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Abstract: In this paper, we study Hyers–Ulam and Hyers–Ulam–Rassias stability of nonlinear
Caputo–Fabrizio fractional differential equations on a noncompact interval. We extend the
corresponding uniqueness and stability results on a compact interval. Two examples are given
to illustrate our main results.
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1. Introduction

In 1940, Ulam posed a question concerning the stability of homomorphisms into metric groups, a
question which is regarded as the origin of the problem of stability in the theory of functional equations.
In 1941, Hyers [1] answered the problem for a linear functional equation on the Banach space and
established a new concept on the stability of functional equation, now called Hyers–Ulam stability.
In 1978, Rassias [2] introduced a new definition of generalized Hyers–Ulam stability by the constant ε

by a variable, and obtained the stability of Hyers–Ulam–Rassias for functional equation. There is a
rich literature on this topic for standard integer-order equations (see [3–17]). In addition, the same
stability concepts are introduced to find approximate solutions to fractional differential equations,
see [18,19] and the references therein.

In 2015, Caputo and Fabrizio [20] gave a new definition of fractional derivative with a smooth
kernel. Losada and Nieto [21] introduced Caputo–Fabrizio fractional differential equation the newly
developed Caputo–Fabrizio fractional derivative and obtained the existence and uniqueness results
under some strong restriction. Baleanu et al. [22] obtained the approximate solution for some infinite
coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Goufo [23] used the
fractional derivative of the newly developed Caputo–Fabrizio without singular kernel to establish the
Korteweg–de Vries–Burgers equation with two perturbation levels. Atangana and Nieto [24] studied
the numerical approximation of this new fractional derivative and established an improved RLC circuit
model. Moore et al. [25] developed and analyzed a Caputo–Fabrizio fractional derivative model for
the HIV epidemic which includes an antiretroviral treatment compartment. Dokuyucu et al. [26]
applied the fractional derivative of Caputo–Fabrizio to model the cancer treatment by radiotherapy.
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Recently, Başcı et al. [27] applied the Laplace transform method to study the Hyers–Ulam
stability of the following linear differential equations with Caputo–Fabrizio fractional derivative
(see Definition 1):

(CFDαy)(t) = f (t), 0 < α < 1,

and

(CFDαy)(t)− λy(t) = f (t), 0 < α < 1.

Meanwhile, Liu et al. [4] presented the Hyers–Ulam stability of linear differential equations with
two term Caputo–Fabrizio derivatives as follows

(CFDαy)(t)− λ(CFDβy)(t) = u(t), 0 < α, β < 1,

and applied fixed-point theorems to derive the existence and uniqueness of solution to nonlinear
equations as follows

(CFDα f )(t) = g(t, f (t)), 0 < α < 1, (1)

and obtained the generalized Hyers–Ulam–Rassias stability via the Gronwall’s inequality.
Observing that ([4], Theorem 3) adopted the generalized Banach fixed-point theorem instead of the

standard Banach contraction mapping and weakened the condition aαL+ bαTL < 1 in ([21], Theorem 1)
to aαL < 1 where k > 0 denoted by the Lipschtiz constant of g, T denoted by the step of the interval and

a· =
2(1− ·)

(2− ·)M(·) , b· =
2·

(2− ·)M(·) . (2)

and M(·) denotes a normalization constant depending on ·.
Based on the above observation, we apply a new fixed-point approach to show the existence and

uniqueness and stability for (1) on a compact interval to a noncompact interval J = [τ0, τ0 + k), k > 0 .

2. Preliminaries

Definition 1 (see [20]). Let 0 < γ < 1, the Caputo–Fabrizio fractional derivative of order γ for a function f
can be written as

CFDγ f (τ) =
(2− γ)M(γ)

2(1− γ)

∫ τ

a
exp(− γ

1− γ
(τ − s)) f ′(s)ds, τ > a,

where M(γ) is a normalization constant depending on γ. Please note that (CFDγ)( f ) = 0 if and only if f is a
constant function.

Definition 2 (see [21] or ([4], Definition 2)). Let 0 < γ < 1. The Caputo–Fabrizio fractional integral of
order γ for a function f is defined as

CF Iγ f (τ) =
2(1− γ)

(2− γ)M(γ)
f (τ) +

2γ

(2− γ)M(γ)

∫ τ

a
f (s)ds, τ > a.

Let Ω be a nonempty set, we present the following definition of generalized metric on Ω.

