

+7399819238400b0
7
− 415417792ν3b0

3
− 2198052940352ν2b0

4
− 11401492164480νb0

5

−4135383590400b0
6
− 101256295408ν2b0

3 + 1970481959168νb0
4
− 2405880852480b0

5

−580531224ν2b0
2 + 823323522272νb0

3 + 2270336257600b0
4 + 42051124104νb0

2

−235589110320b0
3 + 398267670νb0 − 115950087120b0

2
− 6276580470b0 − 71612125

)
c18 = −

Q17

289571548120742677708800b025 (5501440000ν8b0
8 + 152821734400ν7b0

8

−33579325440ν7b0
7
− 4940656977920ν6b0

8
− 2209604924928ν6b0

7
− 300290345943040ν5b0

8

+23923075328ν6b0
6
− 36967367099904ν5b0

7
− 233731082736640ν4b0

8 + 4138491043456ν5b0
6

+1140951798222336ν4b0
7 + 2357603588480000ν3b0

8 + 65086315904ν5b0
5

+173447529754368ν4b0
6 + 1275723991676928ν3b0

7 + 5390378527518720ν2b0
8

+35610322560ν4b0
5
− 1573946374751744ν3b0

6
− 3465402511093248ν2b0

7

+3842669495715840νb0
8
− 94576563808ν4b0

4
− 254969121731776ν3b0

5

−1718708981693440ν2b0
6
− 5807195851405824νb0

7 + 634481339120640b0
8

−5837086327184ν3b0
4 + 1016232816565696ν2b0

5 + 1620608873701248νb0
6

−2039259064158720b0
7 + 22204890216ν3b0

3 + 173398094999376ν2b0
4 + 879410465017152νb0

5

+1545015484836864b0
6 + 5525295804496ν2b0

3
− 312027410346224νb0

4
− 238008955824704b0

5

+24785089618ν2b0
2
− 56402985618728νb0

3
− 154810955169904b0

4
− 2060926116184νb0

2

+36774798322480b0
3
− 15648654025νb0 + 7115041992006b0

2 + 280551889075b0 + 2596581625)

d0 = b0

d2 =
Q2

64bo2 (6νbo + 2bo − 3)

d4 =
Q4

6144bo5 (10ν2bo
2 + 32νbo

2 + 5νbo + 6bo
2
− 11bo − 5)
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d6 = Q6

4718592bo8 (336ν3bo
3 + 1728ν2bo

3
− 392ν2bo

2 + 2256νbo
3
− 2632νbo

2

+288bo
3
− 70νbo − 1392bo

2 + 814bo + 91)

d8 = −
Q8

1509949440b011

(
15120ν3b0

4 + 6336ν3b0
3 + 83760ν2b0

4 + 31400ν2b0
3

+119280νb0
4
− 5166ν2b0

2
− 35936νb0

3 + 12240b0
4
− 48272νb0

2
− 49800b0

3

−531νb0 − 5074b0
2 + 14081b0 + 765

)
d10 = Q10

724775731200b014

(
61600ν5b0

5 + 1009680ν4b0
5
− 18128ν4b0

4 + 4754400ν3b0
5

−1372728ν3b0
4 + 8388800ν2b0

5
− 141746ν3b0

3
− 9419112ν2b0

4 + 4771200νb0
5

−552366ν2b0
3
− 12191752νb0

4 + 367920b0
5 + 94237ν2b0

2 + 5031042νb0
3

−3194760b0
4 + 1106528νb0

2 + 3840542b0
3 + 7084νb0 − 738837b0

2
− 304954b0

−10175)

d12 = −
Q12

974098582732800b017

(
2620800ν6b0

6 + 27888480ν5b0
6
− 9101248ν5b0

5

−17526240ν4b0
6
− 176169744ν4b0

5
− 747691200ν3b0

6 + 2237612ν4b0
4

−793542528ν3b0
5
− 2150481600ν2b0

6 + 165839280ν3b0
4
− 125465696ν2b0

5

−1861138080νb0
6 + 8105318ν3b0

3 + 1288533432ν2b0
4 + 1580663616νb0

5

−130779360b0
6 + 19966518ν2b0

3 + 858361168νb0
4 + 841595760b0

5

−4620538ν2b0
2
− 656820918νb0

3
− 210868836b0

4
− 65100344νb0

2

−299417606b0
3
− 292084νb0 + 106320594b0

2 + 16945204b0 + 391625
)

