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Abstract: Given a set of constrained vertex norms, we proved the existence of a convex configuration
with respect to the set of distinct constrained vertex norms in the two-dimensional case when the
constrained vertex norms are distinct or repeated for, at most, four points. However, we proved that
there always exists a convex configuration in the three-dimensional case. In the application, we can
imply the existence of the non-empty spherical Laguerre Voronoi diagram.
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1. Introduction

Suppose that we are given a set of n points V = {v1, v2, . . . , vn} in two-dimensional and
three-dimensional space. One of the fundamental questions in the discrete and computational geometry
is to consider the convexity of the given set, such as computing the convex hull of P . When V is
finite, the convex hull of a set V is a polygon in the two-dimensional case and a polyhedron in the
three-dimensional case. The problem of an algorithmic construction of a convex hull was initially
addressed by Preperata [1].

The convex hull is a primitive object in computational geometry. For example, the construction
of an ordinary spherical Voronoi diagram and spherical Laguerre Voronoi diagram, as defined in [2],
uses the central projection of a 3D convex hull onto the sphere to generate Delaunay diagrams as
presented in [3]. In the application viewpoint, Voronoi diagrams are widely used to model many
natural phenomena displayed as tessellations. In the case of spherical tessellations, the spherical
Laguerre Voronoi diagrams were used to model natural tessellations containing the weights of
generators. For example, the research in [4] focused on the tessellation fitting of fruit skin patterns, and
Chaidee et al. [5] proposed the dynamical model to generate spherical tessellations using the spherical
Laguerre Voronoi diagrams.

In the case of the ordinary spherical Voronoi diagram, the points for computing a 3D convex
hull are on the sphere. Therefore, the central projection of the 3D convex hull consists of a Delaunay
triangulation of the diagram. However, the spherical Laguerre Delaunay diagram construction is
different to the ordinary spherical Voronoi diagram in such a way that each generator contains its
weight, and the points for generating the convex hull can be shifted over the sphere. Therefore, the
convex hull of those points may include some points inside the constructed convex hull. As the
diagram can be constructed from the central projection of the convex hull onto the sphere, the Laguerre
cell corresponding to the hidden point is empty, which is a dilemma of the spherical Laguerre Voronoi
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diagram. Therefore, investigation on the non-emptiness properties of the diagram is theoretically
important to model real-world phenomena using the spherical Laguerre Voronoi diagram.

Suppose that there is a set of weights of points of the spherical Laguerre Voronoi diagram
W = {w1, . . . , wn}. We would like to find the location of the generator position P = {p1, . . . , pn} on
the unit sphere S2 in such a way that no cell of the generated spherical Laguerre Voronoi diagram is
empty. This problem can be transformed into the following problem.

Given a set of scalars R = {r1, . . . , rn} and the origin O, we find a configuration of all points
V = {v1, . . . , vn} under the norm constraint ri := ‖vi‖ such that none of points lies strictly inside their
convex polyhedron.

The illustration of this problem is shown in Figure 1 on the Euclidean plane. The left figure shows
the points with respect to the given scalars regarded as the radii from the fixed point. In the right
figure, the configuration of points with respect to the given scalars is a convex polygon.

Figure 1. (Left) The general configuration of points on the concentric circles that forms a non-convex
polygon; (right) the convex configuration of points with respect to the constrained vertex norms.

The mentioned problem can be considered as the convex configuration of points in the space.
We first review the similar and related problems to our study.

1.1. Related Works

To consider the literature, we primarily focused on the problems of convexification and convex
configuration in the two-dimensional case.

Suppose that there is a closed chain composed of the vertices and links. The reconfiguration problem
considers whether the given configuration can be transformed into another configuration. Lenhart and
Whitsides [6] considered the problem when the lengths of links were fixed, and the reconfiguration
was allowed across other links. This result also proved that every polygon could be convexified in the
standard triangular form, i.e., the edge lengths of resulting convex polygon were preserved.

The more specified problem to the reconfiguration problem is the polygon convexification problem,
a problem to transform a configuration of the simple polygon in the initial stage to a convex polygon.
Everett et al. [7] considered the polygon convexification problem in the case of star-shaped polygons
and proved that every star-shaped polygon in the general position could be convexified. In this
problem, it was not necessary to fix the lengths of the links.