Definition 3 (see [3]). A function ρ : Ω ×Ω → [0, ∞] is called a generalized metric on Ω if and only if
ρ satisfies
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(i) ρ(τ1, τ2) = 0 if and only if τ1 = τ2;
(ii) ρ(τ1, τ2) = ρ(τ2, τ1) for all τ1, τ2 ∈ Ω;
(iii) ρ(τ1, τ3) ≤ ρ(τ1, τ2) + ρ(τ2, τ3) for all τ1, τ2, τ3 ∈ Ω;

Theorem 1 (see [28]). Let (Ω, ρ) is a generalized complete metric space. Suppose P : Ω → Ω is a strictly
contractive operator with the Lipschitz constant K < 1. If there exists a nonnegative integer l such that
ρ(Pl+1τ, Plτ) < ∞ for some τ ∈ Ω, then the followings are true:

(i) The sequence {Pnτ} converges to a fixed point τ∗ of P;
(ii) τ∗ is the unique fixed point of P in

Ω∗ = {τ̃ ∈ Ω | ρ(Plτ, τ̃) < ∞};

(iii) If τ̃ ∈ Ω∗, then

ρ(τ̃, τ∗) ≤ 1
1− K

ρ(Pτ̃, τ̃).

Definition 4 (see [4]). Let g : J ×R → R be a continuous function. Equation (7) is Hyers–Ulam stable if
there exists a real number N > 0, such that for each ε > 0 and for any solution f ∈ C(J,R) of

|CFDγ f (τ)− g(τ, f (τ))| ≤ ε, ∀ τ ∈ J, (3)

there exists a solution h ∈ C(J,R) of (1) with

| f (τ)− h(τ)| ≤ Nε, ∀ τ ∈ J.

Definition 5 (see [4]). Let φ : J → R+ and g : J × R → R be continuous functions. Equation (7) is
generalized Hyers–Ulam–Rassias stable with respect to φ ∈ C(J,R+), if there exists a constant c f ,φ > 0 such
that for any solution f ∈ C(J,R) of

|CFDγ f (τ)− g(τ, f (τ))| ≤ φ(τ), ∀ τ ∈ J, (4)

there exists a solution h ∈ C(J,R) of (1) with

| f (τ)− h(τ)| ≤ c f ,φφ(τ), ∀ τ ∈ J.

3. Main Results

Throughout this section, we denote the set Y of all continuous functions on J by

Y := {g : J → R | g is continuous} = C(J,R) (5)

Lemma 1 (see ([3], Theorem 3.1)). Define the function d : Y×Y → [0, ∞] with

d( f , g) := inf{M ∈ [0, ∞] | | f (τ)− g(τ)| ≤ Mψ(τ), ∀ τ ∈ J}

where ψ : J → [0, ∞) is a given continuous function. Then (Y, d) is a generalized complete metric space.

We give the following conditions:

[A1] The function g : J ×R→ R is continuous and locally Lipschitz in τ.
[A2] There exists a constant L > 0 such that

|g(τ, y1)− g(τ, y2)| ≤ L|y1 − y2|, ∀ y1, y2 ∈ R, τ ∈ J.
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Now, we prove the Hyers–Ulam stability of (7).

Theorem 2. Assume that [A1] and [A2] and |aγ| < 1/(L + 1) hold. If the function h :J → R is continuously
differentiable and satisfies

|(CFDγh)(τ)− g(τ, h(τ))| ≤ ε (6)

for all τ ∈ J and for some ε > 0, then there exists a unique solution f (τ) of

(CFDγ f )(τ) = g(τ, f (τ)), 0 < γ < 1, (7)

satisfying
|h(τ)− f (τ)| ≤ (L + 1)(|aγ|+ |bγ|k)ε (8)

for all τ ∈ J, where aγ and bγ are defined in (2).