d14 = −
Q14

6982338641028710400b020

(
177408000ν7b0

7 + 14518732800ν6b0
7 + 2218736640ν6b0

6

+208450851840ν5b0
7 + 17912615936ν5b0

6 + 1086960568320ν4b0
7
− 4615397760ν5b0

5

−242862506496ν4b0
6 + 2485063680000ν3b0

7
− 101276297472ν4b0

5
− 2405447689728ν3b0

6

+2382533683200ν2b0
7 + 970676160ν4b0

4
− 380415886976ν3b0

5
− 5109527995904ν2b0

6

+655439938560νb0
7 + 79483390848ν3b0

4 + 1497404093056ν2b0
5
− 3515553596928νb0

6

+33822074880b0
7 + 2352990240ν3b0

3 + 676042955584ν2b0
4 + 3056080357888νb0

5

−527848750080b0
6 + 2149833968ν2b0

3
− 209377338368νb0

4 + 1136909440128b0
5

−1179164280ν2b0
2
− 330548886912νb0

3
− 554114794112b0

4
− 19407979608νb0

2

−36256245392b0
3
− 68075850νb0 + 52467583728b0

2 + 4772900250b0 + 82215375
)

d16 = Q16

8043654114465074380800b023 (37860659200ν8b0
8 + 1208591488000ν7b0

8
− 40792688640ν7b0

7

+11497475891200ν6b0
8
− 3404657349120ν6b0

7 + 31969385676800ν5b0
8
− 193633009408ν6b0

6

−53078925672960ν5b0
7
− 52344910259200ν4b0

8
− 936859972736ν5b0

6
− 263775135075840ν4b0

7

−419920548736000ν3b0
8 + 307346985344ν5b0

5 + 49303741216512ν4b0
6
− 304458419742720ν3b0

7

−730302465484800ν2b0
8 + 7485928586880ν4b0

5 + 438011306480128ν3b0
6

+302399442839040ν2b0
7
− 426376837785600νb0

8
− 56106889216ν4b0

4

+19774062241472ν3b0
5 + 606307038020096ν2b0

6 + 641582228574720νb0
7

−22638814848000b0
8
− 5212755300464ν3b0

4
− 281654849338304ν2b0

5 + 69515279157888νb0
6

+203356902136320b0
7
− 106376950152ν3b0

3
− 47702578054800ν2b0

4
− 344592941602368νb0

5

−127481780298240b0
6 + 65580510736ν2b0

3 + 74542292233456νb0
4
− 57032864101568b0

5

+47592560902ν2b0
2 + 22579908784840νb0

3 + 61902929849360b0
4 + 898858796552νb0

2

−6133979849744b0
3 + 2633721209νb0 − 3438453392046b0

2
− 209056639379b0 − 2819479325

)
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d18 = −
Q18

11582861924829707108352000b026

(
1567910400000ν9b0

9 + 23338660224000ν8b0
9

−9313222400000ν8b0
8
− 297656437171200ν7b0

9
− 323111917007360ν7b0

8

−7051459326105600ν6b0
9 + 6206007790848ν7b0

7
− 2854013744030720ν6b0

8

−45372968236876800ν5b0
9 + 554595336843648ν6b0

7 + 1536804319155200ν5b0
8

−132613244096102400ν4b0
9 + 17228291392640ν6b0

6 + 9235723372965504ν5b0
7

+100569211430474240ν4b0
8
− 185303307325516800ν3b0

9 + 21911117140864ν5b0
6

+40369112749918464ν4b0
7 + 327524299398510080ν3b0

8
− 104485247296358400ν2b0

9

−22744351813216ν5b0
5
− 7530800397374784ν4b0

6
− 47031128219899392ν3b0

7

+390254441572270080ν2b0
8
− 6864243071155200νb0

9
− 607359840641904ν4b0

5

−64975408459152512ν3b0
6
− 263654349683006592ν2b0

7 + 166294391419054080νb0
8

−97859800857600b0
9 + 3638590764824ν4b0

4
− 775580213784736ν3b0

5

−26513210883723136ν2b0
6
− 244351270296524160νb0

7 + 12813366688934400b0
8

+386172830276728ν3b0
4 + 40843922243052736ν2b0

5 + 81880735502646528νb0
6

−56479479270059520b0
7 + 5879329972818ν3b0

3 + 3765115863195192ν2b0
4

+25412040059555328νb0
5 + 47321908428655680b0

6
− 12091263678602ν2b0

3

−11447150935542968νb0
4
− 7708219666937936b0

5
− 2374104341387ν2b0

2

−1735121877765314νb0
3
− 5063597049024016b0

4
− 50784882904576νb0

2

+1173843260279098b0
3
− 129538131790νb0 + 252209221938483b0

2

+11186405167240b0 + 122368937125)
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