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Abstract: In this paper, the well-known Föppl–Hencky membrane problem—that is, the problem
of axisymmetric deformation of a transversely uniformly loaded and peripherally fixed circular
membrane—was resolved, and a more refined closed-form solution of the problem was presented,
where the so-called small rotation angle assumption of the membrane was given up. In particular,
a more effective geometric equation was, for the first time, established to replace the classic one,
and finally the resulting new boundary value problem due to the improvement of geometric equation
was successfully solved by the power series method. The conducted numerical example indicates that
the closed-form solution presented in this study has higher computational accuracy in comparison
with the existing solutions of the well-known Föppl–Hencky membrane problem. In addition,
some important issues were discussed, such as the difference between membrane problems and thin
plate problems, reasonable approximation or assumption during establishing geometric equations,
and the contribution of reducing approximations or relaxing assumptions to the improvement of the
computational accuracy and applicability of a solution. Finally, some opinions on the follow-up work
for the well-known Föppl–Hencky membrane were presented.

Keywords: Föppl–Hencky membrane; boundary value problem; power series method; closed-form
solution; geometric equation

1. Introduction

The mathematical modeling of the mechanical behavior of engineering structures or structural
components [1,2] and the solving techniques for the resulting boundary value problems [3,4] are often
found to be necessary. Membrane structures or structural components have received considerable
attention in many applications [5–7]. However, the large deflection phenomena exhibited by elastic
membrane structures or structural components are usually difficult to deal with analytically, due to the
somewhat intractable nonlinear equations [8–13]. The famous German scientist Hencky, originally dealt
with the problem of axisymmetric deformation of a transversely uniformly loaded and peripherally
fixed circular membrane, and presented its closed-form solution in the form of a power series in
1915 [14]. Chien [15] and Alekseev [16] corrected the computational error in [14]. This well-known
problem is usually called the Föppl–Hencky membrane problem, or simply the well-known Hencky
problem, while its solution is called the well-known Hencky solution, which is often cited in studies of
related issues [17–23].
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As is known, almost all analytical solutions of mechanical problems have been obtained based
on some necessary approximations or assumptions; likewise, the well-known Hencky solution was
obtained in the same way. Therefore, further research on the well-known Hencky problem should focus
on reducing approximations or relaxing assumptions. Our interest in the well-known Hencky problem
lies mainly in its axisymmetric character, which is convenient for analytical solving. In recent years,
we have devoted ourselves to further studies on the well-known Hencky problem. At first, a detailed
solving process was presented for the well-known Hencky problem [24], where the membrane
equations were directly established by analyzing the deflected membrane, rather than Hencky’s
originally method [14]. Hencky started from a thin plate bending problem in regards to the origins
of the membrane problem, and because the “membrane” is usually thin enough, the bending term
in the well-known von Karman large deflection equations for thin plates is ignored. In another
paper, the assumption of zero for the initial membrane stress that the well-known Hencky solution
must follow was given up and an extended Hencky solution was presented [25], where the initial
membrane stress is allowed to be nonzero and the extended solution can regress to the well-known
Hencky solution if the initial membrane stress is zero. Furthermore, we replaced the so-called small
rotation angle assumption for membranes, which the well-known Hencky solution must also follow,
with a new closed-form solution without small rotation angle assumption [26]. In this new solution,
the rotation angle of the membrane, θ, is allowed to be arbitrary, since the basic trigonometric function
relation sinθ =

√
1 + 1/ tan2 θ was used during the derivation of this new solution, while during

the derivation of the well-known Hencky solution, sin θ was replaced by tan θ based on the small
rotation angle assumption of the membrane (i.e., due to sinθ � tanθ � θ when θ is small enough).
Of course, the applicability of the well-known Hencky solution is limited by the size of the rotation
angle of the membrane due to the adoption of the small rotation angle assumption. Following this,
in order to achieve synchronous characterization for the surface and interface of thin film–substrate
systems with residual stress, the closed-form solution without the small rotation angle assumption was
further extended into the more general situation, where the initial membrane stress is allowed to be
nonzero [27]. Recently, by giving up the small rotation angle assumption, we presented a closed-form
solution for the contact problem between transversely uniformly loaded circular membranes and
frictionless rigid plates [28]. In fact, it is usually difficult to clarify the qualitative or quantitative
influence of new approximations or assumptions on the computational accuracy and applicability of a
solution; however, when it is turned over it is different, meaning it is usually not necessary to conduct
a qualitative or quantitative analysis to clarify the influence of reducing approximations or relaxing
assumptions (on the basis of existing theories) on the computational accuracy and applicability of the
solution. Therefore, in this sense, on the basis of existing theories, any effort to reduce approximations
or relax assumptions will have a significant positive impact on the improvement of the computational
accuracy and applicability of the solution, which may be seen from the results and discussions below.