One of the famous problems, called the carpenter’s rule problem, is to ask whether we can
continuously move a simple polygon in such a way that all the vertices are in the convex position.
Aichholzer et al. [8] and Connelly et al. [9] studied the problem of convexifying the polygonal cycle by
employing a continuous motion as a convex closed curve such that no links cross each other during
the motion. Especially, the study in [8] defined the term convex configuration as the configuration of a
convex polygon where the edge links are fixed. Some results were compiled by Toussaint in [10].

In three-dimensional space, based on our observations, the configuration problem of points in 3D
as a convex set has not been clearly identified yet. However, in the general dimension, the convex hull
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frame problem, known as the redundancy removal problem, is a problem to compute the vertex description
of the given set of points. That is, to justify whether a point is in a convex hull of the given set. If it is
inside the convex hull, we remove that point.

Clarkson [11] and Ottmann et al. [12] considered the algorithms for testing whether a given point
is inside the convex hull. Dula and Helgason [13] studied the problem by identifying the extreme
points (or vertices) of the convex hull of the given points using the linear programming viewpoint.
Other similar problems included the vertex enumeration of the convex hull, as presented in [14].

With the basic problem of the convex hull frame problem, the closest issues to the Voronoi diagram
in Laguerre geometry were first addressed by Aurenhammer [15] and Imai et al. [16]. In [16], the
emptiness of the Laguerre Voronoi cell in Euclidean space Rd was identified so that the Voronoi
polygon of the generating circle ck was empty if the center of circle ck was not on the boundary of the
convex hull.

In the spherical case, they assumed that all points were on or close to a sphere. Carili et al. in [17]
established the sufficient condition under which no point was hidden in other planes of the convex
hull with respect to other points.

1.2. Problem Statement and Our Contribution

In this study, we investigated the modification of the previous convex configuration problem.
Suppose that a set of constrained vertex norms is given with a fixed point. We would find the existence
of a convex polyhedron whose vertices correspond to the given set of constrained vertex norms.

In the two dimensional case, the convex configuration of points is a polygon where the edge
lengths of a polygon are allowed to be moved, and fixed for the constrained vertex norms, whereas the
problems in [6,7,9] used fixed link lengths.

The problem in the two-dimensional case was generalized to the three-dimensional case, i.e., we
find a convex polyhedron satisfying the given set of constrained vertex norms. The main motivation
of this study was initiated from the non-empty property of the spherical Laguerre Voronoi diagram,
where the problem can be simplified to the problem of the modified convex configuration problem
in three-dimensional space. The existence of the convex configuration can guarantee that for any set
of weights, and we can always find a spherical Laguerre Voronoi diagram whose Voronoi cells are
nonempty, which is a different approach to the problems stated in [11–14].

This paper is organized as follows. In Section 2, the notation, definitions, and the formulation
of the problems are provided. We discuss the existence of a convex polygon, which is a convex
configuration in the two-dimensional case, in Section 3. In Section 4, the existence of the convex
configuration in the three-dimensional is proved. The application of the problem to the spherical
Laguerre Voronoi diagram, which answers the question from the motivation of the study, is described
in Section 5. The concluding remarks and future studies are clarified in the last section.

2. Preliminaries

In this section, we define the notations and the necessary definitions. After that, we formulate
the problem.

2.1. Notations and Definitions

First, we focus on the definitions in the two-dimensional case. The definitions in the
three-dimensional case will be provided in the latter part. Let V = {v1, . . . , vn} be a set of vertices that
are arranged counterclockwise on a plane with respect to a fixed point O by the lexicographical order,
i.e., a vertex with a smaller angle is earlier than a vertex with a larger angle. If the two vertices have
the same angle, a vertex with a shorter distance from O is earlier than a vertex with a longer distance
from O.

An edge ei = (vi, vi+1) is a segment joining the vertices vi and vi+1 with the length li := d(vi, vi+1),
where d(vi, vi+1) denotes the Euclidean distance between vi and vi+1. In this context, the norm ‖vi‖
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of a vertex vi is the Euclidean distance d(vi, O) between vi and O. A chain is a straight line graph
formed by the set of edges E = {e1, . . . , en−1}. A polygon P is a closed region bounded by a closed
chain generated from the set of edges {e1, . . . , en}, where ei = (vi, vi+1) for all 1 ≤ i < n− 1, except
en = (vn, v1). A polygon P is said to be simple if the chain does not intersect itself, except for the
vertices of P.

