Article

P-Tensor Product for Group C*-Algebras

Yufang Li ${ }^{1,2, *}$ and Zhe Dong ${ }^{1}$
1 Department of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China; dongzhe@zju.edu.cn
2 Department of Mathematical and Statistics, Guizhou University, Guiyang 550025, China
* Correspondence: dongzhe@zju.edu.cn

Received: 25 March 2020; Accepted: 14 April 2020; Published: 18 April 2020
Abstract: In this paper, we introduce new tensor products $\stackrel{p}{\otimes}(1 \leq p \leq+\infty)$ on $C_{\ell_{p}}^{*}(\Gamma) \otimes C_{\ell_{p}}^{*}(\Gamma)$ and $\stackrel{c_{0}}{\otimes}$ on $C_{c_{0}}^{*}(\Gamma) \otimes C_{c_{0}}^{*}(\Gamma)$ for any discrete group Γ. We obtain that for $1 \leq p<+\infty C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=$ $C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma)$ if and only if Γ is amenable; $C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma) \stackrel{c_{0}}{\otimes} C_{\mathcal{C}_{0}}^{*}(\Gamma)$ if and only if Γ has Haagerup property. In particular, for the free group with two generators \mathbb{F}_{2} we show that $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \not \equiv C_{\ell_{q}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{q}{\otimes} C_{\ell_{q}}^{*}\left(\mathbb{F}_{2}\right)$ for $2 \leq q<p \leq+\infty$.

Keywords: p-tensor product; amenability; Haagerup property
2000 MR Subject Classification: Primary20F65

1. Introduction

When \mathcal{A} and \mathcal{B} are C^{*}-algebras, it can happen that numerous different norms make $\mathcal{A} \odot \mathcal{B}$ into a pre-C*-algebra. In other words, $\mathcal{A} \odot \mathcal{B}$ may carry more than one C^{*}-norms. For example, the spatial (or minimal) tensor product norm $\|\cdot\|_{\min }$ and the maximal tensor product $\|\cdot\|_{\max }$ are always C^{*}-norms on $\mathcal{A} \odot \mathcal{B}$. As the names suggest, the spatial (minimal) tensor norm is the smallest C^{*}-norm one can place on $\mathcal{A} \odot \mathcal{B}$ and the maximal is the largest. In general these norms do not agree. In 1995, Junge and Pisier [1] proved that

$$
\mathbb{B}\left(\ell_{2}\right)^{\max } \otimes \mathbb{B}\left(\ell_{2}\right) \neq \mathbb{B}\left(\ell_{2}\right)^{\min } \otimes \mathbb{B}\left(\ell_{2}\right)
$$

In 2014, Ozawa and Pisier [2] demonstrated that $\mathbb{B}(\mathcal{H}) \otimes \mathbb{B}(\mathcal{H})$ admits $2^{\aleph_{0}}$ distinct C^{*}-norms. Ozawa and Pisier also showed that $C_{\lambda}^{*}\left(\mathbb{F}_{n}\right) \otimes C_{\lambda}^{*}\left(\mathbb{F}_{n}\right)$ admits $2^{\aleph_{0}}$ distinct C^{*}-norms where \mathbb{F}_{n} is the noncommutative free group on $n \geq 2$ generators. Recently, Wiersma generalized Ozawa and Pisier's result. In [3], Wiersma proved that $C_{\lambda}^{*}\left(\Gamma_{1}\right) \otimes C_{\lambda}^{*}\left(\Gamma_{2}\right)$ and $C^{*}\left(\Gamma_{1}\right) \otimes C_{\lambda}^{*}\left(\Gamma_{2}\right)$ admit $2^{\aleph_{0}}$ distinct C^{*}-norms where Γ_{1} and Γ_{2} are discrete groups containing copies of noncommutative free groups. In the other respect, Kirchberg [4] proved the following striking theorem:

$$
C^{*}(\mathbb{F}){ }^{\max } \otimes \mathbb{B}(\mathcal{H})=C^{*}(\mathbb{F}){ }^{\min _{\otimes}} \mathbb{B}(\mathcal{H})
$$

for any free group \mathbb{F}. Kirchberg's famous QWEP conjecture is one of the most important open problems in the theory of operator algebras. Kirchberg showed that QWEP conjecture is equivalent to

$$
C^{*}\left(\mathbb{F}_{2}\right)^{\max } C^{*}\left(\mathbb{F}_{2}\right)=C^{*}\left(\mathbb{F}_{2}\right)^{\min } C^{*}\left(\mathbb{F}_{2}\right)
$$

Brown and Guentner introduced a new C^{*}-completion of the group ring of a countable discrete group Γ in [5]. In the following, we first recall some results in [5].

Let Γ be a countable discrete group and π be a unitary representation of Γ on a Hilbert space \mathcal{H}. For $\xi, \eta \in \mathcal{H}$, we denote the matrix coefficient of π by

$$
\pi_{\xi, \eta}(s)=\langle\pi(s) \xi \mid \eta\rangle
$$

It is clear that $\pi_{\xi, \eta} \in \ell_{\infty}(\Gamma)$.
Let D be an algebraic two-side ideal of $\ell_{\infty}(\Gamma)$. If there exists a dense subspace \mathcal{H}_{0} of \mathcal{H} such that $\pi_{\xi, \eta} \in D$ for all $\xi, \eta \in \mathcal{H}_{0}$, then π is called D-representation. If D is invariant under the left and right translation of Γ on $\ell_{\infty}(\Gamma)$, then it is said to be translation invariant. In this paper, we always assume that D is a non-zero translation invariant ideal of $\ell_{\infty}(\Gamma)$. For each $p \in[1,+\infty)$, we denote the norm on $\ell_{p}(\Gamma)$ by

$$
|f|_{p}=\left(\sum_{s \in \Gamma}\left|f^{p}(s)\right|\right)^{\frac{1}{p}} \quad \text { for } \quad f \in \ell_{p}(\Gamma)
$$

We denote by $c_{0}(\Gamma)$ the functions of $\ell_{\infty}(\Gamma)$ with vanishing at infinity. It is clear that $\ell_{p}(\Gamma)$ and $c_{0}(\Gamma)$ are non-trivial translation invariant ideals of $\ell_{\infty}(\Gamma)$.

