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Abstract: In 2019 Seneta has provided a characterization of slowly varying functions L in the Zygmund
sense by using the condition, for each y > 0, x

(
L(x+y)

L(x) − 1
)
→ 0 as x→ ∞. Very recently, we have

extended this result by considering a wider class of functions U related to the following more general
condition. For each y > 0, r(x)

(
U(x+yg(x))

U(x) − 1
)
→ 0 as x→ ∞, for some functions r and g. In this

paper, we examine this last result by considering a much more general convergence condition. A wider
class related to this new condition is presented. Further, a representation theorem for this wider class
is provided.

Keywords: slowly varying; monotony in the Zygmund sense; class Γa(g); self-neglecting function;
convergence rates

1. Introduction

The notion of ultimately monotony introduced by Zygmund says that a function U ≥ 0 is slowly
varying if for each ε > 0 the function xεU(x) is ultimately increasing and x−εU(x) is ultimately
decreasing ([1], p. 186). A different kind of slowly varying functions was defined by Karamata [2]
known as simply the class of slowly varying functions (KSV). It is known that any ZSV function is a
KSV function (see [1], p. 186 and, e.g., [3], p. 49).

Recently, Seneta [4] found that the slowly varying functions L in the sense of Zygmund are
characterized by the relation:

lim
x→∞

x
(

L(x + y)
L(x)

− 1
)
= 0, ∀y.

More recently, Omey and Cadena’s [5] functions extended the results of Seneta, and they
considered functions for which the following relation holds:

lim
x→∞

r(x)
(

L(x + yg(x))
L(x)

− 1
)
= 0, ∀y.

Here, the function g(x) is self-neglecting (notation: g ∈ SN) and r is in the class Γ0(g) with
r(x)→ ∞. The class Γ0(g) is deeply studied in [6]. Recall that g ∈ SN if it satisfies

lim
x→∞

g(x + yg(x))
g(x)

= 1,

locally uniformly in y. In addition, recall that, for g ∈ SN, we have f ∈ Γα(g) if f satisfies

lim
x→∞

f (x + yg(x))
f (x)

= eαy, ∀y.
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Now, we study more general relations of the form

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− eαy
)
= θ(y), ∀y,

where we assume that the convergence is l.u. in y. As before, we assume that r ∈ Γ0(g), r(x)→ ∞ and
that g ∈ SN.

Throughout this paper, we use the notation f (x) ∼ g(x) for representing f (x)
/

g(x) → 1
as x → ∞.

We study in detail the two cases: α = 0 and α 6= 0. The case α = 0 can be considered as the
class SN with a rate of convergence in the definition. This case is presented in the following section.
The case where α 6= 0 can be considered as the class Γα(g) with a rate of convergence in the definition.
This case is presented in Section 3. For each case, characterizations of the involved functions are
provided. Concluding remarks are presented in the last section.

2. The Case α = 0

2.1. The Limit Function

Suppose that U, g, r > 0 are measurable functions and suppose that the following relation holds:

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− 1
)
= θ(y), (1)

and we assume that Equation (1) holds locally uniformly in y. As before, we assume that r(x)→ ∞,
r ∈ Γ0(g) and that g ∈ SN.

Clearly, Equation (1) holds if and only if

lim
x→∞

r(x)
(
W(x + yg(x))−W(x)

)
= θ(y), (2)

where W(x) = log U(x).
Now, we replace x by x = t + zg(t). Note that g(t)

/
t→ 0 so that x

/
t→ 1 l.u. in z. We find

lim
t→∞

r(t + zg(t))
(
W(t + zg(t) + yg(t + zg(t)))−W(t + zg(t))

)
= θ(y).

Using r ∈ Γ0(g), we have

lim
t→∞

r(t)
(
W(t + zg(t) + yg(t + zg(t)))−W(t + zg(t))

)
= θ(y),

and then it follows that

lim
t→∞

r(t)
(
W(t + zg(t) + yg(t + zg(t)))−W(t)

)
= θ(y) + θ(z).