Proof. We introduce a function d1 : Y×Y → [0, ∞], where Y defined by (5) with

d1( f , g) := inf{M ∈ [0, ∞] | | f (τ)− g(τ)|e−K(τ−τ0) ≤ M, ∀ τ ∈ J}, (9)

where K =
(L+1)|bγ |

1−(L+1)|aγ |> 0 and aγ, bγ are given in (2)

Let ψ(·) = eK(·−τ0) in Lemma 1, we obtain (Y, d1) is a generalized complete metric space.
Next, we consider the operator P : Y → Y as follows:

(P f )(τ) := f0 + aγg(τ, f (τ)) + bγ

∫ τ

τ0

g(s, f (s))ds, τ ∈ J. (10)

for any f , g ∈ Y, where f0 = f (τ0). Please note that any fixed point of P solves (7). Indeed, the
function u− aγg(τ, u) = v in (10) is invertible, it is increasing. We denote its inverse u = G(τ, v), and
G is globally Lipschitz in v and locally Lipschitz in τ by our assumptions. So, any fixed point of (10)
satisfies

f (τ) = G(τ, bγ

∫ τ

τ0

g(s, f (s))ds + f0). (11)

Now clearly the function τ → bγ

∫ τ
τ0

g(s, f (s))ds + f0 is locally Lipschitz in τ, we see that the

composition function τ → G(τ, bγ

∫ τ
τ0

g(s, f (s))ds + f0) is also locally Lipschitz in τ. So, any fixed
point f (τ) of (10) is a locally Lipschitz function, and thus it is locally absolute continuous on J. So really
(10) gives solutions of (7). As a matter of fact, we need just that u− aγg(τ, u) = v is invertible, i.e.,
u− aγg(τ, u) is strictly monotonic in u, and we can extend our results for more general case. We shall
consider (11) instead of (10).
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We prove that P f is continuous. Let τ1, τ2 ∈ J, and τ1 < τ2, we have

|P f (τ1)− P f (τ2)|

= |aγg(τ1, f (τ1)) + bγ

∫ τ1

τ0

g(s, f (s))ds− aγg(τ2, f (τ2))− bγ

∫ τ2

τ0

g(s, f (s))ds|

≤ |aγ||g(τ1, f (τ1))− g(τ2, f (τ2))|+ |bγ||
∫ τ1

τ0

g(s, f (s))ds−
∫ τ2

τ0

g(s, f (s))ds|

≤ |aγ||g(τ1, f (τ1))− g(τ1, f (τ2))|+ |aγ||g(τ1, f (τ2))− g(τ2, f (τ2))|+ |bγ||
∫ τ2

τ1

g(s, f (s))ds|

≤ |aγ||g(τ1, f (τ1))− g(τ1, f (τ2))|+ |aγ||g(τ1, f (τ2))− g(τ2, f (τ2))|

+|bγ|(
∫ τ2

τ1

|g(s, f (s))− g(s, 0)|ds +
∫ τ2

τ1

|g(s, 0)|ds)

≤ |aγ||g(τ1, f (τ1))− g(τ1, f (τ2))|+ |aγ||g(τ1, f (τ2))− g(τ2, f (τ2))|
+|bγ|(L‖ f ‖C(J,R)(τ2 − τ1) + ‖g‖C(J,R)(τ2 − τ1)).

Then, for all f ∈ Y, as τ1 → τ2, the right-hand side of the above inequality tends to zero (due to
[A1] and f ∈ Y). Thus, P f is continuous, i.e., P f ∈ Y for all f ∈ Y.

Then, we have

|(P f0)(τ)− f0(τ)|e−K(τ−τ0) ≤ ‖P f0 − f0‖C(J,R) max{1, e−Kk} < ∞,

for all f0 ∈ Y, and τ ∈ J. Therefore, by (9), we obtain d1(P f0, f0) < ∞, f0 ∈ Y.
Similarly, we have

|( f0)(τ)− f (τ)|e−K(τ−τ0) ≤ ‖ f0 − f ‖C(J,R) max{1, e−Kk} < ∞,

for all f ∈ Y, and τ ∈ J, which implies that

d1( f0, f ) < ∞, ∀ f ∈ Y,

that is { f ∈ Y | d1( f0, f ) < ∞} = Y.
Next, we show that P is strictly contractive on Y. For any l, n ∈ Y, we get

|(Pl)(τ)− (Pn)(τ)|

≤ |aγ||g(τ, l(τ))− g(τ, n(τ))|+ |bγ|
∫ τ

τ0

|g(s, l(s))− g(s, n(s))|ds

≤ L|aγ||l(τ)− n(τ)|+ L|bγ|
∫ τ

τ0

|l(s)− n(s)|ds

≤ L|aγ||l(τ)− n(τ)|+ L|bγ|
∫ τ

τ0

|l(s)− n(s)|e−K(s−τ0)eK(s−τ0)ds

≤ L|aγ||l(τ)− n(τ)|+ L|bγ|d1(l, n)
∫ τ

τ0

eK(s−τ0)ds

≤ L|aγ||l(τ)− n(τ)|+
L|bγ|

K
d1(l, n)(eK(τ−τ0) − 1)