The C^{*}-algebra $C_{D}^{*}(\Gamma)$ is the C^{*}-completion of the group ring $\mathbb{C} \Gamma$ by $\|\cdot\|_{D}$, where for $\forall f \in \mathbb{C} \Gamma$,

$$
\|f\|_{D}=\sup \{\|\pi(f)\|: \pi \text { is a } D \text { - representation }\} .
$$

We denote by $C^{*}(\Gamma)$ the full group C^{*}-algebra and by $C_{\lambda}{ }^{*}(\Gamma)$ the reduced group C^{*}-algebra, where $C^{*}(\Gamma)$ is the completion of $C(\Gamma)$ with respect to the norm

$$
\|x\|_{u}=\sup \{\|\pi(x)\|: \pi \text { is a cyclic representation }\} .
$$

and $C_{\lambda}{ }^{*}(\Gamma)$ is the completion of $C(\Gamma)$ with the norm

$$
\|x\|_{r}=\sup \{\|\lambda(x)\|: \pi \text { is a left regular representation }\} .
$$

In [5], the following results are obtained:
(1) $C^{*}(\Gamma)=C_{l_{\infty}}{ }^{*}(\Gamma)$ and $C_{\lambda}{ }^{*}(\Gamma)=C_{c_{c}}{ }^{*}(\Gamma)$; Where $C_{c}(\Gamma)$ is the function of finitely supported functions on Γ.
(2) $C_{l_{p}}{ }^{*}(\Gamma)=C_{\lambda}{ }^{*}(\Gamma)$ for every $p \in[1,2]$;
(3) $C^{*}(\Gamma)=C_{D}{ }^{*}(\Gamma)$ if and only if there exists a sequence $\left\{h_{n}\right\}$ of positive definite functions in D such that $h_{n} \rightarrow 1$;
(4) Γ is amenable if and only if $C^{*}(\Gamma)=C_{\mathcal{C}_{c}}{ }^{*}(\Gamma)$;
(5) Γ has the Haagerup property if and only if $C^{*}(\Gamma)=C_{c_{0}}{ }^{*}(\Gamma)$.

In this paper, we introduce new tensor products $\stackrel{p}{\otimes}(1 \leq p \leq+\infty)$ on $C_{\ell_{p}}^{*}(\Gamma) \otimes C_{\ell_{p}}^{*}(\Gamma)$ and $\stackrel{c_{0}}{\otimes}$ on $C_{c_{0}}^{*}(\Gamma) \otimes C_{c_{0}}^{*}(\Gamma)$ for any discrete group Γ. We obtain that for $1 \leq p<+\infty, C_{\ell_{p}}^{*}(\Gamma){ }^{\max } C_{\ell_{p}}^{*}(\Gamma)=$ $C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma)$ if and only if Γ is amenable; $C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma){ }^{c_{0}} C_{c_{0}}^{*}(\Gamma)$ if and only if Γ has Haagerup property. In last section, for the free group with two generators \mathbb{F}_{2} we show that $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \not \equiv C_{\ell_{q}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{q}{\otimes} C_{\ell_{q}}^{*}\left(\mathbb{F}_{2}\right)$ for $2 \leq q<p \leq+\infty$.

2. Amenability and Haagerup Property

Definition 1. For a discrete group Γ and $1 \leq p \leq+\infty$, we define

$$
C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma) \triangleq C_{\ell_{p}}^{*}(\Gamma \times \Gamma) .
$$

We need to check that $\stackrel{p}{\otimes}$ is a C^{*}-tensor product of $C_{\ell_{p}}^{*}(\Gamma)$ and $C_{\ell_{p}}^{*}(\Gamma)$. First we will show that the map $x \rightarrow x \otimes e$ from $C_{\ell_{p}}^{*}(\Gamma)$ into $C_{\ell_{p}}^{*}(\Gamma \times \Gamma)$ is isometric, where e is the unit of Γ. For $x=\sum_{s \in \Gamma} a_{s} s \in \mathbb{C} \Gamma$ and the unit e of $\Gamma, x \otimes e \in \mathbb{C}(\Gamma) \otimes \mathbb{C}(\Gamma) \subseteq \mathbb{C}(\Gamma \times \Gamma)$. We compute

$$
\begin{aligned}
\|x \otimes e\|_{\ell_{p}} & =\sup \left\{\|\pi(x \otimes e)\| \mid \pi: \Gamma \times \Gamma \rightarrow \mathcal{B}(\mathcal{H}) \text { is } \ell_{p}(\Gamma \times \Gamma)-\text { representation }\right\} \\
& =\sup \left\{\left\|\pi\left(\sum_{s \in \Gamma} a_{s} s \otimes e\right)\right\| \mid \pi: \Gamma \times \Gamma \rightarrow \mathcal{B}(\mathcal{H}) \text { is } \ell_{p}(\Gamma \times \Gamma)-\text { representation }\right\} \\
& =\sup \left\{\left\|\sum_{s \in \Gamma} a_{s} \pi(s \otimes e)\right\| \mid \pi: \Gamma \times \Gamma \rightarrow \mathcal{B}(\mathcal{H}) \text { is } \ell_{p}(\Gamma \times \Gamma)-\text { representation }\right\} \\
& \leq \sup \left\{\left\|\sum_{s \in \Gamma} a_{s} \sigma(s)\right\| \mid \sigma \quad \text { is } \quad \ell_{p}(\Gamma)-\text { representation }\right\} \\
& \leq \sup \left\{\|\sigma(x)\| \mid \sigma \text { is } \ell_{p}(\Gamma)-\text { representation }\right\} \\
& =\|x\|_{\ell_{p},}
\end{aligned}
$$

since it is easy to check that $s \rightarrow \pi(s \otimes e)$ is an $\ell_{p}(\Gamma)$ - representation.
Conversely, we have

$$
\begin{aligned}
\|x \otimes e\|_{\ell_{p}} & =\sup \left\{\|\pi(x \otimes e)\| \mid \pi: \Gamma \times \Gamma \rightarrow \mathcal{B}(\mathcal{H}) \text { is } \ell_{p}(\Gamma \times \Gamma)-\text { representation }\right\} \\
& =\sup \left\{\left\|\sum_{s \in \Gamma} a_{s} \pi(s \otimes e)\right\| \mid \pi: \Gamma \times \Gamma \rightarrow \mathcal{B}(\mathcal{H}) \text { is } \ell_{p}(\Gamma \times \Gamma)-\text { representation }\right\} \\
& \geq \sup \left\{\left\|\sum_{s \in \Gamma} a_{s} \sigma_{s} \otimes \sigma_{e}\right\| \mid \sigma \text { is } \ell_{p}(\Gamma)-\text { representation }\right\} \\
& =\sup \left\{\left\|\sum_{s \in \Gamma} a_{s} \sigma_{s}\right\| \mid \sigma \text { is } \ell_{p}(\Gamma)-\text { representation }\right\} \\
& =\|x\|_{\ell_{p}},
\end{aligned}
$$