Now, we have

W(t + zg(t) + yg(t + zg(t)))−W(t) = W
(

t +
(

z + y
g(t + zg(t))

g(t)

)
g(t)

)
−W(t).

Using l.u. convergence, we obtain that

lim
t→∞

r(t)(W(t + zg(t) + yg(t + zg(t)))−W(t)) = θ(y + z).

We conclude that
θ(z + y) = θ(z) + θ(y),
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and (since θ is measurable) hence also that θ(y) = θy for some constant θ.
Conversely, we have the following (cf. [6]): if

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− 1
)
= θy,

then this relation holds l.u. in y.
To conclude, we have the following theorem.

Theorem 1. Assume that g ∈ SN and that r ∈ Γ0(g) with r(x)→ ∞.

(a) If Equation (1) or Equation (2) holds l.u. in y, then θ(x) = θx for some constant θ.
(b) If Equation (1) or Equation (2) holds with θ(x) = θx for some constant θ, then Equation (2) holds l.u.

in y.

2.2. Representation

Three different ways to represent the functions satisfying Equation (1) follow.

2.2.1. First Form

For further use, let A(x) =
∫ x

a 1/g(t)dt. Clearly, we have

A(x + yg(x))− A(x) =
∫ y

0

g(x)
g(x + zg(x))

dz→ y

l.u. in y. Note that A(x) is an increasing function so that fx(y) = A(x + yg(x))− A(x) is an increasing
function of y for which fx(y) → y as x → ∞. As a consequence, the inverse function also satisfies
f−1
x (y)→ y. To calculate the inverse, we set

fx(y) = A(x + yg(x))− A(x) = t

so that x + yg(x) = A−1(t + A(x)) and

y = f−1
x (t) =

A−1(t + A(x))− A−1(A(x))
g(x)

.

We conclude that

A−1(t + A(x))− A−1(A(x))
g(x)

→ t,

so that (replacing A(x) by x and t by y)

A−1(x + y)− A−1(x)
g(A−1(x))

→ y,

l.u. in y.
Now, let K(x) := W(A−1(x)). We have (using l.u. convergence in the last step):

r(x)(K(A(x) + y)− K(A(x))) = r(x)(W(A−1(A(x) + y))−W(x))

= r(x)
(

W
(

x + g(x)
A−1(A(x) + y)− x

g(x)

)
−W(x)

)
→ θy.

It follows that
r(A−1(x))(K(x + y)− K(x))→ θy (3)
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l.u. in y. Taking the integral
∫ 1

y=0(.)dy in Equation (3) we have

∫ 1

y=0
r(A−1(x))(K(x + y)− K(x))dy→

∫ 1

0
θydy

or

r(A−1(x))
∫ x+1

x
K(z)dz− r(A−1(x))K(x)→ θ

2
.

We see that K(x) is of the form

K(x) = C +
∫ x+1

x
K(z)dz +

C(x)
r(A−1(x))

= L(x) +
C(x)

r(A−1(x))
,

where C(x)→ C(= θ/2) and L(x) =
∫ x+1

x K(z)dz. Note that

r(A−1(x)L′(x) = r(A−1(x)(K(x + 1)− K(x))→ θ.

Using W(x) = K(A(x)), we find that

W(x) = T(x) +
C◦(x)
r(x)

,

where C◦(x) = C(A(x))→ C and T(x) = L(A(x)). Note that

r(x)g(x)T′(x) = r(x)L′(A(x))g(x)A′(x) = r(x)L′(A(x))→ θ.

We prove the following result:

Theorem 2. Assume that g ∈ SN and that r ∈ Γ0(g), r(x)→ ∞.

(a) If Equation (1) holds with θ(x) = θx, then W(x) = log U(x) is of the form

W(x) = T(x) +
C(x)
r(x)

,

where C(x)→ C and r(x)g(x)T′(x)→ θ.
(b) If W(x) = T(x) + C(x)

/
r(x), where C(x)→ 0 and r(x)g(x)T′(x)→ θ, then Equation (1) holds with

θ(y) = θy.