≤ L|aγ||l(τ)− n(τ)|+
L|bγ|

K
d1(l, n)eK(τ−τ0)
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for all τ ∈ J. Thus, for any l, n ∈ Y and all τ ∈ J, we have

|(Pl)(τ)− (Pn)(τ)|e−K(τ−τ0) ≤ L|aγ||l(τ)− n(τ)|e−K(τ−τ0) +
L|bγ|

K
d1(l, n)

≤ L|aγ|d1(l, n) +
L|bγ|

K
d1(l, n)

= L(|aγ|+
|bγ|
K

)d1(l, n)

=
L

L + 1
d1(l, n).

Hence, we obtain

d1(Pl, Pn) ≤ L
L + 1

d1(l, n).

Therefore, P is strictly contractive on Y.
When k = 1 and Y = Ω∗, the operator P satisfies all the conditions of Theorem 1.
On the other hand, by (6), we have

−ε ≤ (CFDγh)(τ)− g(τ, h(τ)) ≤ ε ∀ τ ∈ J.

Similar to the approach in ([4], Theorem 2), we can obtain

|h(τ)− h0 − aγg(τ, h(τ))− bγ

∫ τ

τ0

g(s, f (s))ds| ≤ ε(|aγ|+ |bγ|k) (12)

for all τ ∈ J. From (10), (12) is equivalent to

|h(τ)− (Ph)(τ)| ≤ ε(|aγ|+ |bγ|k). (13)

Multiply both sides of (13) by e−K(τ−τ0),

|h(τ)− (Ph)(τ)|e−K(τ−τ0) ≤ ε(|aγ|+ |bγ|k)e−K(τ−τ0) ≤ M := ε(|aγ|+ |bγ|k)max{1, e−Kk}

for all τ ∈ J. Then

d1(Ph, h) ≤ ε(|aγ|+ |bγ|k)e−K(τ−τ0).

By Theorem 1, there exists a unique solution f : J → R of (7) satisfying

d1(h, f ) ≤ 1
1− L/(L + 1)

d1(Ph, h) ≤ (L + 1)ε(|aγ|+ |bγ|k)e−K(τ−τ0), τ ∈ J,

by (9), we have

|h(τ)− f (τ)|e−K(τ−τ0) ≤ (L + 1)ε(|aγ|+ |bγ|k)e−K(τ−τ0), τ ∈ J,

which implies that (8) holds.

Remark 1. From Definition 4, (8) shows (7) is Hyers–Ulam stable with the constant N = (L+ 1)(|aγ|+ |bγ|k)
provided that 0 < k < +∞. Of course, (7) is not Hyers–Ulam stable if k = +∞. Theorem 2 covers the result
in ([27], Theorem 2.6) and shows that the condition 0 < λ < (2−α)M(α)

2(1−α)
can be removed.

Now we will prove the Hyers–Ulam–Rassias stability of (7).
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Theorem 3. Assume that [A1] and [A2] and |aγ| < 1/(L + 1) hold. If a continuously differentiable function
h :J → R satisfies

|(CFDγh)(τ)− g(τ, h(τ))| ≤ G(τ) (14)

for all τ ∈ J and for some G : J → (0, ∞) is a nondecreasing continuous function satisfying∣∣∣∣ ∫ τ

τ0

G(s)ds
∣∣∣∣ ≤ FGG(τ), FG > 0, (15)

for all τ ∈ J, then there exists a unique solution f (τ) of (7) satisfying

|h(τ)− f (τ)| ≤ (L + 1)(aγ + bγFG)G(τ) (16)

for all τ ∈ J.