Let ei = (vi, vi+1) and ei+1 = (vi+1, vi+2) be adjacent edges of a polygon P, whose common
vertex is vi+1. The angle between ei and ei+1 is denoted by ∠vivi+1vi+2 and is measured clockwise
from the segment vivi+1. A simple polygon P is said to be convex if, and only if, for any point
p, q in the polygon P, a segment joining p and q is in P. For each angle ∠vivi+1vi+2 of P, where
i = 1, . . . , n, vi+1 = v1, vi+2 = v2, ∠vivi+1vi+2 ≤ π if, and only if, P is convex. It is impossible that
∠vivi+1vi+2 = π for all i. For the special case, a simple polygon P is said to be a strictly convex polygon
if, and only if, ∠vivi+1vi+2 < π for all i.

For a given edge length set L = {l1, . . . , ln}, a convex configuration of edge lengths is a convex
polygon whose length of edges satisfies the set L with a counterclockwise order. The radius ri of a
polygon vertex vi is defined as the Euclidean distance between the vertex vi and a given fixed point.
Without a loss of generality, we assume that the origin O is such a fixed point. In this study, the radius
ri will be regarded as the constrained vertex norms ‖vi‖ of the point vi. For a given straight line `, an
arbitrary half-plane with respect to the line ` is denoted by H(`). The half-plane containing the origin
is written as H0(`).

Next, we generalize the mentioned definitions in three-dimensional space. We assume that
V = {v1, . . . , vn} is a set of points in the three-dimensional space. In our context, the convex polyhedron
is a convex hull of a set V . We can also construct a polyhedron from the intersection of a finite number
of half-spaces. In this study, we focus on the polyhedron that is formed from the bounded intersection
of half-spaces.

Similar to the two-dimensional case, without a loss of generality, the radius ri of a polyhedron
vertex vi is defined by the Euclidean distance between vi and the origin O.

In spherical geometry, we consider a unit sphere S2 where the center is located at the origin.
We also define S(O, r) as a sphere where the center is at O with radius r. For p, q ∈ S2, let d̃(p, q) be the
geodesic distance between p and q defined by

d̃(p, q) = arccos(p · q) ≤ π.

For a fixed point q on the surface of S2, the spherical circle is defined as

c̃q = {p ∈ S2 : d̃(p, q) ≤ ri},

which is the circle where the center is at the point q with radius ri and 0 ≤ ri < π/2.

2.2. Problem Formulations

We assume that the set of constrained vertex normsR = {r1, r2, . . . , rn} is given. We place a point
vi on the plane so that the distance between O and vi is the radius ri. Therefore, a simple polygon P
is formed from the counterclockwise sequence of vertices {v1, . . . , vn} generated by the sequence of
constrained vertex normsR.

In this study, we are interested in the following question. For a given set of constrained vertex
normsR = {r1, r2, . . . , rn}, does there exist a convex configuration of the vertices set V = {v1, . . . , vn}
including O with respect to the set of constrained vertex norms R? To avoid confusion with the
problems in [6,8], the convex configuration in this context means that the radius ri is fixed for all i, and
the length of edge li := d(vi, vi+1) is allowed to be adjusted with respect to the position of vi and ri.

In the three-dimensional case, the concept of convex configuration in our context can be considered
similar to the two-dimensional case. We assume that a vertex vi is in R3 with the Euclidean distance
between O and vi, for instance, ri. The convex configuration of the three-dimensional case is defined by
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the existence of a convex polyhedron whose points in the set V are vertices of the convex polyhedron.
Therefore, the problem in three-dimensional space is to consider the existence of a convex configuration
of v1, . . . , vn with respect to the given set of constrained vertex normsR.

3. The Existence of a Convex Polygon in the Plane

For a set V = {v1, v2, . . . , vn} of n > 3 vertices in the plane, we investigated the convexity of the
constructed polygon.

First, we proved the simple case when the constrained vertex norms were distinct. For a given
sequence of distinct constrained vertex norms R, the convex configuration can always exist by the
following lemma.

Lemma 1. LetR = {r1, . . . , rn} be a given set of constrained vertex norms, such that ri > 0 and ri 6= rj for
all i, j. We assume that V = {v1, . . . , vn} is a set of vertices induced byR. There exists a convex configuration
of V with respect to the set of constrained vertex normsR.