since it is routine to show that $(s, t) \in \Gamma \times \Gamma \rightarrow \sigma_{s} \otimes \sigma_{t} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$ is an $\ell_{p}(\Gamma \times \Gamma)$-representation. Under this identification, we have

$$
\mathbb{C}(\Gamma \times \Gamma) \subseteq C_{\ell_{p}}^{*}(\Gamma) \odot C_{\ell_{p}}^{*}(\Gamma) \subseteq C_{\ell_{p}}^{*}(\Gamma \times \Gamma)
$$

This implies that Definition 1 is well defined.
If $1 \leq p \leq 2$, it follows from Proposition 2.11 in [5] that

$$
\begin{aligned}
C_{\lambda}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\lambda}^{*}(\Gamma) & =C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma) \\
& =C_{\ell_{p}}^{*}(\Gamma \times \Gamma) \\
& =C_{\lambda}^{*}(\Gamma \times \Gamma) \\
& =C_{\lambda}^{*}(\Gamma){ }^{\min } \otimes C_{\lambda}^{*}(\Gamma) .
\end{aligned}
$$

This shows that $\stackrel{p}{\otimes}={ }^{\min } \otimes$ for $1 \leq p \leq 2$. If $p=\infty$, we have

$$
\begin{aligned}
C^{*}(\Gamma) \stackrel{\infty}{\otimes} C^{*}(\Gamma) & =C_{\ell_{\infty}}^{*}(\Gamma) \stackrel{\infty}{\otimes} C_{\ell_{\infty}}^{*}(\Gamma) \\
& =C_{\ell_{\infty}}^{*}(\Gamma \times \Gamma) \\
& =C^{*}(\Gamma \times \Gamma) \\
& =C^{*}(\Gamma){ }^{\max } C^{*}(\Gamma) .
\end{aligned}
$$

This shows that

$$
C_{\lambda}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\lambda}^{*}(\Gamma)=C_{\lambda}^{*}(\Gamma) \stackrel{\min }{\otimes} C_{\lambda}^{*}(\Gamma) .
$$

Theorem 1. For $1 \leq p<+\infty, C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma)$ if and only if Γ is amenable.

Proof. Suppose that Γ is amenable, $\|\cdot\|_{\min }=\|\cdot\|_{\max }$ on $\mathbb{C}(\Gamma)$. Since

$$
\|\cdot\|_{\min } \leq\|\cdot\|_{\ell_{p}} \leq\|\cdot\|_{\max }
$$

on $\mathbb{C}(\Gamma)$, we have $\|\cdot\|_{\min }=\|\cdot\|_{p}=\|\cdot\|_{\max }$ on $\mathbb{C}(\Gamma)$. This implies that $C_{\lambda}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma)=C^{*}(\Gamma)$. Thus

$$
C_{\ell_{p}}^{*}(\Gamma)^{\max } C_{\ell_{p}}^{*}(\Gamma)=C^{*}(\Gamma) \stackrel{\max }{\otimes} C^{*}(\Gamma)=C^{*}(\Gamma \times \Gamma)
$$

Since $\Gamma \times \Gamma$ is also amenable, it follows from the Definition 1 that

$$
C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma \times \Gamma)=C^{*}(\Gamma \times \Gamma)
$$

Therefore

$$
C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma) .
$$

Conversely, we suppose that

$$
C_{\ell_{p}}^{*}(\Gamma) \stackrel{m a x}{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma \times \Gamma)
$$

Then $C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)$ has a faithful $\ell_{p}(\Gamma \times \Gamma)$-representation $\pi: C_{\ell_{p}}^{*}(\Gamma){ }^{\max } C_{\ell_{p}}^{*}(\Gamma) \rightarrow \mathcal{B}(\mathcal{H})$ and by taking an infinite direct sum if necessary, we can assume $\pi\left(C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)\right)$ contains no compact operators. By Glimm's Lemma [6], for any state φ of $\pi\left(C_{\ell_{p}}^{*}(\Gamma){ }^{\max } \otimes C_{\ell_{p}}^{*}(\Gamma)\right)$, there exist orthonormal vectors $v_{n} \in \mathcal{H}$ such that

$$
\left\langle\pi(x) v_{n} \mid v_{n}\right\rangle \rightarrow \varphi(\pi(x)), \quad \forall x \in C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma \times \Gamma)
$$

Choose φ the trivial state, we have

$$
\left\langle\pi(x) v_{n} \mid v_{n}\right\rangle \rightarrow 1, \quad \forall x \in C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma \times \Gamma)
$$

In particular,

$$
\left\langle\pi_{s, t} v_{n} \mid v_{n}\right\rangle \rightarrow 1, \quad \forall s, t \in \Gamma
$$

Since π is a $\ell_{p}(\Gamma \times \Gamma)$-representation, we can approximate the v_{n} 's with vectors having associated matrix coefficients in $\ell_{p}(\Gamma \times \Gamma)$. Thus we may assume that $\pi_{v_{n}, v_{n}} \in \ell_{p}(\Gamma \times \Gamma)$ for each n, where $\pi_{v_{n}, v_{n}}(s, t)=\left\langle\pi_{s, t} v_{n} \mid v_{n}\right\rangle$. Since $\pi_{v_{n}, v_{n}}$ are positive definite functions in $\ell_{p}(\Gamma \times \Gamma)$ tending pointwise to one, it follows from the Remark 2.13 in [5] that $\Gamma \times \Gamma$ is amenable and so is Γ.