Proof. We introduce a function d2 : Y×Y → [0, ∞], where Y defined by (5) with

d2( f , g) := inf{M ∈ [0, ∞] | | f (τ)− g(τ)|e−K(τ−τ0) ≤ MG(τ), ∀ τ ∈ J, K ∈ R} (17)

Let ψ(·) = eK(·−τ0)G(·) in the Lemma 1, (Y, d2) is a generalized complete metric space.
Consider P : Y → Y defined in (10). Similar to the method of Theorem 2, we can conclude that

d2(P f0, f ) < ∞ for each f0 ∈ X and { f ∈ Y | d2( f0, f ) < ∞} = Y.
Next, we prove that P is strictly contractive on Y. Note∫ τ

τ0

G(s)eK(s−τ0)ds ≤ G(τ)
∫ τ

τ0

eK(s−τ0)ds

=
1
K

G(τ)
∫ τ

τ0

deK(s−τ0)

≤ 1
K

G(τ)(eK(τ−τ0) − 1)

≤ 1
K

G(τ)eK(τ−τ0)

for all τ ∈ J.
For any l, n ∈ Y, let Ml,n ∈ [0, ∞] be an arbitrary constant with d2(l, n) ≤ Ml,n, by (17), we obtain

|l(τ)− n(τ)|e−K(τ−τ0) ≤ Ml,nG(τ), f or all τ ∈ J.

Then, for each l, n ∈ Y, we have

|(Pl)(τ)− (Pn)(τ)|

≤ |aγ||g(τ, l(τ))− g(τ, n(τ))|+ |bα|
∫ τ

τ0

|g(s, l(s))− g(s, n(s))|ds

≤ L|aγ||l(τ)− n(τ)|+ L|bγ|
∫ τ

τ0

|l(s)− n(s)|ds

≤ L|aγ||l(τ)− n(τ)|+ L|bγ|
∫ τ

τ0

|l(s)− n(s)|e−K(s−τ0)eK(s−τ0)ds

≤ L|aγ||l(τ)− n(τ)|+ L|bγ|Ml,n

∫ τ

τ0

G(s)eK(s−τ0)ds

≤ L|aγ||l(τ)− n(τ)|+ L|bγ|Ml,n
1
K

G(τ)eK(τ−τ0)
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for all τ ∈ J. Thus, for any l, n ∈ Y and all τ ∈ J, we have

|(Pl)(τ)− (Pn)(τ)|e−K(τ−τ0) ≤ L|aγ||l(τ)− n(τ)|e−K(τ−τ0) +
L|bγ|

K
Ml,nG(τ)

≤ L|aγ|Ml,nG(τ) +
L|bγ|

K
Ml,nG(τ)

= L(|aγ|+
|bγ|
K

)Ml,nG(γ)

=
L

L + 1
Ml,nG(τ),

that is, d2(Pl, Pn) ≤ L
L+1 Ml,n, ∀ τ ∈ J. Hence, we obtain

d2(Pl, Pn) ≤ L
L + 1

d2(l, n), ∀ τ ∈ J.

Therefore, P is strictly contractive on Y. When k = 1 and Y = Ω∗, the operator P satisfies all the
conditions of Theorem 1.

On the other hand, by (14), we have

−G(τ) ≤ (CFDγh)(τ)− g(τ, h(τ)) ≤ G(τ), ∀ τ ∈ J.

By simple computation, we can obtain

|h(τ)− h0 − aγg(τ, h(τ))− bγ

∫ τ

τ0

g(s, f (s))ds|

≤ |aγ|G(τ) + |bγ|
∫ τ

τ0

G(s)ds

≤ (|aγ|+ |bγ|FG)G(τ), ∀ τ ∈ J.

This yields that
|h(τ)− (Ph)(τ)| ≤ (|aγ|+ |bγ|FG)G(τ), ∀ τ ∈ J. (18)

Multiply both sides of (18) by e−K(τ−τ0), then,

|h(τ)− (Ph)(τ)|e−K(τ−τ0) ≤ (|aγ|+ |bγ|FG)G(τ)e−K(τ−τ0), ∀ τ ∈ J.

Then

d2(Ph, h) ≤ (|aγ|+ |bγ|FG)G(τ)e−K(τ−τ0), ∀ τ ∈ J.

By Theorem 1, there exists a unique solution f : J → R of (7) satisfying

d2(h, f ) ≤ 1
1− L/(L + 1)

d2(Ph, h) ≤ (L + 1)(|aγ|+ |bγ|FG)G(τ)e−K(τ−τ0), ∀ τ ∈ J.

By (17), we have

|h(τ)− f (τ)|e−K(τ−τ0) ≤ (L + 1)(|aγ|+ |bγ|FG)G(τ)e−K(τ−τ0), ∀ τ ∈ J,

which implies (16) holds. The proof is complete.