Proof. Without a loss of generality, we order the setR as the descending order, i.e., r′1 > r′2 > · · · > r′n.
Therefore, the set {r′1, r′2, . . . , r′n} is a strictly decreasing sequence. We construct a sequence of concentric
circles C = {C1, . . . , Cn}, such that Ci = C(O, r′i) is a circle with radius r′i where the center is O.

As ri are distinct positive numbers, there exists a line ` passing through all concentric circles
C1, C2, . . . , Cn−1, but which does not pass through the circle Cn. Let `⊥ be a perpendicular line of ` at O.
The circle Cn is laid in a half-plane of H(`). With the line `⊥, we choose an arbitrary half-plane H(`⊥).
The vertices v1, v2 , .., vn−1 are chosen by the the intersection of the circle Ci for all i = 1, . . . , n− 1, and
the line `, which are laid inside the half-plane H(`⊥).

Let M be a midpoint of the segment v1 and vn−1. We draw a line MO. Then, the last vertex vn is
chosen at the intersection of MO and the circle Cn, which is in the other half-plane H(`⊥), as shown
in Figure 2. Hence, O is in the triangle 4v1vn−1vn, which implies that O is laid inside the polygon
constructed in the process of the vertices {v1, v2, . . . , vn}. This concludes the proof of the existence of
the convex configuration.

Figure 2. The construction of a convex polygon with respect to the given distinct constrained vertex norms.
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In Lemma 1, the vertices v1, . . . , vn are allowed to be collinear. In the case of a strictly convex
configuration, we can perturb the vertices to be non-collinear. Thereby, the following theorem
is obtained.

Theorem 1. For a given set of distinct positive constrained vertex norms R = {r1, . . . , rn} and with an
induced vertices set V = {v1, . . . , vn}, there exists a strictly convex configuration of V with respect to the
constrained vertex norms setR.

Proof. We assume that the vertices of a convex configuration are located by the processes in Theorem 1,
as shown in Figure 2. The perturbation is done with the vertices v3, . . . , vn−1 by the following processes.

We first consider the angular distance between vertices v1 and vn−1. For the triangle4v1vn−1vn,

the angle γ between −−→vnv1 and −−−−→vnvn−1 is γ := arccos

(
r2

1 + r2
n−1 − d(v1, vn−1)

2

2r1rn−1

)
, and the angle ζ

between
−−→
vn M and −−−−→vnvn−1 is ζ := arccos

(
d(vn, M)2 + r2

n−1 − d(M, vn−1)
2

2d(vn, M)rn−1

)
. For the vertex vn−1, it

should not be moved in the region of the region of v1vn M to make a polygon P containing the origin
O. Therefore, the angular movement of all vertices on the circle should be smaller than θ := γ− ζ.

For the pair of vertices v1, v2, we draw a ray −−→v1v2. Therefore, the vertex v3 should be perturbed on
the left-handed side of the ray −−→v1v2 on the circle Cr′3

for a circular distance ε1 with angle θ > ε1/r′3 > 0,
and we move all vertices v4, . . . , vn−1 along the ray −−→v2v3 to be v′4, . . . , v′n−1. Next, we fix a ray −−→v2v3 and
perturb the vertex v′4 to the left side of the ray −−→v2v3 for a circular distance ε2 on the circle Cr′4

with the
angle θ − ε1/r′3 > ε2/r′4 > 0, to be v′′4 , and move the other points v′5, . . . , v′n−1 along the ray −−→v3v4.

We continue these processes until all the vertices v3, . . . , vn−1 are perturbed, such that

ε1

r′3
+

ε2

r′4
+ .. +

εn−3

r′n−1
< θ.

Hence, the resulting polygon is perturbed to be a strictly convex configuration, which concludes the
proof of the existence.

Before we prove the following lemma, we define the segment from the intersection between a line
and all concentric circles. Let ` be a line, and C1 be a circle with radius r1, which is the largest circle
among the concentric circles. ` is the segment induced from the intersection between ` and C1, whose
initial and end points are on the circle C1.

With a similar strategy to Lemma 1, we can extend to the case that some constrained vertex norms
are same, and the repeated number of the constrained vertex norms is, at most, 4.