In this study, the effort to relax the assumption or increase the degree of approximation is further
considered, and a more refined closed-form solution of the well-known Hencky problem is presented.
The conducted numerical example indicates that the presented closed-form solution has higher
computational accuracy in comparison with the existing solutions. The detailed derivation of the more
refined closed-form solution is arranged in the next section. In Section 3, some important issues are
discussed, such as the difference between membrane problems and thin plate problems, reasonable
approximations or assumptions during establishing geometric equations, and the contribution of
reducing approximations or relaxing assumptions to the improvement of the computational accuracy
and applicability of a solution. In Section 4, some opinions on the follow-up research for the well-known
Hencky problem are presented.

2. Membrane Equation and Its Solution

The uniformly distributed transverse loads q is quasi-statically applied onto the surface of a
peripherally fixed and initially flat circular membrane with Poisson’s ratio v, Young’s modulus of



Mathematics 2020, 8, 631 3 of 15

elasticity E, radius a, and thickness h, as shown in Figure 1, where r is the radial coordinate, the dash
dotted line represents the geometric middle plane of the initially flat circular membrane (in which
the polar coordinate plane is located), and w is the transversal coordinate as well as the transversal
displacement of the deformed circular membrane. Let us take a piece of the circular membrane with
radius 0 ≤ r ≤ a in the central portion of the deformed circular membrane, with a view of studying the
static equilibrium problem of this deformed circular membrane under the transverse loads q and the
membrane force σrh acted on the boundary of radius r, as shown in Figure 2, where σr denotes the
radial stress (the mean stress over the cross-section of the deformed circular membrane), and θ is the
rotation angle of the deflected membrane, that is, the usually so-called meridional rotation angle.
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Throughout the derivation, we assume that the thickness of the membrane is always constant
during its deformation, that is, the change in thickness is ignored. Along the vertical direction
perpendicular to the initially flat circular membrane (see Figure 2), there are two vertical forces.
These are the total external force πr2q and the total vertical force 2πrσrh sinθ which is produced by the
membrane force σrh. Thus, the usually so-called out-of-plane equation of equilibrium is

2πrσrh sinθ = πr2q, (1)

where

sinθ = 1/
√

1 + 1/ tan2 θ = 1/
√

1 + 1/(−dw/dr)2. (2)

Equation (2) follows the basic relationship between trigonometric functions, and its use is intended
to give up the so-called small rotation angle assumption of the membrane, that is, sin θ can be replaced
by tan θ because sinθ � tanθ � θ when θ is small enough, which is adopted in the well-known
Hencky solution. Substituting Equation (2) into Equation (1), one has

1
2

rq
√

1 + 1/(dw/dr)2 = σrh. (3)

In the horizontal plane, there are the joint actions of the circumferential membrane force σth
and the horizontal force produced by the membrane force σrh, where σt is the circumferential stress.
So, the so-called in-plane equation of equilibrium can be written as
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d
dr
(rσrh) − σth = 0. (4)

The detailed derivation of Equation (4) can be found in any general theory for plates and shells [29],
so there is no need to discuss it here. As for the so-called geometric equations, that is, the relationships
of the strain and displacement, the classic geometric equations [14,24–27] was modified and replaced by

er = [(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 (5)

and
et =

u
r

, (6)

where er denotes the radial strain, et denotes the circumferential strain, and u denotes the radial
displacement. Equation (5) was obtained by relaxing some assumptions, and thus it has a higher
accuracy in comparison with the classic geometric equations (however for brevity, its detailed derivation
and the discussion on its accuracy were arranged in the next section). Moreover, the relationships of
the stress and strain, that is, the so-called physical equations, are still assumed to satisfy linear elasticity,
and after ignoring the change in membrane thickness it can be written as [29]

σr =
E

1− ν2 (er + νet) (7)

and
σt =

E
1− ν2 (et + νer). (8)