Theorem 2. For $1 \leq p<+\infty, C_{\ell_{p}}^{*}(\Gamma)^{\max } C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma){ }^{\min } \otimes C_{\ell_{p}}^{*}(\Gamma)$ if and only if Γ is amenable.
Proof. Suppose that Γ is amenable, we have

$$
C^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma)=C_{\lambda}^{*}(\Gamma)
$$

and

$$
C^{*}(\Gamma \times \Gamma)=C_{\ell_{p}}^{*}(\Gamma \times \Gamma)=C_{\lambda}^{*}(\Gamma \times \Gamma)
$$

Thus

$$
C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C^{*}(\Gamma) \stackrel{\max }{\otimes} C^{*}(\Gamma)=C^{*}(\Gamma \times \Gamma)
$$

and

$$
C_{\ell_{p}}^{*}(\Gamma){ }^{\min } \otimes C_{\ell_{p}}^{*}(\Gamma)=C_{\lambda}^{*}(\Gamma) \stackrel{\min }{\otimes} C_{\lambda}^{*}(\Gamma)=C_{\lambda}^{*}(\Gamma \times \Gamma)
$$

Therefore

$$
C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma)^{\min } C_{\ell_{p}}^{*}(\Gamma)
$$

Conversely, suppose that $C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma) \stackrel{\min }{\otimes} C_{\ell_{p}}^{*}(\Gamma)$. Since

$$
\|\cdot\|_{\min } \leq\|\cdot\|_{\ell_{p}} \leq\|\cdot\|_{\max }
$$

on the algebraic tensor product $C_{\ell_{p}}^{*}(\Gamma) \odot C_{\ell_{p}}^{*}(\Gamma)$,

$$
C_{\ell_{p}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{\ell_{p}}^{*}(\Gamma)=C_{\ell_{p}}^{*}(\Gamma) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}(\Gamma) .
$$

It follows from Theorem 1 that Γ is amenable.
Corollary 1. For free group $\mathbb{F}_{n}(2 \leq n \leq+\infty)$, we have

$$
C_{\ell_{p}}^{*}\left(\mathbb{F}_{n}\right)^{\max } C_{\ell_{p}}^{*}\left(\mathbb{F}_{n}\right) \neq C_{\ell_{p}}^{*}\left(\mathbb{F}_{n}\right)^{\min } C_{\ell_{p}}^{*}\left(\mathbb{F}_{n}\right) \quad \forall 1 \leq p<+\infty
$$

It is well known that the famous QWEP conjecture is equivalent to

$$
C^{*}\left(\mathbb{F}_{2}\right) \stackrel{\max }{\otimes} C^{*}\left(\mathbb{F}_{2}\right)=C^{*}\left(\mathbb{F}_{2}\right){ }^{\min } C^{*}\left(\mathbb{F}_{2}\right) .
$$

From Proposition 2.10 in [5], $C^{*}(\Gamma)=C_{\ell_{\infty}}^{*}(\Gamma)$. Compare with Corollary 1, maybe we can get some ideas about QWEP.

Definition 2. For a discrete group Γ, we define

$$
C_{c_{0}}^{*}(\Gamma) \stackrel{c_{0}}{\otimes} C_{c_{0}}^{*}(\Gamma) \triangleq C_{c_{0}}^{*}(\Gamma \times \Gamma)
$$

By a similar argument after Definition 1, we can show that Definition 2 is well defined also.
Theorem 3. $C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma) \stackrel{c_{0}}{\otimes} C_{c_{0}}^{*}(\Gamma)$ if and only if Γ has Haagerup property.
Proof. The proof is similar to the argument in Theorem 1. Suppose that Γ has Haagerup property. It is well known that $\Gamma \times \Gamma$ also has Haagerup property. Thus it follows from Corollary 3.4 in [5] that we have

$$
C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma)=C^{*}(\Gamma) \stackrel{\max }{\otimes} C^{*}(\Gamma)=C^{*}(\Gamma \times \Gamma)
$$

and

$$
C_{c_{0}}^{*}(\Gamma) \stackrel{c_{0}}{\otimes} C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma \times \Gamma)=C^{*}(\Gamma \times \Gamma)
$$

So $C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma) \stackrel{c_{0}}{\otimes} C_{c_{0}}^{*}(\Gamma)$.
Conversely, suppose that

$$
C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma) \stackrel{c_{0}}{\otimes} C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma \times \Gamma)
$$

Then $C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma)$ has a faithful $C_{0}(\Gamma \times \Gamma)$-representation

$$
\pi: C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma) \rightarrow \mathcal{B}(\mathcal{H})
$$

and by taking an infinite direct sum if necessary, we can assume $\pi\left(C_{c_{0}}^{*}(\Gamma){ }^{\max } C_{c_{0}}^{*}(\Gamma)\right)$ contains no compact operators. By Glimm's Lemma [6], for any state φ of $\pi\left(C_{c_{0}}^{*}(\Gamma){ }^{\max } C_{c_{0}}^{*}(\Gamma)\right)$, there exist orthonormal vectors $v_{n} \in \mathcal{H}$ such that

$$
\left\langle\pi(x) v_{n} \mid v_{n}\right\rangle \rightarrow \varphi(\pi(x)), \quad \forall x \in C_{c_{0}}^{*}(\Gamma)^{\max } C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma \times \Gamma)
$$

Choose φ the trivial state, we have

$$
\left\langle\pi(x) v_{n} \mid v_{n}\right\rangle \rightarrow 1, \quad \forall x \in C_{c_{0}}^{*}(\Gamma)^{\max } \otimes C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma \times \Gamma)
$$

In particular,

$$
\left\langle\pi_{s, t} v_{n} \mid v_{n}\right\rangle \rightarrow 1, \quad \forall s, t \in \Gamma
$$

Approximating the v_{n} 's with vectors having associated matrix coefficients in $c_{0}(\Gamma \times \Gamma)$, we may assume that $\pi_{v_{n}, v_{n}} \in c_{0}(\Gamma \times \Gamma)$ for each n. Therefore $\left\{\pi_{v_{n}, v_{n}}\right\}$ is a sequence of positive definite functions in $c_{0}(\Gamma \times \Gamma)$ tending pointwise to one, this implies that $\Gamma \times \Gamma$ has Haagerup property and so does Γ.

Corollary 2. If $C_{c_{0}}^{*}(\Gamma) \stackrel{\max }{\otimes} C_{c_{0}}^{*}(\Gamma)=C_{c_{0}}^{*}(\Gamma){ }^{\min } C_{c_{0}}^{*}(\Gamma)$, then Γ has Haagerup property.

3. P-Tensor Product on \mathbb{F}_{2}

In this section, we mainly consider the p-tensor product $\stackrel{p}{\otimes}$ on the free group with two generators \mathbb{F}_{2}.