Lemma 2. LetR = {r(1,1), . . . , r(1,m1)
, r(2,1), . . . , r(2,m2)

, . . . , r(k,1), . . . , r(k,mk)
} be a set of constrained vertex

norms, such that r(i,1) = · · · = r(i,mi)
for each i = 1, . . . , k and 1 ≤ mi ≤ 4. Then, there exists a convex

configuration V with respect to the set of constrained vertex normsR.

Proof. Let V be a set of vertices, such that each vertex v(i,j) satisfies the radius r(i,j). We assume that
the elements inR are sorted in such a way that

r(1,1) = · · · = r(1,m1)
> r(2,1) = · · · = r(2,m2)

> · · · > r(k,1) = · · · = r(k,mk)
.

We already proved the case mi = 1 for all i in Lemma 1. Similarly to Theorem 1, the proof relies on
the location of points on concentric circles with constrained vertex norms r(1,1), r(2,1), . . . , r(k,1). Hence,
without a loss of generality, we assume that the center of the circles are at the origin O of the XY-plane.

To prove the convex configuration containing O with this assumption, the strategy of the proof is
to distribute the points to all quadrants as much as possible. Therefore, it is necessary to separate into
two cases when max{m1, . . . , mk} = 4 and max{m1, . . . , mk} = 2 or 3, as follows.
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Case 1 max{m1, . . . , mk} = 4
We construct lines `1 and `2 to intersect all concentric circles such that `1 and `2 are on the opposite

half-plane with respect to the Y-axis as shown in Figure 3 (left). Then, we lay the points in the set V
satisfying each circle radius on the intersection between `1, `2, and the concentric circles. This forms a
convex quadrilateral containing the origin, which is a convex configuration of V with respect to the
given constrained vertex norms.

Case 2 max{m1, . . . , mk} = 2 or 3
We assume that max{m1, . . . , mk} = mp such that r(mp ,1) ≥ r(mj ,1) for all j 6= p.

We first draw a line `1, such that `1 is on the side of a half-plane with respect to Y-axis. The first k
points v(1,1), v(2,1), . . . , v(k,1) are chosen from the intersection between `1 and concentric circles in the
same quadrant. After that, we find the midpoint M between v(1,1) and v(k,1) on the line `1 and draw a
line MO. The intersection between MO and the circle Cp with the radius r(p,1) is denoted as M1. Then,
we draw a line `2 passing through M1, where `2 is laid in the opposite half-plane of `1 with respect to
the Y-axis, and `2 intersects all concentric circles, which is shown in Figure 3 (right).

Figure 3. The construction for the convex configuration of V when (left) max{m1, . . . , mk} = 4 and
(right) max{m1, . . . , mk} = 2 or 3.

Hence, we place the remaining points on the intersections between `2 and the concentric circles.
As M1 is the point on the largest circle that contains the maximum number of points, v(1,1)v(k,1)M1

forms a triangle, or a convex quadrilateral v(1,1)v(k,1)M1v(q1,q2)
for some q1, q2, where v(q1,q2)

is the
point of the intersection between the circle c̃q1 and the line `2. This forms a convex configuration of V
with respect to the given constrained vertex normsR containing O.

With these cases, the proof is concluded as desired.

For the strictly convex configuration, we can employ a similar strategy to Theorem 1, as presented
in the following theorem.

Theorem 2. For a given set of positive constrained vertex norms, R = {r(1,1), . . . , r(1,m1)
, r(2,1), . . . ,

r(2,m2)
, . . . , r(k,1), . . . , r(k,mk)

}, such that r(i,1) = · · · = r(i,mi)
for each i = 1, . . . , k and 1 ≤ mi ≤ 4,

there exists a strictly convex configuration V with respect to the set of constrained vertex normsR.

Proof. Suppose that the convex configuration is settled by Lemma 2. A proof relies on each case, as
presented in Lemma 2.

Case 1 max{m1, . . . , mk} = 4
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In this case, the construction in Lemma 2 yields a convex quadrilateral. Without a loss of
generality, we assume that all points are separated into four quadrants, and we start from the points in
the second quadrant.

We first move the v(k,1) to the position that is close to the negative side of the X-axis, i.e., the angle

between
−−−→
Ov(k,1) and the negative side of the X-axis is θ1. Then we draw the line `k,1 passing through

v(k,1) and perpendicular to the X-axis. Suppose that H0(`k,1) is the half-plane including the origin.
We perturb all vertices v(2,1), v(3,1), . . . , v(k−1,1) by a technique similar to Theorem 1 in such a way that
all the vertices are in the region H0(`k,1)\`(k,1). Therefore, there exists a line `1 passing through v(k−1,1)
and v(k,1), which is different to `k,1.