Substituting Equations (5) and (6) into Equations (7) and (8) yields

σr =
E

1− ν2 {[(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 + ν
u
r
} (9)

and

σt =
E

1− ν2 {
u
r
+ ν[(1 +

du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− v}. (10)

By means of Equations (4), (9) and (10), it is found that

u
r
=

1
Eh

(σth− νσrh) =
1

Eh
[

d
dr
(rσrh) − νσrh]. (11)

After substituting the u of Equation (11) into Equation (9), the so-called consistency equation can
then be written as

{
d
dr [r

d
dr (rσrh)]}

2
+ 2Eh d

dr [r
d
dr (rσrh)] − 2v d

dr (rσrh) × d
dr [r

d
dr (rσrh)]

+2vσrh d
dr (rσrh) − 2Eh(σrh) − (σrh)

2 + E2h2( dw
dr )

2
= 0

(12)

The boundary conditions are

u
r
=

1
Eh

[
d
dr
(rσrh) − νσrh] = 0 at r = a, (13)

w = 0 at r = a (14)

and
dw
dr

= 0 at r = 0. (15)
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Let us introduce the following dimensionless variables

Q =
aq
hE

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

. (16)

Transform Equations (3), (4), (11), (12), (13), (14) and (15) into

{
d

dx [x
d

dx (xSr)]}
2
+ 2 d

dx [x
d

dx (xSr)] − 2v d
dx (xSr) ×

d
dx [x

d
dx (xSr)]

+2vSr
d

dx (xSr) − 2Sr − S2
r + ( dW

dx )
2
= 0

(17)

(
dW
dx

)
2
=

x2Q2

4S2
r − x2Q2

, (18)

St = Sr + x
dSr

dx
, (19)

u
r
=

1
Eh

[
d
dr
(rhσr) − νhσr] = x

dSr

dx
+ (1− ν)Sr, (20)

u
r
= x

dSr

dx
+ (1− ν)Sr = 0 at x = 1, (21)

W = 0 at x = 1 (22)

and
dW
dx

= 0 at x = 0. (23)

Eliminating the dW/dx from Equations (17) and (18), a second-order nonlinear ordinary differential
equation containing only Sr can be obtained

{
d

dx [x
d

dx (xSr)]}
2
+ 2 d

dx [x
d

dx (xSr)] − 2v d
dx (xSr) ×

d
dx [x

d
dx (xSr)]

+2vSr
d

dx (xSr) − 2Sr − S2
r +

x2Q2

4S2
r−x2Q2 = 0

(24)

Expand Sr into the power series of the x, that is, let

Sr(x) =
∞∑

i=0

bixi. (25)

After substituting Equation (25) into Equation (24) it is found that, bi ≡ 0 (i = 1, 3, 5, . . . ),
and bi (i = 2, 4, 6, . . . ) can be expressed into the polynomial of the undetermined constant b0 (see
Appendix A). The undetermined constant b0 can be determined by using the boundary condition at
x = 1. From Equations (25), the condition of Equation (21) gives

∞∑
i=1

ibi + (1− ν)
∞∑

i=0

bi = 0. (26)

After substituting all expressions of bi (i = 2, 4, 6, . . . ) into Equation (26), we can obtain an
equation containing only b0. Thus, the undetermined constant b0 can be determined by solving its
single variable equation, and the expression of Sr can thus be determined. As for St, it can easily be
obtained by using Equation (19) with the known expressions of Sr, so it is not necessary to derive it
here. On the other hand, W can also be expanded into the power series of the x

W(x) =
∞∑

i=0

cixi. (27)
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Please note that at this time, the coefficients bi in the expression of Sr were known. Hence,
after substituting Equations (25) and (27) into Equation (18) it is found that, ci ≡ 0 (i = 1, 3, 5, . . . ),
and ci (i = 2, 4, 6, . . . ) can be expressed into the polynomial of the known bi and another undetermined
constant c0 (see Appendix B). Furthermore, from Equation (27), Equation (22) gives

c0 = −
∞∑

i=1

ci. (28)

After substituting all expressions of ci into Equation (28), we can also obtain an equation containing
only c0, and the undetermined constant c0 can thus be determined. With the known c0, the expression
of W can be determined. Thus, the closed-form solution of the problem dealt with here can be obtained.