We recall that a function $\varphi: \Gamma \rightarrow C$ is said to be positive definite if the matrix

$$
\left[\varphi\left(s^{-1} t\right)\right]_{s, t \in \mathbb{F}} \in M_{\mathbb{F}}(C)
$$

is positive for every finite set $\mathbb{F} \subset \Gamma$.
Proposition 1. Let \mathbb{F}_{2} be the free group with two generators. Then there exists a $p \in(2, \infty)$ such that

$$
C^{*}\left(\mathbb{F}_{2}\right) \stackrel{\max }{\otimes} C^{*}\left(\mathbb{F}_{2}\right) \neq C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \neq C_{\lambda}^{*}\left(\mathbb{F}_{2}\right)^{\min } C_{\lambda}^{*}\left(\mathbb{F}_{2}\right)
$$

Proof. Since $\mathbb{F}_{2} \times \mathbb{F}_{2}$ is not amenable, by Prop 2.12 in $[5] C^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right) \neq C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ for any $p \in$ $[1,+\infty)$. Since $C^{*}\left(\mathbb{F}_{2}\right)^{m a x}{ }_{\otimes}^{*}\left(\mathbb{F}_{2}\right)=C^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ and $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right)=C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$, we have for any $p \in[1,+\infty) C^{*}\left(\mathbb{F}_{2}\right)^{\max } \otimes C^{*}\left(\mathbb{F}_{2}\right) \neq C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right)$.

Since $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right)=C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ and $C_{\lambda}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)=C_{\lambda}^{*}\left(\mathbb{F}_{2}\right){ }^{m i n} \otimes C_{\lambda}^{*}\left(\mathbb{F}_{2}\right)$, we only need to find some $p \in(2,+\infty)$ with $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right) \neq C_{\lambda}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$. Let $S=\left\{a, b, a^{-1}, b^{-1}\right\} \subseteq \mathbb{F}_{2}$ be the standard generating set and let $|\cdot|$ denote the corresponding word length. A well known result of [7] states that for every $n \in \mathbb{N}$,

$$
h_{n}(s):=e^{-\frac{|s|}{n}}
$$

is positive definite function on \mathbb{F}_{2} and clearly $h_{n} \rightarrow 1$ pointwise. Now for $(s, t) \in \mathbb{F}_{2} \times \mathbb{F}_{2}$, we define

$$
\varphi_{n}((s, t)):=h_{n}(s)=e^{-\frac{|s|}{n}}
$$

and

$$
\psi_{n}((s, t)):=h_{n}(t)=e^{-\frac{|t|}{n}} .
$$

For any $\alpha_{i} \in \mathbb{C}$ and $\left(s_{i}, t_{i}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}, 1 \leq i \leq n$, we have

$$
\begin{aligned}
& \sum_{i, j} \alpha_{i} \bar{\alpha}_{j} \varphi_{n}\left(\left(s_{j}, t_{j}\right)^{-1}\left(s_{i}, t_{i}\right)\right) \\
= & \sum_{i, j} \alpha_{i} \bar{\alpha}_{j} \varphi_{n}\left(\left(s_{j}^{-1} s_{i}, t_{j}^{-1} t_{i}\right)\right) \\
= & \sum_{i, j} \alpha_{i} \bar{\alpha}_{j} h_{n}\left(s_{j}^{-1} s_{i}\right) \geq 0 .
\end{aligned}
$$

So each φ_{n} is a positive definite function on $\mathbb{F}_{2} \times \mathbb{F}_{2}$, (Similarly ψ_{n} is a positive definite function). Fixing n, we have $\varphi_{n} \in \ell_{p_{n}}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ for sufficiently large p_{n}. Let $\pi_{n}: C_{\ell_{p_{n}}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right) \rightarrow$ $B\left(\mathcal{H}_{n}\right)$ be the GNS presentations related to φ_{n}, and let $\xi_{n} \in \mathcal{H}_{n}$ be the canonical cyclic vector. Since $\varphi_{n}((s, t)) \rightarrow 1$, we see that $\left\|\pi_{n}((s, t)) \xi_{n}-\xi_{n}\right\| \rightarrow 0$ for all $(s, t) \in \mathbb{F}_{2} \times \mathbb{F}_{2}$. Hence the trivial representation is contained in the direct sum representation $\oplus \pi_{n}$ weakly. If for each n, $C_{\ell_{p_{n}}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)=C_{\lambda}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right), \oplus \pi_{n}$ would be defined on $C_{\lambda}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$. Since $\mathbb{F}_{2} \times \mathbb{F}_{2}$ is not amenable, the trivial representation cannot be contained in any representation of $C_{\lambda}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ weakly. This is a contradiction. Therefore for some $n, C_{\ell_{p_{n}}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right) \neq C_{\lambda}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$

In the paper [8], Okayasu give a characterization of positive definite functions on a free group with finite generators, which can be extended to the positive linear functionals on the free group C^{*}-algebras associated with the ideal ℓ_{p}. This is a generalization of Haagerup's famous characterization for the case of the reduced free group C^{*}-algebra. The strategy in these two papers also works for the group $\mathbb{F}_{2} \times \mathbb{F}_{2}$.

For non negative integers k_{1}, k_{2}, we define

$$
W_{\left(k_{1}, k_{2}\right)}=\left\{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}|\quad| s_{1} \mid=k_{1} \quad \text { and } \quad\left|s_{2}\right|=k_{2}\right\} .
$$

$\chi_{\left(k_{1}, k_{2}\right)}$ denotes the characteristic function on $W_{\left(k_{1}, k_{2}\right)}$.
Lemma 1. Let $q \in[1,2]$. Let k_{i}, l_{i} and $m_{i}(i=1,2)$ be non-negative integers. Let f and g be functions on $\mathbb{F}_{2} \times \mathbb{F}_{2}$ such that suppf $\subseteq W_{\left(k_{1}, k_{2}\right)}$ and suppg $\subseteq W_{\left(l_{1}, l_{2}\right)}$ respectively. If $\left|k_{i}-l_{i}\right| \leq m_{i} \leq k_{i}+l_{i}$ and $k_{i}+l_{i}-m_{i}$ is even, then

$$
\left|(f * g) \cdot \chi_{\left(m_{1}, m_{2}\right)}\right|_{q} \leq|f|_{q} \cdot|g|_{q}
$$

and if $\left(m_{1}, m_{2}\right)$ is any other values, then

$$
\left|(f * g) \cdot \chi_{\left(m_{1}, m_{2}\right)}\right|_{q}=0
$$

Proof. Note that

$$
\begin{aligned}
(f * g)\left(\left(s_{1}, s_{2}\right)\right) & =\sum_{\substack{\left(t_{1}, t_{2}\right),\left(u_{1}, u_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2} \\
s_{s}=t_{i} u_{i}}} f\left(\left(t_{1}, t_{2}\right)\right) \cdot g\left(\left(u_{1}, u_{2}\right)\right) \\
& =\sum_{\substack{\left|t_{i}\right|=k_{i},\left|u_{i}\right|=l_{i} \\
s_{i}=t_{i} u_{i}}} f\left(\left(t_{1}, t_{2}\right)\right) \cdot g\left(\left(u_{1}, u_{2}\right)\right) .
\end{aligned}
$$