Proof. The proof of (a) is given above. To prove (b), we have

W(x + yg(x))−W(x)

= T(x + yg(x))− T(x) +
C(x + yg(x))
r(x + yg(x))

− C(x)
r(x)

.

Clearly, we have

r(x)(T(x + yg(x))− T(x)) = yr(x)g(x)T′(x + βg(x))
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for some β ∈ (0, y). It follows that

r(x)(T(x + yg(x))− T(x)) = y(θ + o(1))
r(x)g(x)

r(x + βg(x))r(x + βg(x))
→ yθ.

For the second term, we have

r(x)
(

C(x + yg(x))
r(x + yg(x))

− C(x)
r(x)

)
=

r(x)
r(x + yg(x))

C(x + yg(x))− C(x)→ 0.

The result follows.

Remark 1.

1. In the special case where g(x) = 1, we have

lim
x→∞

r(x)(W(x + y)−W(x)) = θy

iff W is of the form W(x) = C + T(x) + ε(x)
/

r(x) where ε(x)→ 0 and r(x)T′(x)→ θ.
2. From Equation (1), it follows that

r(x)
U(x)

(U(x + yg(x))−U(x))→ θy.

The previous representation result shows that

U(x) = T(x) + C(x)
U(x)
r(x)

where r(x)g(x)T′(x) ∼ θU(x).
3. Using U(x) = eW(x), we also have that U(x) = R(x)eC(x)/r(x) where R(x) = eT(x). Note that

r(x)g(x)
R′(x)
R(x)

= r(x)g(x)T′(x)→ θ.

2.2.2. Second Form

In Equation (3), we find that r(A−1(x))(K(x + y) − K(x)) → θy, where K(x) = W(A−1(x)).
Using logarithms, we get that

K(log xy)− K(x)
L(x)

→ θ log y

where L(x) = r(A−1(log x)). From de Haan’s theorem ([7], Theorem 3.7.3), we find that K(log x) can
be written as

K(log x) = C + θL1(x) +
∫ x

a
θL1(t)t−1dt,

where L1(x) ∼ L(x). It follows that

K(x) = C + θL2(x) + θ
∫ x

a◦
L2(t)dt,

where L2(x) = L1(exp x) ∼ r(A−1(x)).
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2.2.3. Third Form

In [5], we found that relations of the form in Equation (1) hold with limit function θ(x) = 0. In that
case, we have

r(x)
(

U(x + yg(x))
U(x)

− 1
)
→ 0.

As usual, we assume that g ∈ SN, r ∈ Γ0(g) and r(x) → ∞. From Theorem 3 in [5], we get the
following representation:

U(x) = exp
(

c +
∫ x

0
f (t)dt

)
where f satisfies r(x)g(x) f (x)→ 0.

2.3. Sufficient Conditions

In the next result, we assume that the kth derivative of U exists and we assume that

hk(x) = g(x)
U(k)(x)

U(k−1)(x)
→ 0,

where U(0)(x) = U(x).

(a) If k = 1, we have U′(x)
/

U(x) = ε(x)
/

g(x) with ε(x)→ 0 and

∫ x+yg(x)

x

U′(z)
U(z)

dz =
∫ x+yg(x)

x

ε(z)
g(z)

dz,

so that

log
U(x + yg(x))

U(x)
=
∫ y

0

ε(x + zg(x))g(x)
g(x + zg(x))

dz→ 0,

and hence
U(x + yg(x))

U(x)
→ 1.

(b) If k = 2, then we have
U′′(x)
U′(x)

=
ε(x)
g(x)

and ∫ x+yg(x)

x

U′′(z)
U′(z)

dz =
∫ x+yg(x)

x

ε(z)
g(z)

dz,

so that

log
U′(x + yg(x))

U′(x)

=
∫ y

0

ε(x + zg(x))
g(x + zg(x))

g(x)dz→ 0.