Finally, let us see whether the closed-form solution obtained above meets the boundary condition
Equation (15) or Equation (23), that is, dw/dr = 0 at r = 0 or dW/dx = 0 at x = 0, which has not been
used yet during the derivation above. The first derivative on both sides of Equation (27) is

dW
dx

=
∞∑

i=1

icixi−1. (29)

Thus, it is not difficult to obtain dW/dx = c1 at x = 0. However, from the derivation above we
know ci ≡ 0 when i = 1, 3, 5, . . . , this means c1 ≡ 0. Thus we can obtain dW/dx = 0 at x = 0 or
dw/dr = 0 at r = 0. This indicates that the closed-form solution presented here can meet the physical
phenomenon of axisymmetric deformation of the circular membrane.

3. Results and Discussion

From the derivation above, it can be seen that the well-known Hencky problem was regarded
as a membrane problem, where the equilibrium equations, that is, Equations 1 and 4, were directly
established by analyzing the forces on the deformed membrane. However, Hencky originally started
from a thin plate bending problem to reach this problem, and because the “membrane” is usually
sufficiently thin, the bending term in the well-known von Karman large deflection equations for thin
plates was ignored [14]. But in terms of some questions from the peer review of our previous works,
our above solving means do not seem to be widely accepted, and some scholars may be inclined to
utilizing Hencky’s originally method.

Perhaps, the so-called “membrane” should have a unified definition in mechanics. Thin plates
ought to become thin films if sufficiently thin, and they all have three-dimensional shapes, but the
“membrane” does not emphasize the three-dimensional shape in mechanics, or more specifically,
does not emphasize its thickness. The “membrane”, regardless of its thickness, should refer to a
completely stretched thin plate (or thin film) fixed at its edge, because there is only tensile stress and no
compressive stress on its cross-section after deformation. The so-called “neutral layer”, which is never
stretched and compressed during deflection, is not in existence, and thus there is no “resultant couple
moment” of the “neutral layer”, that is, the usually so-called bending moment. By way of examples,
a peripherally fixed circular plate under transverse loads, no matter how thick or thin it is, is always
called “membrane” in mechanics, because its upper and lower surfaces are always stretched during
deflection. Thus, there is always only tensile stress and no compressive stress on its cross-section
after deformation. This means that only the tensile stress resists to external loads, so only the tensile
strength of materials is involved. On the contrary, a freely supported circular plate under transverse
loads, no matter how thin it is (even a very thin film), can only rely on its bending moment to resist
external loads if the friction at its support is ignored. Therefore, for freely supported circular plates,
the tensile and compressive strength of materials are both our concern, and it is often necessary to
analyze the distribution of the tensile and compressive stresses on the cross-section of a deformed
plate (even a very thin deformed film). Thus, the so-called “membrane problem” should refer to a
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completely stretching problem of a thin plate (or thin film) under transverse loads, while the so-called
“plate problem” often refers to a bending problem of a freely supported thin plate (or thin film) under
transverse loads, regardless of its thickness. To say the least, the so-called “membrane” may be a thin
plate or a thin film, but it must, regardless of its thickness, be fixed at its edge in order to limit the
displacement at its edge. In mechanics, as the term “membrane” is always a concept associated with
the action of external loads, in this sense, without “action” the “membrane” will lose its significance.

Of course, the well-known Hencky problem should be understood as a membrane problem,
because the edge displacement of the membrane is completely limited by “fixed”. However, Hencky
dealt with this problem from the point of view of the bending problem of a thin plate, by using the
well-known von Karman large deflection equations for thin plates and ignoring the terms related to
bending. This maybe seems somewhat farfetched, but Hencky does offer an effective solution. This is
because the membrane force and bending moment were simultaneously taken into account during the
establishment of the well-known von Karman large deflection equations. Therefore, after ignoring
the bending-related terms, only the membrane force is left in the well-known von Karman equations.
This could be where the well-known von Karman equations played its potentiality, however, for the
membrane problem dealt with here, it can do nothing, because it contains some approximations or
assumptions that are not allowed here. Thus, in this sense, dealing with a membrane problem does
not need to follow the classic theories for thin plate bending problems, but needs to start from the
physical phenomena. Moreover, the precondition that the rotation angle at the edge of the thin plate is
equal to zero is usually used for thin plate bending problems. However, from the boundary conditions
Equations (13)–(15), it can be seen that such a condition is not used, and in fact, from Equation (27),
it can also be found that dw/dr , 0 at r = a. This could be where membrane problems are different
from thin plate bending problems.