Since the possible values of $\left|t_{i} u_{i}\right|$ are $\left|k_{i}-l_{i}\right|,\left|k_{i}-l_{i}\right|+2, \ldots, k_{i}+l_{i}$, we have

$$
\left|(f * g) \chi_{\left(m_{1}, m_{2}\right)}\right|_{q}=0
$$

for any other $\left(m_{1}, m_{2}\right)$. We only consider the $q \neq 1$ ($q=1$ is similar and trivial). First, we assume that $m_{i}=k_{i}+l_{i}(i=1,2)$. In this case, if $\left|s_{i}\right|=m_{i}$, then s_{i} can be uniquely written as a product $t_{i} u_{i}$ with $t_{i}=\left|k_{i}\right|$ and $u_{i}=\left|l_{i}\right|$. Hence

$$
(f * g)\left(\left(s_{1}, s_{2}\right)\right)=f\left(\left(t_{1}, t_{2}\right)\right) \cdot g\left(\left(u_{1}, u_{2}\right)\right)
$$

Therefore

$$
\begin{aligned}
\left|(f * g) \chi_{\left(m_{1}, m_{2}\right)}\right|_{q}^{q} & =\sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}}\left|(f * g)\left(\left(s_{1}, s_{2}\right)\right) \cdot \chi_{\left(m_{1}, m_{2}\right)}\left(\left(s_{1}, s_{2}\right)\right)\right|^{q} \\
& =\sum_{\substack{\left|t_{i} u_{i}\right|=k_{i}+l_{i} \\
\left|t_{i}\right|=k_{i}\left|u_{i}\right|=l_{i}}}\left|f\left(\left(t_{1}, t_{2}\right)\right)\right|^{q} \cdot\left|g\left(\left(u_{1}, u_{2}\right)\right)\right|^{q} \\
& \leq \sum_{\left|\sum_{i}\right|=k_{i}\left|u_{i}\right|=l_{i}}\left|f\left(\left(t_{1}, t_{2}\right)\right)\right|^{q} \cdot\left|g\left(\left(u_{1}, u_{2}\right)\right)\right|^{q} \\
& =|f|_{q}^{q} \cdot|g|_{q}^{q} .
\end{aligned}
$$

Next we assume that $m_{i}=\left|k_{i}-l_{i}\right|, \ldots, k_{i}+l_{i}-2$. In these cases, we have $m_{i}=k_{i}+l_{i}-2 j_{i}$, for $1 \leq j_{i} \leq \min \left(k_{i}, l_{i}\right),(i=1,2)$. Let $s_{i}=t_{i} u_{i}$ with $\left|s_{i}\right|=m_{i},\left|t_{i}\right|=k_{i}$, and $\left|u_{i}\right|=l_{i}$. Then s_{i} can be uniquely written as a product $t^{\prime}{ }_{i} u^{\prime}$ such that $t_{i}=t^{\prime}{ }_{i} v_{i}, u_{i}=v_{i}^{-1} u^{\prime}{ }_{i}$ with $\left|t^{\prime}{ }_{i}\right|=k_{i}-j_{i},\left|u^{\prime}{ }_{i}\right|=l_{i}-j_{i}$, and $\left|v_{i}\right|=\left|v_{i}^{-1}\right|=j_{i}$. We define

$$
f^{\prime}\left(\left(t_{1}, t_{2}\right)\right)=\left(\sum_{\left|v_{i}\right|=j_{i}}\left|f\left(\left(t_{1} v_{1}, t_{2} v_{2}\right)\right)\right|^{q}\right)^{\frac{1}{q}}, \text { if }\left|t_{i}\right|=k_{i}-j_{i}
$$

and $f^{\prime}\left(\left(t_{1}, t_{2}\right)\right)=0$ otherwise. Similarly, we define

$$
g^{\prime}\left(\left(u_{1}, u_{2}\right)\right)=\left(\sum_{\left|v_{i}\right|=j_{i}}\left|g\left(\left(v_{1}^{-1} u_{1}, v_{2}^{-1} u_{2}\right)\right)\right|^{q}\right)^{\frac{1}{q}}, \text { if }\left|u_{i}\right|=l_{i}-j_{i}
$$

and $g^{\prime}\left(\left(u_{1}, u_{2}\right)\right)=0$, otherwise. Note that supp$f^{\prime} \subseteq W_{\left(k_{1}-j_{1}, k_{2}-j_{2}\right)}$, and suppg $\subseteq W_{\left(l_{1}-j_{1}, l_{2}-j_{2}\right)}$. Moreover,

$$
\left|f^{\prime}\right|_{q}^{q}=\sum_{\left|t_{i}\right|=k_{i}-j_{i}}\left(\sum_{\left|v_{i}\right|=j_{i}}\left|f\left(\left(t_{1} v_{1}, t_{2} v_{2}\right)\right)\right|^{q}\right)=|f|_{q}^{q},
$$

and $\left|g^{\prime}\right|_{q}^{q}=|g|_{q}^{q}$. Take a real number p with $\frac{1}{p}+\frac{1}{q}=1$. Since $1<q \leq 2,2 \leq p<+\infty$, so $q \leq p$ in general. Owing to Hölder inequality, we have