We find that
U′(x + yg(x))

U′(x)
→ 1.
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Now, consider

U(x + yg(x))−U(x) =
∫ x+yg(x)

x
U′(z)dz

= g(x)
∫ y

0
U′(x + zg(x))dz

= g(x)U′(x)
∫ y

0

U′(x + zg(x))
U′(x)

dz

∼ g(x)U′(x)y,

and then
U(x + yg(x))

U(x)
− 1 ∼ h1(x)y,

and thus Equation (1) holds with r(x) = 1
/

h1(x).
(c) If k = 3, as before, we have

U′′(x + yg(x))
U′′(x)

→ 1

and

U′(x + yg(x))−U′(x) = g(x)U′′(x)
∫ y

0

U′′(x + zg(x))
U′′(x)

dz

∼ g(x)U′′(x)y.

Further, we have

U(x + yg(x))−U(x) = g(x)
∫ y

0
U′(x + zg(x))dz

and

U(x + yg(x))−U(x)− g(x)U′(x)y

= g(x)
∫ y

0
(U′(x + zg(x))−U′(x))dz

∼ g2(x)U′′(x)
y2

2
.

We conclude that
U(x + yg(x))

U(x)
− 1− h1(x)y ∼ h1(x)h2(x)

y2

2
.

(d) In general, we get a result of the type

U(x + yg(x))
U(x)

− 1−
k−1

∑
i=1

i

∏
j=1

hj(x)
yi

i!
∼

k

∏
j=1

hj(x)
yk

k!
.

As a special case, we can take g(x) = 1: if U′′′(x)
/

U′′(x)→ 0, then

U(x + y)
U(x)

− 1− U′(x)
U(x)

y ∼ U′′(x)
U(x)

y2

2
.
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2.4. More Results

Proposition 1. Suppose that F(x) = x−αL(x) where L(·) is a normalized slowly varying (SV) function (that
is, xL′(x)

/
L(x)→ 0). Assume that g(x) and r(x) satisfy g(x)

/
x → 0 and r(x)g(x)

/
x → δ > 0. Then,

r(x)
(

F(x + yg(x))
F(x)

− 1
)
→ −αδy.

Proof. We have F(x) = L(x)x−α and then

F(x + yg(x))
F(x)

=
L(x + yg(x))

L(x)
×
(

1 + y
g(x)

x

)−α

.

It follows that

F(x + yg(x))
F(x)

− 1 =
L(x + yg(x))

L(x)
×
((

1 + y
g(x)

x

)−α

− 1

)
+

L(x + yg(x))
L(x)

− 1

= I(a) + I(b).

For I(a), we have

L(x + yg(x))
L(x)

=
L
(

x
(

1 + y g(x)
x

))
L(x)

→ 1,

because L is SV and g(x)
/

x → 0. We also have(
1 + y

g(x)
x

)−α

− 1 ∼ −αy
g(x)

x
,

so that

r(x)

((
1 + y

g(x)
x

)−α

− 1

)
∼ −αy

r(x)g(x)
x

→ −αδy.

For the second term, we have

r(x)(
L(x + yg(x))

L(x)
− 1) =

r(x)
L(x)

∫ x+yg(x)

x
L′(t)dt

=
r(x)
L(x)

∫ x+yg(x)

x

tL′(t)
L(t)

L(t)
t

dt

= o(1)
r(x)g(x)

L(x)

∫ y

0

L(x + θg(x))
x + θg(x)

dθ

= o(1)
r(x)g(x)

x
.

We conclude that

r(x)
(

L(x + yg(x))
L(x)

− 1
)
→ 0.

Combining these results, we obtain the desired result.

Remark 2. The condition on L(x) in the previous theorem is equivalent to the requirement that

x f (x)
F(x)

→ α,

where f (x) = F′(x) is the density of F.
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2.5. Examples

2.5.1. Example 1

Assume that U(x) = exp xβ with β > 1. We have

U′(x)
U(x)

= βxβ−1

and
U′′(x)
U′(x)

= βxβ−1 + (β− 1)x−1.