Let V3 = {v(kj ,2) : for some k j = 1, . . . , k} be a set of points in the third quadrant. We choose

the point vm
(k3,2) ∈ V3, such that r(k3,2) = min{r(kj ,2) : for some k j = 1, . . . , k}, and vM

(k3,2) ∈ V3, such
that r(k3,2) = max{r(kj ,2) : for some k j = 1, . . . , k}. We first move vm

(k3,2) to the line `k,1 and then move

vM
(k3,2) to the position that is close to the negative side of the Y-axis, i.e., the angle between

−−−−→
OvM

(k3,1) and

the negative side of the y-axis is θ2. After that, we construct a line `M
k3,2 passing through vM

(k3,2) and

perpendicular to the Y-axis. Then, we perturb all points in V3 except vm
(k3,2) and vM

(k3,2) using the same

technique in Theorem 1 such that all vertices lay in the region (H0(`k,1)\`(k,1))∩ (H0(`M
k3,2)\`

M
k3,2)∩Q3,

where H0(`M
k3,2) is a half-plane of the line `M

k3,2 including the origin and Q3 is the region of the third
quadrant. The mentioned processes are shown in Figure 4.

Figure 4. The perturbation of the points to find the strictly convex configuration when
max{m1, . . . , mk} = 4.

Using a similar technique, we can perturb all vertices in the first quadrant and the fourth quadrant.
Finally, the convex polygon can be closed by the point with the largest radius in the third quadrant and
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fourth quadrant, and the point with the largest radius in the first quadrant and the second quadrant.
That is, there is a strictly convex configuration from the given set of constrained vertex norms.

Case 2 max{m1, . . . , mk} = 2 or 3
We can employ the same strategy of the first case to the points in the second, fourth, and the first

quadrant to obtain the strictly convex configuration of the given set of constrained vertex norms.
Therefore, we can find the strictly convex configuration from the given set of constrained vertex

norms in any case.

4. Existence of a Convex Polyhedron in Three-Dimensional Space

Given a set of constrained vertex normsR = {r1, . . . , rn}, we assume that the constrained vertex
norms are the Euclidean distance from the origin to the vertex v1, . . . , vn in three-dimensional space.
The convex configuration, in this case, is the convex polyhedron containing the origin O.

In the three-dimensional case, the existence of the convex configuration can be proved. First, we
consider the simple case where all of the constrained vertex norms are distinct.

Lemma 3. For n ≥ 4, given a set of positive constrained vertex norms, R = {r1, . . . , rn}, such that
all of constrained vertex norms are distinct, there exists a convex configuration of V = {v1, . . . , vn} in
three-dimensional space.

Proof. When n = 4, we place the points v1, v2, v3, v4 with respect to r1, r2, r3, r4 as the vertices of the
tetrahedron. Therefore, the convex configuration is obviously obtained.

Suppose that n ≥ 5. We assume that the descending order ofR = {r1, . . . , rn} isR′ = {r′1, . . . , r′n},
where r′i = rj for some i, j. We construct concentric spheres S1(O, r′1), S2(O, r′2) at the origin O with
radius r′1 and r′2. Without a loss of generality, we place the vertex v1 and v2 on the north pole of sphere
S1 and the south pole of sphere S2, respectively.

We consider the XY-plane and place the vertices v3, . . . , vn onto the XY-plane by the processes in
Theorem 1 and Lemma 1 to obtain a convex polygon P of {v3, . . . , vn}. Then, we join the edge v1 from
the north pole to the vertex set {v3, . . . , vn}, and v2 from the south pole to the same set. The obtained
polyhedron is a polyhedron whose faces are triangles. As the polygon P is convex and contains the
origin O, the constructed polyhedron is convex as desired.