$$
\begin{aligned}
\left|(f * g)\left(\left(s_{1}, s_{2}\right)\right)\right| & \left.=\left|\begin{array}{c}
\sum_{\substack{\left|t_{i}\right|=k_{i}\left|u_{i}\right|=l_{i} \\
s_{i}=t_{i} u_{i}}} f\left(\left(t_{1}, t_{2}\right)\right) \cdot g\left(\left(u_{1}, u_{2}\right)\right) \mid \\
\\
\end{array}\right|_{\left|v_{i}\right|=j_{i}} f\left(\left(t^{\prime}{ }_{1} v_{1}, t^{\prime}{ }_{2} v_{2}\right)\right) \cdot g\left(\left(v_{1}^{-1} u^{\prime}{ }_{1}, v_{2}^{-1} u^{\prime}{ }_{2}\right)\right) \right\rvert\, \\
& \leq\left.\left.\left.\left.\left|\sum_{\left|v_{i}\right|=j_{i}}\right| f\left(\left(t^{\prime}{ }_{1} v_{1}, t^{\prime}{ }_{2} v_{2}\right)\right)\right|^{q}\right|^{\frac{1}{q}} \cdot\left|\sum_{\left|v_{i}\right|=j_{i}}\right| g\left(\left(v_{1}-1 u^{\prime}{ }_{1}, v_{2}^{-1} u^{\prime}{ }_{2}\right)\right)\right|^{p}\right|^{\frac{1}{p}} \\
& \leq\left.\left.\left.\left.\left|\sum_{\left|v_{i}\right|=j_{i}}\right| f\left(\left(t^{\prime}{ }_{1} v_{1}, t^{\prime}{ }_{2} v_{2}\right)\right)\right|^{q}\right|^{\frac{1}{q}} \cdot\left|\sum_{\left|v_{i}\right|=j_{i}}\right| g\left(\left(v_{1}^{-1} u^{\prime}{ }_{1}, v_{2}^{-1} u^{\prime}{ }_{2}\right)\right)\right|^{q}\right|^{\frac{1}{q}} \\
& =f^{\prime}\left(t^{\prime}{ }_{1}, t^{\prime}{ }_{2}\right) \cdot g\left(u^{\prime}{ }_{1}, u^{\prime}{ }_{2}\right)=\left(f^{\prime} * g^{\prime}\right)\left(\left(s_{1}, s_{2}\right)\right),
\end{aligned}
$$

where $s_{i}=t^{\prime}{ }_{i} u^{\prime}{ }_{i}$ and $\left|s_{i}\right|=k_{i}+l_{i}-2 j_{i}=\left|t^{\prime}\right|+\left|u^{\prime}{ }_{i}\right|$. Therefore, $\left|(f * g) \cdot \chi_{\left(m_{1}, m_{2}\right)}\right| \leq\left(f^{\prime} * g^{\prime}\right) \cdot \chi_{\left(m_{1}, m_{2}\right)}$. Since $\left(k_{i}-j_{i}\right)+\left(l_{i}-j_{i}\right)=m_{i}$, it follows from the first part of the proof that

$$
\begin{aligned}
\left|(f * g) \chi_{\left(m_{1}, m_{2}\right)}\right| & \leq\left|\left(f^{\prime} * g^{\prime}\right) \cdot \chi_{\left(m_{1}, m_{2}\right)}\right| \\
& \leq\left|f^{\prime}\right|_{q} \cdot\left|g^{\prime}\right|_{q} \\
& =|f|_{q} \cdot|g|_{q} .
\end{aligned}
$$

At last, we assume that $m_{1}=k_{1}+l_{1}$ and $m_{2}=\left|k_{2}-l_{2}\right|, \ldots, k_{2}+l_{2}-2$; or $m_{1}=\left|k_{1}-l_{1}\right|, \ldots, k_{1}+$ $l_{1}-2$ and $m_{2}=k_{2}+l_{2}$. We only need to consider the first case.In this case, $m_{1}=k_{1}+l_{1}$, and $m_{2}=$ $k_{2}+l_{2}-2 j_{2}$ for $1 \leq j_{2} \leq \min \left(k_{2}, l_{2}\right)$. Then s_{1} can be uniquely written as a product $t_{1} u_{1}$ with $\left|t_{1}\right|=k_{1}$ and $\left|u_{1}\right|=l_{1}$. Let $s_{2}=t_{2} u_{2}$ with $\left|s_{2}\right|=m_{2},\left|t_{2}\right|=k_{2},\left|u_{2}\right|=l_{2}$. Then s_{2} can be uniquely written as a product $t^{\prime}{ }_{2} u^{\prime}{ }_{2}$ such that $t_{2}=t^{\prime}{ }_{2} v_{2}, u_{2}=v_{2}^{-1} u^{\prime}{ }_{2}$, with $\left|t^{\prime}{ }_{2}\right|=k_{2}-j_{2},\left|u^{\prime}{ }_{2}\right|=l_{2}-j_{2}$ and $\left|v_{2}\right|=\left|v_{2}^{-1}\right|=j_{2}$. The following proof is almost the same as the second part with $j_{1}=0$.

Lemma 2. Let k_{1}, k_{2} be non-negative integers. Let $1 \leq q \leq p \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$. If a unitary representation $\pi: \mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow \mathcal{U}(\mathcal{H})$ has a cyclic vector ξ such that $\pi_{\xi, \xi} \in \ell_{p}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ then

$$
\|\pi(f)\| \leq\left(k_{1}+k_{2}+2\right) \cdot|f|_{q},
$$

for $f \in C_{c}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ with supp $f \subseteq W_{\left(k_{1}, k_{2}\right)}$.
Proof. We only consider $1 \leq q \leq 2$ and $2 \leq p \leq+\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. We consider the norm $\left|\left(f^{*} * f\right)^{(* 2 n)}\right|_{q}$. Write $f_{2 j-1}=f^{*}$ and $f_{2 j}=f$ for $j=1, \ldots, 2 n$. Then

$$
\left(f^{*} * f\right)^{(* 2 n)}=f_{1} * f_{2} * \cdots * f_{4 n}
$$

We also denote $g=f_{2} * \cdots * f_{4 n}$. So we have

$$
\left(f^{*} * f\right)^{(* 2 n)}=f_{1} * g
$$

Since $f^{*}\left(\left(s_{1}, s_{2}\right)\right)=\bar{f}\left(\left(s_{1}^{-1}, s_{2}^{-1}\right)\right)$, $\operatorname{supp} f_{j} \subseteq W_{\left(k_{1}, k_{2}\right)}$, for $j=1,2, \ldots, 4 n$ and $g \in c_{c}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$. Put $g_{\left(l_{1}, l_{2}\right)}=g \mathcal{X}_{\left(l_{1}, l_{2}\right)}$. Then $\operatorname{supp} g_{\left(l_{1}, l_{2}\right)} \subseteq W_{\left(l_{1}, l_{2}\right)}$ and

$$
|g|_{q}^{q}=\sum_{l_{1}, l_{2}=0}^{+\infty}\left|g_{\left(l_{1}, l_{2}\right)}\right|_{q}^{q} .
$$