Using g(x) = x−γ, we find

h1(x) = g(x)
U′(x)
U(x)

= βxβ−γ−1

and

h2(x) = g(x)
U′′(x)
U′(x)

= βxβ−γ−1 + (β− 1)x−γ−1.

If 0 < β− 1 < γ, we find that h1(x)→ 0 and h2(x)→ 0. The results of this section show that

U(x + yg(x))
U(x)

− 1 ∼ h1(x)y,

and Equation (1) holds with r(x) = 1
/

h1(x) ∼ xγ+1−β
/

β.

2.5.2. Example 2

Assume that U(x) = exp x−β with β > 0. Clearly, we have

U′(x)
U(x)

= −βx−β−1

U′′(x)
U′(x)

= −βx−β−1 − (β + 1)x−1.

We use g(x) = xγ and find

h1(x) = −βxγ−β−1

h2(x) = h1(x)− (β + 1)xγ−1.

If γ < β + 1, we have h1(x)→ 0. If γ < 1, we have h1(x)→ 0 and h2(x)→ 0. The results of the
previous section show that

U(x + yg(x))
U(x)

− 1 ∼ h1(x)y,

and Equation (1) holds with r(x) = 1/h1(x) ∼ −xβ+1−γ/β.

2.5.3. Example 3

Assume that U(x) = xβ where β 6= 0. We have

h1(x) = g(x)
U′(x)
U(x)

= β
g(x)

x
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and

h2(x) = g(x)
U′′(x)
U′(x)

= (β− 1)
g(x)

x
.

Taking g ∈ SN and r(x) = x
/

g(x) (→ ∞) we find

r(x)
(

U(x + yg(x))
U(x)

− 1
)
→ βy.

2.5.4. Example 4

Proposition 1 can be extended for some stable distributions. For instance, consider the density
of an asymmetric stable distribution. The representation of such a stable density in the form of a
convergent series is, for 0 < α < 1 and for any x > 0 (see, e.g., [8]),

q(x, α, ρ) =
1
π

∞

∑
n=1

(−1)n−1Γ(αn + 1)
n!

sin(nρπ)x−αn−1.

Additionally, assume xq′(x, α, ρ)
/

q(x, α, ρ)→ τ ( 6= 0) as x → ∞.
Let g(x) and r(x) be positive functions satisfying g(x)

/
x → 0 and r(x)g(x)/x → δ > 0.

Note that, for each n > 1 and for x large enough, we have, making use of z− 1 ∼ log z as z→ 1,(
1 + y

g(x)
x

)−αn−1

− 1 ∼ −(αn + 1) log
(

1 + y
g(x)

x

)
∼ −(αn + 1)y

g(x)
x

.

Then, we have for x large enough

q(x + yg(x), α, ρ)

q(x, α, ρ)
− 1

=
1

πq(x, α, ρ)

∞

∑
n=1

(−1)n−1Γ(αn + 1)
n!

sin(nρπ)x−αn−1

((
1 + y

g(x)
x

)−αn−1

− 1

)

∼ yg(x)
−1

πq(x, α, ρ)

∞

∑
n=1

(αn + 1)
(−1)n−1Γ(αn + 1)

n!
sin(nρπ)x−αn−2

= yg(x)
q′(x, α, ρ)

q(x, α, ρ)
.

Hence, we have

lim
x→∞

r(x)
(

q(x + yg(x), α, ρ)

q(x, α, ρ)
− 1
)
= yδτ.

3. The Case α 6= 0

Now, suppose that α 6= 0 and that

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− eαy
)
= θ(y),

holds l.u. in y.
Equivalently, we have

lim
x→∞

r(x)
(

e−αyU(x + yg(x))
U(x)

− 1
)
= e−αyθ(y),
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and then (using log z ∼ z− 1)

lim
x→∞

r(x)(W(x + yg(x))−W(x)− αy) = Ω(y), (4)

where W(x) = log U(x) and Ω(y) = e−αyθ(y).