In general, the set of constrained vertex normsR is not necessarily distinct. We assume that the set
of constrained vertex norms consists of n elements with distinct k elements. LetR = {r(1,1), . . . , r(1,m1)

, r(2,1), . . . , r(2,m2)
, . . . , r(k,1), . . . , r(k,mk)

} be a set of constrained vertex norms such that

r(1,1) = · · · = r(1,m1)
> r(2,1) = · · · = r(2,m2)

> · · · > r(k,1) = · · · = r(k,mk)

and m1 + m2 + · · ·+ mk = n. That is, for the i-th layer, the radius of the i-th layer is r(i,1), and the i-th
layer consists of mi points.

The following theorem shows the existence of a convex configuration in the
three-dimensional case.

Theorem 3. LetR be a set of constrained vertex norms consisting of n elements with mi repeated constrained
vertex norms for each i distinct radius, such that the constrained vertex norms are arranged as

r(1,1) = · · · = r(1,m1)
> r(2,1) = · · · = r(2,m2)

> · · · > r(k,1) = · · · = r(k,mk)

and m1 + m2 + · · ·+ mk = n. Then, there exists a convex configuration of V = {v1, . . . , vn} induced by the
setR.

Proof. We first construct k concentric spheres S1, S2, . . . , Sk where the center is at O with constrained
vertex norms r(1,1), r(2,1), . . . , r(k,1).
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Let S0 be a sphere where the radius is r(1,1) + ε for any ε > 0. Therefore, there exists a circular
cone C whose apex A is at the north pole of the sphere S0, and the lateral area of the cone intersects all

the concentric spheres, i.e., the apex angle θ satisfies θ < 2 arctan

(
r(1,1) + ε

r(k,1)

)
.

Hence, the cone C intersects the concentric spheres S1, S2, . . . , Sk such that the intersection between
C and a sphere Sj for all j = 1, 2, . . . , k− 1 is a spherical circle, c̃j, where the centers are the north pole
of each sphere. The distance from O to a point on the circle c̃j is r(j,1). Therefore, there are k circles from
the largest sphere S1 to the smallest sphere Sk on the upper hemisphere, as shown in the cross section
in Figure 5.

Figure 5. The cross section at the YZ-plane for the concentric spheres including a spherical circle of
each layer and the cone C.

We choose a line ` emanating from the apex A on the surface of C. For each layer of circle c̃j over
the upper hemisphere except the smallest layer c̃k, we place a point on the line `. Therefore, each layer
has at least one point on its layer.

For the number of points of k layers m1, m2, . . . , mk, we assume that the p-th layer contains the
maximum number of points, i.e., mp := max{m1, m2, . . . , mk}. Therefore, we first distribute mp points
on the spherical circle c̃p at the p-th layer in such a way that the angular distances β between each
vertex on the spherical circle c̃p are equal. We fix the point that is already placed on the line ` and
distribute the other mp − 1 points, says vp,1, vp,2, . . . , vp,mp .

For each vp,i on the p-level, we construct a plane Pvp,i passing through vp,i and the Z-axis to create
a spherical grid. Pvp,i intersects all concentric spheres and generates longitude lines Lvp,i ,c̃p on each
sphere Si, which are great circles.

Therefore, in each level j = 1, . . . , p− 1, p + 1, . . . , k, the latitude is considered the spherical circle
c̃j, which intersects the longitude Lvp,j ,c̃p to mp points. We can place mj points on those intersections
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arbitrarily since mj ≤ mp. As all vertices are laid on the convex surface, for each placed point on the
intersections, there exists a plane tangent to the cone passing through that point, and all points are on
the same side of the plane. Hence, there exist faces joining vp1,i1 , vp2,i2 , vp3,i3 for some p1, i1, p2, i2, p3, i3,
which form the faces of convex polyhedra.

With the exceptional case for the last smallest layer, for instance, the k-th level, we construct a
plane z = −r(k,1) + γ. Therefore, the parameter γ can be considered in the following case.

If the k-th layer contains exactly one point, we choose γ = 0. This means that the plane
z = −rm1+···+mk−1+1 is a tangent plane at (0, 0,−r(k,1)). Therefore, the polyhedron can be bounded by
joining all of the vertices to that point.

Otherwise, we assume that there are mk points at the k-th layer. We choose a small γ > 0, such
that γ < |r(k,1)|. Therefore, there exists a spherical circle in the k-th layer. Then, we distribute mk
points, with the same angles and connecting the points in the k-th level to the above levels to construct
a convex polyhedron.

Therefore, the convex configuration exists by the construction process, which concludes
the proof.