Compared with the existing studies on the well-known Hencky problem, the innovation in this
study lies mainly in the modification to the classic geometric equation, resulting in the modified
geometric equation as shown in Equation (5), and the more refined closed-form solution. Then, where
does the modified geometric equation come from, and what will be the effect of the more refined
closed-form solution presented here? Now let us address these two issues. The detailed derivation of
Equation (5) is shown as follows. As for Equation (6), it can be derived out easily, so it is not necessary
to discuss it here.

Suppose that, a straight line micro element AB with the length dr, which originally lies in the
geometric middle plane of the initially flat circular membrane, is taken along the r axis of the polar
coordinate system, and under the action of the uniformly-distributed transverse loads q, it will become

the curve
_

A′B′ along with the deformation of the circular membrane, as shown in Figure 3. Therefore,
the elongation degree of this line micro element, that is, the radial strain, should be

er =

_
A′B′ −AB

AB
. (30)

If the radial displacement and deflection at point A′ is denoted as u and w, respectively, then after
expanded into Taylor series, the radial displacement and deflection at point B′ can be written as

u +
du
dr

dr +
1
2!

d2u
dr2 (dr)2 +

1
3!

d3u
dr3 (dr)3 + · · · (31)

and

w +
dw
dr

dr +
1
2!

d2w
dr2 (dr)2 +

1
3!

d3w
dr3 (dr)3 + · · · , (32)

respectively.
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Here there are two kinds of reasonable methods for approximation or assumption in accordance
with different deflection situations of the membrane, they are: 1O assume that before and after the
deflection of the membrane, the length of the line microelement is approximately equal, that is,
_

A′B′ � AB; 2O assume that after the deflection of the membrane the length of the curve
_

A′B′ is

approximately equal to the length of the straight line A′B′, that is,
_

A′B′ � A′B′. The assumption 1O
is suitable for the classic large deflection problems in the existing studies, where the deflection of
the membrane is not too large, while the assumption 2O is clearly relaxed in comparison with the

assumption 1O, because the degree of approximation of
_

A′B′ � A′B′ is higher than that of
_

A′B′ � AB.
Therefore, the assumption 2O is suitable for a larger deflection in comparison with assumption 1O.
In fact, the assumption 1O belongs to the case of the so-called microdeformation from the point of
view of the modern theory of elasticity, and in this sense, the assumption 2O should be a relaxation
towards the so-called finite deformation. It is clear that, if assumption 1O holds, then the assumption 2O

also hold, that is,
_

A′B′ � A′B′ so long as
_

A′B′ � AB. In addition to the above two assumptions, it is
usually also necessary to further make the following approximation: all the high order differential
terms in Equations (31) and (32) must be ignored, with only the first order differential term remaining
to reflect the dynamics of the displacement and deflection (the nonlinearity), as done in the existing
studies. To this end, the radial displacement and deflection at point B′ were approximately written
as u + (du/dr)dr and w + (dw/dr)dr, respectively, as shown in Figure 3. Thus, under the condition of
assumption 1O, Equation (30) can be further written as, with the help of assumption 2O,

er =

_
A′B′ −AB

AB
=

(
_

A′B′ + AB)(
_

A′B′ −AB)

(
_

A′B′ + AB)AB
�

(A′B′)
2
− (AB)

2

2(AB)
2 �

du
dr

+
1
2
(

dw
dr

)
2
. (33)

Equation (33) is the classic geometric equation used in existing studies. While only under the
condition of assumption 2O, Equation (30) can be further written as

er =
_

A′B′−AB
AB

� A′B′−AB
AB

�

√
(dr+ du

dr dr)
2
+(− dw

dr dr)
2
−dr

dr =

√
(1 + du

dr )
2
+ ( dw

dr )
2
− 1

(34)

Equation (34) is the so-called modified geometric equation in this study, which is shown in
Equation (5). This is the reason why the degree of approximation of the modified geometric equation
(Equation (34) or Equation (5)) is higher than that of the classic geometric equation (Equation (33)).
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It should be pointed out that, probably due to the difficulties during the analytical solving, one
might think of the further simplification of Equation (34), for example, with the help of expansion of√
(1 + du/dr)2 + (dw/dr)2 [30], Equation (34) may be further approximated as

er =

√
(1 +

du
dr

)
2
+ (

dw
dr

)
2
− 1 �

du
dr

+
1
2
(

dw
dr

)
2
[1−

1
4
(

dw
dr

)
2
]. (35)

As mentioned above, however, it is difficult to conduct a qualitative or quantitative analysis to
make clear how much influence of such an approximation has on the computational accuracy of the
solution. Therefore, it would be best not to make such a further approximation unless you have to.