3.1. The Limit

In Equation (4), we replace x by x = t + zg(t) to find

lim
x→∞

r(x)
(
W(t + zg(t) + yg(t + zg(t)))−W(t + zg(t))− αy

)
= Ω(y),

and

lim
x→∞

r(x)(
(W(t + zg(t) + yg(t + zg(t)))−W(t)− α(y + z))− (W(t + zg(t))−W(t)− αz)

)
= Ω(y).

The second term converges to Ω(z) and thus we have

lim
x→∞

r(x)(
W
(

t +
(

z + y
g(t + zg(t))

g(t)

)
g(t)

)
−W(t)− α(y + z)

)
= Ω(z) + Ω(y)

or

r(x)

(
W
(

t +
(

z + y
g(t + zg(t))

g(t)

)
g(t)

)
−W(t)

−α

(
z + y

g(t + zg(t))
g(t)

))
+ αy

(
g(t + zg(t))

g(t)
− 1
)

→ Ω(z) + Ω(y).

By l.u. convergence, the first part converges to Ω(z + y) and then we have

r(x)αy
(

g(t + zg(t))
g(t)

− 1
)
→ Ω(z) + Ω(y)−Ω(y + z).

Using the result of the previous subsection, we find that

αyβz = Ω(z) + Ω(y)−Ω(y + z).

We propose a solution of the form Ω(z) = dx + cx2. The previous equation gives

αβyz = cz2 + cy2 − c(y2 + z2 + 2yz),

and hence αβyz = 2cyz so that c = αβ
/

2. We conclude that Ω(x) = dx + αβx2/2 and that θ(x) =

(dx + αβx2/2)eαx.
We conclude:
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Theorem 3. Suppose that α 6= 0. If

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− eαy
)
= θ(y),

holds l.u. in y, or equivalently if

lim
x→∞

r(x)
(
W(x + yg(x))−W(x)− αy

)
= Ω(y),

holds l.u. in y, then g(x) satisfies Equation (2), Ω(x) = dx + αβx2/2 and θ(x) =
(
dx + αβx2/2

)
eαx.

3.2. Special Case

We assume that W is differentiable and that g(x)W ′(x)→ α.
In this case, we have

W(x + yg(x))−W(x) = g(x)
∫ y

0
W ′(x + zg(x))dz

=
∫ y

0

g(x)
g(x + zg(x))

g(x + zg(x))W ′(x + zg(x))dz

→ αy.

Now, suppose in addition that r(x)
(

g(x)W ′(x)− α
)
→ δ and that

r(t)
(

g(x + tg(x))
g(x)

− 1
)
→ βt.

We have

W(x + yg(x))−W(x)− αy

= g(x)
∫ y

0
W ′(x + tg(x))dt− αy

=
∫ y

0
g(x + tg(x))W ′(x + tg(x))

g(x)
g(x + tg(x))

dt− αy

=
∫ y

0
g(x + tg(x))W ′(x + tg(x))

(
g(x)

g(x + tg(x))
− 1
)

dt

+
∫ y

0
(g(x + tg(x))W ′(x + tg(x))− α)dt.

For the first integral, by assumption, we have

r(t)
(

g(x + tg(x))
g(x)

− 1
)
→ βt,

or

r(t)
g(x + tg(x))

g(x)

(
1− g(x)

g(x + tg(x))

)
→ βt,

or

r(t)
(

g(x)
g(x + tg(x))

− 1
)
→ −βt.



Mathematics 2020, 8, 634 13 of 17

Since r(x)
(

g(x)W ′(x)− α
)
→ δ, we obtain

r(x)
(
W(x + yg(x))−W(x)− αy

)
=

∫ y

0
g(x + tg(x))W ′(x + tg(x))r(x)

(
g(x)

g(x + tg(x))
− 1
)

dt

+
∫ y

0
r(x)(g(x + tg(x))W ′(x + tg(x))− α)dt

→ α(−β)
y2

2
+ δy.