5. Applications

The main application of the existence of the convex configuration in the three-dimensional case is
the confirmation regarding the non-emptiness properties of the spherical Laguerre Voronoi diagram,
in which the details will be described soon.

We first recall the definitions and constructions of the spherical Laguerre Voronoi diagram, as
presented in [2].

On the unit sphere S2, let P = {p1, . . . , pn} be a set of points with the set of positive real numbers
W = {w1, . . . , wn} and G = {c̃1, . . . , c̃n} be a set of spherical circles whose center is each a point
in P corresponding to each wi ∈ W. The set W is regarded as the weight set, meaning that each
center pi of the circle c̃i has its weight wi. The spherical Laguerre Voronoi diagram L = {L1, . . . , Ln}
is a Voronoi diagram generated from the set of spherical circles G with the Laguerre proximity

d̃L(ci, p) =
cos(d̃(p, pi))

cos(wi)
, for a point p ∈ S2.

The algorithms for constructing the spherical Laguerre Voronoi diagram presented in [2] were
based on the intersection of half-spaces of planes passing through the spherical circles containing
the origin. The dual structure of the spherical Laguerre Voronoi diagram is the spherical Laguerre
Delaunay diagram. Figure 6 shows the ordinary Voronoi diagram and spherical Laguerre Voronoi
diagram with the same generators.

Figure 6. The Voronoi diagrams of 50 generators; (left) the ordinary spherical Voronoi diagram;
(right) the spherical Laguerre Voronoi diagram with random weights. Certain cells lose in the case of
the spherical Laguerre Voronoi diagram.
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The spherical Laguerre Delaunay diagram can be constructed by the following procedures.
For a set of generating circles G, we suppose that Pi is a plane passing through the spherical circle c̃i.

Therefore, the dual point of the plane Pi can be considered as P∗i =
1

cos wi
pi, and the spherical Laguerre

Delaunay diagram can be constructed from the central projection of the convex hull G∗ = {P∗1 , . . . , P∗n}
onto the unit sphere S2.

For a spherical Laguerre Voronoi diagram L generated by G, the spherical Laguerre Voronoi cell
Li is said to be empty if Li = ∅. The spherical Laguerre Voronoi diagram L satisfies the non-emptiness
property if for all i, Li 6= ∅. A cell Li of the spherical Laguerre Voronoi diagram is empty if the dual
point P∗i of the circle c̃i is inside of the convex hull of the set G∗.

Instead of giving the spherical circles, we assume that the radii of the spherical circles are given.
The interesting question is to consider whether or not we can find the location of the generators
on the sphere in such a way that the generated spherical Laguerre Voronoi diagram satisfies the
non-emptiness property.

The answer to the mentioned question is positive as follows.

Theorem 4. Let W = {w1, . . . , wn} be a set of spherical circle radii. Then, there exists a spherical Laguerre
Voronoi diagram satisfying the non-emptiness property.

Proof. For the set of spherical circle radii W = {w1, . . . , wn}, each radius corresponds to the radius
ri = 1/ cos(wi). ri ≥ 1, by the assumption of the spherical circle radius. Thereby, we generated a set of
constrained vertex normsR = {r1, . . . , rn}.

By Theorem 3, there exists a convex configuration of a set P = {p1, . . . , pn} with respect to R.
Therefore, all dual points in G∗ are on the corner of the convex hull of G∗. That is, the spherical
Laguerre Delaunay diagram with respect to G∗ consists of all generators P = {p1, . . . , pn}.

Hence, this implies that there exists a spherical Laguerre Voronoi diagram satisfying the
non-emptiness property with respect to a given set of radii as desired.

6. Concluding Remarks

We consider the convex configuration problem of n points when the constrained vertex norms,
which are measured from a fixed point, are given. In the two-dimensional case, we proved that
the strictly convex configuration always exists when all constrained vertex norms are distinct or
each radius is repeated for, at most, four points. However, the problem is still open when repeated
constrained vertex norms are greater than or equal to five points. Therefore, we leave a conjecture to
prove this interesting property.

Conjecture: For any set of given constrained vertex normsR, it is not always possible to find the convex
configuration with respect to the given setR.

However, the existence of a convex configuration is guaranteed in the case of three-dimensional
space. Using this fact, we can apply the existence of a convex configuration to the existence of the
spherical Laguerre Voronoi diagram satisfying the non-emptiness property.
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