Now let us consider a numerical example to discuss the contribution of reducing approximations or
relaxing assumptions to the improvement of the computational accuracy and applicability of the solution.
Suppose that a peripherally fixed circular rubber thin-film with a = 20 mm, h = 0.06 mm, E = 7.84 MPa
and ν = 0.47 is subjected to the uniformly transverse loads q = 0.001 MPa and 0.03 MPa, respectively.
Three closed-form solutions are used here: the well-known Hencky solution [24] which contains
the small rotation angle assumption and uses the classical geometric equation (i.e., Equation (33)),
our earlier closed-form solution [26] which does not contain the small rotation angle assumption but
uses Equation (33), and the more refined closed-form solution presented in this study which does not
contain the small rotation angle assumption and uses the modified geometric equation (i.e., Equation
(5) or (34)).

Figure 4 shows the two sets of numerical results for the deflection profiles, that is, the variations
of the deflection w with the radius r when the loads q takes 0.001 and 0.03 MPa, respectively, in which
the solid lines represent the results obtained by using the solution presented in this study, the dashed
lines by our earlier solution [26], and the dash dotted lines by the well-known Hencky solution [24].
From Figure 4, it can be seen that when q = 0.001 MPa the three deflection curves are very close to each
other, which indicates that for this deflection situation, the efforts made to reduce approximations or
relax assumptions result in a very little effect on the improvement of the computational accuracy of the
solution, while when q = 0.03 MPa there are obvious differences between the three deflection curves,
which indicates that the approximations or assumptions in the classic geometric equation as well as
the small rotation angle assumption will give rise to a greater influence on the computational accuracy
of the solution. These two sets of results also show that the applicability of the solution presented in
this study has been improved after reducing approximations or relaxing assumptions.

Usually, under the uniformly distributed transverse loads q, the rotation angle θ of the deformed
membrane in the central portion of the circular membrane is smaller than that in the region far away from
the center of the circular membrane. Therefore, the contribution of giving up the small rotation angle
assumption to the improvement of the computational accuracy of the solution in the central portion
should be smaller than that in the region far away from the center. Hence, the difference between the
upper dash dotted line and the second dashed line in the central portion (about 0 ≤ r ≤ 5 mm) is smaller
than that in the region far away from the center, as shown in the deflection profile for q = 0.03 MPa in
Figure 4. It is clear that this difference is caused only by the so-called small rotation angle assumption
of the membrane, because compared with the well-known Hencky solution (corresponding to the
upper dash dotted line), our earlier solution (corresponding to the second dashed line) only gives up
the small rotation angle assumption. Of course, such a difference also indicates that our earlier work in
which only the small rotation angle assumption was given up [26] is also of positive significance to the
improvement of the computational accuracy of the solution.
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On the other hand, the rotation angle in the central portion is smaller than that in the region
far away from the center, which also means that the deflected membrane in the central portion is
flatter than that in the region far away from the center. Consequently, the assumption 2O used to the

modify geometric equation, that is, the condition
_

A′B′ � A′B′, should be satisfied more easily in the
central portion than in the region far away from the center. In other words, the contribution of the

somewhat relaxed assumption
_

A′B′ � A′B′ to the improvement of the computational accuracy of the
solution in the central portion should be somewhat bigger than that in the region far away from the
center. This also means that, however, there are still computational errors in the region far away from
the center, and the farther away from the center the greater the computational error. This is the role
the modified geometric equation plays in the more refined closed-form solution of the well-known
Hencky problem. Therefore, the deflection outline (the third solid line for q = 0.03 MPa presented in
Figure 4) is maybe not as reliable in 5 mm < r < 20 mm as that in 0 < r < 5 mm, and in a real situation,
it could slightly swell to the left and right. The qualitative interpretation is that, in 5 mm < r < 20 mm,

the straight line A′B′ is clearly shorter than the curve
_

A′B′. This means that a smaller value is involved

in the computational operation for the reason of replacing
_

A′B′ with A′B′, so the calculation results of
deflection value should be inclined to being small. This is also something to be aware of when using
the modified geometric equation—Equation (5) or Equation (34).