3.3. Representation Theorem

Now, consider Q(x) = W(x) + αA(x), where A(x) =
∫ x

a 1/g(t)dt as before. We prove above that

A(x + yg(x))− A(x)→ y

l.u. in y. If g ∈ SN satisfies

lim
x→∞

x
(

g(x + yg(x))
g(x)

− 1
)
= βy,

then we also have

A(x + yg(x))− A(x)− y =
∫ y

0

(
g(x)

g(x + zg(x))
− 1
)

dz

= −
∫ y

0

g(x)
g(x + zg(x))

(
g(x + zg(x))

g(x)
− 1
)

dz,

so that

r(x)(A(x + yg(x))− A(x)− y)→ −β
y2

2
.

Using Q(x) = W(x)− αA(x), we see that

Q(x + yg(x))−Q(x)

= W(x + yg(x))−W(x)− αy

−α
(

A(x + yg(x))− A(x)− y
)
.

Hence, using Equation (3),

r(x)
(
Q(x + yg(x))−Q(x)

)
= r(x)

(
W(x + yg(x))−W(x)− αy

)
−αr(x)

(
A(x + yg(x))− A(x)− y

)
→ Ω(y) + αβ

y2

2
= Ψ(y)

l.u. in y. As in the previous subsection, we conclude that

r(x)
(
Q(x + yg(x))−Q(x)

)
→ Ψ(y) = λy

for some real number λ. The first representation of the previous subsection gives

Q(x) = T(x) +
C(x)
r(x)

,
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or

W(x) = αA(x) + T(x) +
C(x)
r(x)

,

where C(x)→ C and r(x)g(x)T′(x)→ λ.

Theorem 4. We have Equation (3) if and only if W(x) is of the form

W(x) = αA(x) + T(x) +
C(x)
r(x)

,

where C(x)→ C and r(x)g(x)T′(x)→ λ.

3.4. More Results

In our next result, we consider the function h(x) = f (x)
/

F(x), where f is the density of F.
We make the following assumptions about h:

(a) h ∈ SN.
(b) r(x)h′(x)

/
h2(x)→ −β > 0, where r(x)→ ∞, r(x) ∈ Γ0(g) with g(x) = 1

/
h(x).

Recall that r ∈ Γ0(g) means that r(x + yg(x))
/

r(x)→ 1 as x → ∞.

Lemma 1. If (a) and (b) hold, then

r(x)
(

h(x + yg(x))
h(x)

− 1
)
→ −βy.

Proof. We have
h(x + yg(x))− h(x) = g(x)

∫ y

0
h′(x + zg(x))dz.

Since r(x)h′(x)
/

h2(x) → −β > 0, we have that h′(x) ∈ Γ0(g) and, using g(x) = 1
/

h(x), we
obtain that

r(x)
(

h(x + yg(x))
h(x)

− 1
)
=

r(x)
h2(x)

∫ y

0
h′(x + zg(x))dz→ −βy.

Now, we study the tail F(x).

Lemma 2. If (a) and (b) hold, then

r(x)
(

log
F(x + yg(x))

F(x)
+ y
)
→ β

y2

2
.

Proof. Using h(x) = f (x)
/

F(x), we obtain that

∫ x+yg(x)

x
h(z)dz =

∫ x+yg(x)

x

f (z)
F(z)

dz,

so that

g(x)
∫ y

0
h(x + zg(x))dz = − log

F(x + yg(x))
F(x)

.

It follows that (recall g(x) = 1/h(x))

r(x)
∫ y

0

(
h(x + zg(x))

h(x)
− 1
)

dz = −r(x)
(

log
F(x + yg(x))

F(x)
+ y
)

,
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and using Lemma 1, it follows that

r(x)
(

log
F(x + yg(x))

F(x)
+ y
)
→ β

y2

2
.

This proves the result.

Now, we arrive at the main result here.

Theorem 5. If (a) and (b) hold, then

r(x)
(

F(x + yg(x))
F(x)

− e−y
)
→ β

y2

2
e−y.

Proof. Using Lemma 2, we have

r(x) log ey F(x + yg(x))
F(x)

→ β
y2

2
.