Remark 2. By the Definition 5, (16) shows (7) is generalized Hyers–Ulam–Rassias stable with the constant
c f ,G = (L + 1)(|aγ|+ |bγ|FG). Theorem 3 extend the result in ([27], Corollary 2.8) and also shows that the

condition 0 < λ < (2−α)M(α)
2(1−α)

can be removed.
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Remark 3. Compared to ([4], Theorems 3 and 5), we extend the existence and uniqueness result and the
generalized Hyers–Ulam–Rassias stability result for (1) on the noncompact interval and also remove the
condition L|aα| < 1 from the assumptions.

4. Examples

Assume that M(·) in Definition 1 is the solution of the following equation:

2(1− ·)
(2− ·)M(·) +

2·
(2− ·)M(·) = 1.

Then one can derive an explicit formula M(·) = 2
2−· (see ([21], p. 89)).

Example 1. We consider the following equation:

(CFDγ f )(τ)− λ f (τ) = g(τ), τ ∈ [0, k), k > 0, (19)

and let g(τ, f (τ)) = g(τ) + λ f (τ). Obviously, |g(τ, f1(τ))− g(τ, f2(τ))| = |λ|| f1(τ)− f2(τ)|, τ ∈ [0, k)
and the Lipschitz condition holds with the Lipschitz constant L = |λ|. Then, (19) is Hyers–Ulam stable on J,
for all λ ∈ R and α ∈ (0, 1).

Now, let γ = 1
2 , λ = −2, f (0) = 0, and g(τ) = 4τ − 4 + 4e−τ − 1

2 e−2τ + 2τ2. We consider the
following equation:

(CFD
1
2 f )(τ) + 2 f (τ) = g(τ), τ ∈ [0, k), k > 0. (20)

Let h(τ) = τ2, for ε = 1
2 by simple calculation, we have

(CFD
1
2 h)(τ) = 4τ − 4 + 4e−τ

then
|(CFD

1
2 h)(τ) + 2 f (τ)− g(τ)| = 1

2
e−2τ ≤ 1

2
= ε, τ ∈ [0, k), k > 0.

Integrating (20) from 0 to τ, we get

f (τ) = τ2 − 1
12

e−2τ +
1
12

e−
1
2 τ

then

|h(τ)− f (τ)| = | 1
12

e−2τ − 1
12

e−
1
2 τ | = 1

12
e−

1
2 τ |1− e−

3
2 τ | (21)

≤ 1
6
× 1

2
=

1
6

ε.

So (20) is Hyers–Ulam stable (see Figure 1). Please note that the condition λ > 0 in ([27], Theorem 2.6) is
not required here, and moreover, (20) is Hyers–Ulam stable, too.

On the other hand, (21) implies that (20) is also Hyers–Ulam stable even for τ = +∞, which shows
that ([27], Remark 2.7) is not suitable.
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Figure 1. The exact and approximated solutions of the differential equation (20) are shown by the red
and blue lines, respectively.

Example 2. We consider the following fractional problem

(CFD
1
3 f )(τ) =

5
1 + eτ

| f |
1 + | f | , τ ∈ [0,+∞), (22)

and the inequality

|(CFD
1
3 f )(τ)− 5

1 + eτ

| f |
1 + | f | | ≤ G(τ), τ ∈ [0,+∞).

Let g(τ, f (τ)) = 5
1+eτ

| f |
1+| f | , (τ, f ) ∈ [0,+∞)×R. Obviously [A1] holds. For any τ ∈ [0,+∞) and

f1, f2 ∈ R, we have

|g(τ, f1)− g(τ, f2)| =
5

1 + eτ

∣∣∣∣ | f1|
1 + | f1|

− | f2|
1 + | f2|

∣∣∣∣ ≤ 5| f1 − f2|
(1 + | f1|)(1 + | f2|)

≤ 5| f1 − f2|.

Then the condition [A2] hold and L = 5 and kα = 5 in ([4], Theorem 5).
Let G(τ) = eτ ∈ C([0,+∞), (0,+∞)) and

∫ τ
0 G(s)ds =

∫ τ
0 esds = eτ − 1 ≤ eτ . (15) holds for

FG = 1 > 0. Therefore, in view of Theorem 3, (22) is generalized Hyers–Ulam–Rassias stable.
Here γ = 1

3 , by calculation, we have M( 1
3 ) =

6
5 , a 1

3
= 24

25 . Then aγk f =
24
25 × 5 = 24

5 > 1. Thus aαk f < 1
condition of Theorem 5 in [4] does not hold in this problem. Thus, ([4], Theorem 5) does not work even on [0, 2].
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