4. Concluding Remarks

In this paper, the well-known Föppl–Hencky membrane problem was resolved, where the
so-called small rotation angle assumption of the membrane was given up when establishing the
out-of-plane equation of equilibrium, and a new and more effective geometric equation was, for the
first time, established to replace the classic one. The new boundary value problem of the resulting
nonlinear differential equation was successfully solved by using the power series method, and a
more refined closed-form solution of the problem was presented. The numerical example conducted
indicates that the solution presented here has a higher computational accuracy in comparison with the
existing solutions.

The study on the well-known Hencky problem has come a long way in the last one hundred years,
but it has even further to go. By way of examples, the approximate treatment of ignoring all the high
order differential terms in Equations (31) and (32) still continues; the assumption of constant thickness
of the deformed membrane is also still present. In fact, these approximations or assumptions are still
where they were. Therefore, the follow-up research of the well-known Hencky problem should focus
on the following two aspects.
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Due to the approximate treatment of ignoring all the high order differential terms in Equations (31)
and (32) (especially Equation (32)), the modified geometric equation (i.e., Equation (5)) is still not very
satisfactory, especially for overlarge deflection situations. Therefore, it seems to be more important
to find a more efficient way to establish a more effective geometric equation, as it cannot be directly
established by taking into account a few of the high order differential items in Equations (31) or (32).
The other aspect is that the thickness of the deformed membrane could be considered as a function
with respect to the radial coordinate variable, but the resulting change in physical equations also needs
to be considered. These issues will be addressed in our further studies.
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0 − 15704904720384v7b10

0

− 150554858373120v7b11
0 + 306423925730304v6b10

0 + 274719730252v6b8
0 + 1687409157685248v6b11

0

+ 6018221981073408v6b12
0 − 894916813750272v7b12

0 − 20420193838694400v3b15
0 − 20079240279687168v5b12

0

− 8264209713020928v5b11
0 − 45752029242458112v3b13

0 − 987713857536v7b9
0 − 36027731520v7b8

0

+ 343637247393792v8b13
0 − 10721164787712v9b13

0 + 16336331735040v10b15
0 − 3249171263913984v7b13

0

− 383123246284800v9b15
0 + 21598720777912320v6b14

0 − 92966077071360v9b14
0 − 39588711455784960v5b14

0

+ 46803995506114560v4b14
0 − 9871717249843200v7b15

0 − 2141202677760000vb15
0 − 33797825123844096v5b13

0

+ 1302764602982400v8b14
0 − 8275911117373440vb13

0 + 49662372863803392v4b13
0 − 7216216685936640v7b14

0

+ 25912810892427264v2b13
0 − 31806506642964480v5b15

0 + 2712974288486400v8b15
0 + 14022933762539520v6b13

0

+ 416557191168v8b11
0 + 627836977152000v2b17

0 + 8646492369715200v2b15
0 − 36022244946739200v3b14

0

+ 21890463694848000v6b15
0 − 4893970787205120vb14

0 + 1750615549968384v2b14
0 + 295651592110080v2b16

0

+ 31120380710092800v4b15
0 + 18096212736v8b10

0 − 8164326821068800v7b16
0 + 80648853258240v10b16

0

+ 47087773286400v8b18
0 − 655134975590400vb16

0 − 125567395430400vb17
0 − 1883510931456000v3b17

0

− 565367193600v9b12
0 − 11415217766400vb18

0 + 62783697715200v2b18
0 − 209278992384000v3b18

0

+ 47087773286400v4b18
0 + 14110992787046400v6b16

0 + 125567395430400v10b17
0 + 951268147200v12b18

0

− 11415217766400v11b18
0 − 209278992384000v9b18

0 − 219738736536v5b6
0)