Using log z ∼ z− 1, it follows that

r(x)
(

ey F(x + yg(x))
F(x)

− 1
)
→ β

y2

2
,

or

r(x)
(

F(x + yg(x))
F(x)

− e−y
)
→ β

y2

2
e−y.

The previous theorem can be useful in extreme value theory as follows.
We assume that (a) and (b) hold and that F is strictly increasing. We define an by the equality

nF(an) = 1. It is clear that an ↑ ∞. In the result of Theorem 5, we replace x by an to see that

r(an)
(
nF(an + yg(an))− e−y)→ β

y2

2
e−y.

Now, we use log(z) + (1− z) = O(1)(1− z)2 and write

nF(an + yg(an)) = nF(an + yg(an)) + n log F(an + yg(an))− n log F(an + yg(an))

= O(1)nF2
(an + yg(an))− log Fn(an + yg(an)).

Now, notice that

r(an)nF2
(an + yg(an)) = O(1)r(an)nF2

(an) = O(1)
r(an)

n
.

If r(an)
/

n→ 0, we obtain that

r(an)
(

log Fn
(an + yg(an)) + e−y

)
→ −β

y2

2
e−y,

and hence also that

r(an) log eexp−yFn
(an + yg(an))→ −β

y2

2
e−y,
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and

r(an)
(

eexp−yFn
(an + yg(an))− 1

)
→ −β

y2

2
e−y,

or

r(an)
(

Fn
(an + yg(an))− exp−e−y

)
→ −β

y2

2
e−y exp−e−y.

It means that, if Xi are independent and identically distributed random variables with distribution
function F, then

r(an)

(
P
(

Mn − an

g(an)
≤ y

)
−Λ(y)

)
→ Φ(y),

where Mn = max(X1, X2, ..., Xn), Λ(y) = exp−e−y and Φ(y) = −β
y2

2 e−y exp−e−y.
It means that F is in the max-domain of attraction of the double exponential and the convergence

rate is determined by r(an).

3.5. Examples

3.5.1. Example 1

The following example is related to Theorem 5.
Let U(x) = exp−x2 for x > 0. Using g(x) = 1/(2x), we have U(x) ∈ Γ−1(g). Now, we consider

the difference
U(x + yg(x))

U(x)
− e−y.

We have

U(x + yg(x))
U(x)

− e−y = e−y−y2g2(x) − e−y

= e−y(e−y2g2(x) − 1)

∼ −e−yy2g2(x)

and

x2
(

U(x + yg(x))
U(x)

− e−y
)
→ −1

4
y2e−y.

3.5.2. Example 2

Let U(x) = exp xβ, β > 1. We have W(x) = log U(x) = xβ and W ′(x) = βxβ−1. Taking
g(x) = x1−β, we have

g(x)W ′(x) = β.

As for g(x), we have g(x)
/

x → 0 and

g(x + yg(x))
g(x)

− 1 =

(
1 + y

g(x)
x

)1−β

− 1 ∼ (1− β)y
g(x)

x
.

Taking r(x) = x
/

g(x) = xβ, we have

r(x)
(

g(x + yg(x))
g(x)

− 1
)
→ (1− β)y.

The result of Section 3.2 shows that

r(x)
(
W(x + yg(x))−W(x)− βy

)
→ β(β− 1)

y2

2
,
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and then

r(x)
(

U(x + yg(x))
U(x)

− eβy
)
→ β(β− 1)

y2

2
eβy.

4. Concluding Remarks

In this paper, new results on the condition, for some functions r and g,

lim
x→∞

r(x)
(

U(x + yg(x))
U(x)

− eαy
)
= θ(y), ∀y,

where we assume that the convergence is l.u. in y, are presented. This limit generalizes the ones
analyzed by Seneta [4] and Omey and Cadena [5], both of them being related to the monotony of
functions in the Zygmund sense. Under this analysis, properties of θ(y) are described. Representations
of the functions U involved in this limit are provided.
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