Appendix B

c2 = −
1
4

Q
b0

c4 = −
Q

64b3
0

(Q2
− 8b0b2)

c6 = −
Q

1536b5
0

(3Q4
− 48Q2b0b2 − 128b3

0b4 + 128b2
0b2

2)

c8 = −
Q

16384b7
0

(5Q6
− 120Q4b0b2 − 384Q2b3

0b4 + 768Q2b2
0b2

2 − 1024b5
0b6 + 2048b4

0b2b4 − 1024b3
0b3

2)

c10 = − Q
655360b9

0
(35Q8

− 1120Q6b0b2 − 3840Q4b3
0b4 + 11520Q4b2

0b2
2 − 12288Q2b5

0b6 + 49152Q2b4
0b2b4 − 40960Q2b3

0b3
2

− 32768b7
0b8 + 65536b6

0b2b6 + 32768b6
0b2

4 − 98304b5
0b2

2b4 + 32768b4
0b4

2)

c12 = − Q
6291456b11

0
(63Q10

− 2520Q8b0b2 − 8960Q6b3
0b4 + 35840Q6b2

0b2
2 − 30720Q4b5

0b6 − 215040Q4b3
0b3

2

− 98304Q2b7
0b8 + 196608Q2b6

0b4
2 + 393216Q2b6

0b2b6 + 491520Q2b4
0b4

2 − 983040Q2b5
0b2

2b4 + 184320Q2b4
0b2b4

− 262144b9
0b10 + 524288b8

0b2b8 + 524288b8
0b4b6 − 786432b7

0b2
2b6 − 786432b7

0b2b2
4 + 1048576b6

0b4
2b4 − 262144b5

0b5
2)

c14 = −
Q

117440512b13
0

(231Q12
− 11088Q10b0b6 − 40320Q8b3

0b4 + 201600Q8b2
0b2

2 − 143360Q6b5
0b6 + 1146880Q6b4

0b2b4

− 1720320Q6b3
0b3

2 − 491520Q4b7
0b8 + 2949120Q4b6

0b2b6 + 1474560Q4b6
0b2

4 − 10321920Q4b5
0b2

2b4 + 6881280Q4b4
0b4

2

− 1572864Q2b9
0b10 + 6291456Q2b8

0b2b8 + 6291456Q2b8
0b4b6 − 15728640Q2b7

0b2b2
4 − 15728640Q2b7

0b2
2b6 + 4194304b6

0b6
2

+ 31457280Q2b6
0b3

2b4 − 11010048Q2b5
0b5

2 + 8388608b10
0 b2b10 + 8388608b10

0 b4b8 − 4194304b11
0 b12 + 4194304b10

0 b2
6

− 12582912b9
0b2

2b8 − 4194304b9
0b3

4 − 25165824b9
0b2b4b6 + 25165824b8

0b2
2b2

4 + 16777216b8
0b3

2b6 − 20971520b7
0b4

2b4)
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c16 = −
Q

1073741824b15
0

(429Q14
− 24024Q12b0b2 − 88704Q10b3

0b4 − 322560Q8b5
0b6 + 3225600Q8b4

0b2b4

+ 9175040Q6b6
0b2b6 − 41287680Q6b5

0b2
2b4 + 34406400Q6b4

0b4
2 − 3932160Q4b9

0b10 + 23592960Q4b8
0b2b8

+ 23590960Q4b8
0b4b6 − 82575360Q4b7

0b2b2
4 + 220200960Q4b6

0b3
2b4 − 99090432Q4b5

0b5
2 − 12582912Q2b11

0 b12

+ 50331648Q2b10
0 b2b10 + 50331648Q2b10

0 b4b8 + 25165824Q2b10
0 b− 125829120Q2b9

0b2
2b8 − 251658240Q2b9

0b2b4b6

− 41943040Q2b9
0b3

4 + 377487360Q2b8
0b2

2b2
4 + 251658240Q2b8

0b3
2b6 − 440401920Q2b7

0b4
2b4 + 117440512Q2b6

0b6
2

− 33554432b13
0 b14 + 67108864b12

0 b2b12 + 67108864b12
0 b4b10 + 67108864b12

0 b6b8 − 100663296b11
0 b2

2b10

− 201326592b11
0 b2b4b8 − 100663296b11

0 b2b2
6 − 100663296b11

0 b2
4b6 + 134217728b10

0 b3
2b8 + 402653184b10

0 b2
2b4b6

+ 134217728b10
0 b2b3

4 − 167772160b9
0b4

2b6 − 335544320b9
0b3

2b2
4 + 201326592b8

0b5
2b4 − 33554432b7

0b7
2)
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