Clearly, $\left|g_{\left(l_{1}, l_{2}\right)}\right|_{q}=0$ for all but finitely many l_{1}, l_{2}. Moreover set

$$
h=f_{1} * g=\sum_{l_{1}, l_{2}=0}^{+\infty} f_{1} * g_{\left(l_{1}, l_{2}\right)}
$$

and $h_{\left(m_{1}, m_{2}\right)}=h \chi_{\left(m_{1}, m_{2}\right)}$. Then $h \in c_{c}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ and

$$
|h|_{q}^{q}=\sum_{m_{1}, m_{2}=0}^{+\infty}\left|h_{\left(m_{1}, m_{2}\right)}\right|_{q}^{q} .
$$

$\left|h_{\left(m_{1}, m_{2}\right)}\right|_{q}=0$ for all but finitely many m_{1}, m_{2}. By Lemma 1,

$$
\left|\left(f_{1} * g_{\left(l_{1}, l_{2}\right)}\right) \cdot \chi_{\left(m_{1}, m_{2}\right)}\right|_{q} \leq\left|f_{1}\right|_{q} \cdot\left|g_{\left(l_{1}, l_{2}\right)}\right|_{q}
$$

in the case where $\left|k_{i}-l_{i}\right| \leq m_{i} \leq k_{i}+l_{i}$, and $k_{i}+l_{i}-m_{i}$ is even, and $\left|\left(f_{1} * g\right) \cdot \chi_{\left(m_{1}, m_{2}\right)}\right|_{q}=0$ for any other values of m_{i}. Hence,

$$
\begin{aligned}
\left|h_{\left(m_{1}, m_{2}\right)}\right|_{q} & =\left|\sum_{l_{1}, l_{2}=0}^{+\infty}\left(f_{1} * g_{\left(l_{1}, l_{2}\right)}\right) \cdot \chi_{\left(m_{1}, m_{2}\right)}\right|_{q} \\
& \leq \sum_{l_{1}, l_{2}=0}^{+\infty}\left|\left(f_{1} * g_{\left(l_{1}, l_{2}\right)}\right) \cdot \chi_{\left(m_{1}, m_{2}\right)}\right|_{q} \\
& \leq\left|f_{1}\right|_{q} \cdot \sum_{\substack{l_{i}=\left|m_{i}-k_{i}\right| \\
m_{i}+k_{i}-l_{i} \text { even }}}^{m_{i}+k_{i}}\left|g_{\left(l_{1}, l_{2}\right)}\right|_{q} .
\end{aligned}
$$

By writing $l_{i}=m_{i}+k_{i}-2 j_{i}$, we have

$$
\begin{aligned}
\left|h\left(m_{1}, m_{2}\right)\right|_{q} & \leq\left|f_{1}\right|_{q} \cdot \sum_{j_{1}=0}^{\min \left(m_{1}, k_{1}\right)} \sum_{j_{2}=0}^{\min \left(m_{2}, k_{2}\right)}\left|g_{\left(m_{1}+k_{1}-2 j_{1}, m_{2}+k_{2}-2 j_{2}\right)}\right|_{q} \\
& \leq\left|f_{1}\right|_{q} \cdot\left(\sum_{j_{1}, j_{2}}\left|g_{\left(m_{1}+k_{1}-2 j_{1}, m_{2}+k_{2}-2 j_{2}\right)}\right|_{q}^{q}\right)^{\frac{1}{q}} \cdot\left(\sum_{j_{1}, j_{2}} 1^{p}\right)^{\frac{1}{p}} \\
& \leq\left(k_{1}+k_{2}+2\right)^{\frac{1}{p}} \cdot\left|f_{1}\right|_{q} \cdot\left(\sum_{j_{1}, j_{2}}\left|g_{\left(m_{1}+k_{1}-2 j_{1}, m_{2}+k_{2}-2 j_{2}\right)}\right|_{q}^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
|h|_{q}^{q} & =\sum_{m_{1}, m_{2}=0}^{+\infty}\left|h\left(m_{1}, m_{2}\right)\right|_{q}^{q} \\
& \leq\left(k_{1}+k_{2}+2\right)^{\frac{q}{p}} \cdot\left|f_{1}\right|_{q}^{q} \cdot \sum_{m_{1}, m_{2}=0}^{+\infty} \sum_{j_{1}=0}^{\min \left(m_{1}, k_{1}\right)} \sum_{j_{2}=0}^{\min \left(m_{2}, k_{2}\right)}\left|g_{\left(m_{1}+k_{1}-2 j_{1}, m_{2}+k_{2}-2 j_{2}\right)}\right|_{q}^{q} \\
& =\left(k_{1}+k_{2}+2\right)^{q} \cdot\left|f_{1}\right|_{q}^{q} \cdot \sum_{j_{1}=0}^{k_{1}} \sum_{m_{1}=j_{1}}^{+\infty} \sum_{j_{2}=0}^{k_{2}} \sum_{m_{2}=j_{2}}^{+\infty}\left|g_{\left(m_{1}+k_{1}-2 j_{1}, m_{2}+k_{2}-2 j_{2}\right)}\right|_{q}^{q} \\
& =\left(k_{1}+k_{2}+2\right)^{\frac{q}{p}} \cdot\left|f_{1}\right|_{q}^{q} \cdot \sum_{j_{1}=0}^{k_{1}} \sum_{l_{1}=k_{1}-j_{1}}^{+\infty} \sum_{j_{2}=0}^{+\infty} \sum_{l_{2}=k_{2}-j_{2}}^{+\infty}\left|g_{\left(l_{1} l_{2}\right)}\right|_{q}^{q} \\
& \leq\left(k_{1}+k_{2}+2\right)^{\frac{q}{p}} \cdot\left|f_{1}\right|_{q}^{q} \cdot \sum_{j_{1}=0}^{k_{1}} \sum_{j_{2}=0}^{k_{2}}|g|_{q}^{q} \\
& \leq\left(k_{1}+k_{2}+2\right)^{\frac{q}{p}+1} \cdot\left|f_{1}\right|_{q}^{q} \cdot|g|_{q}^{q} .
\end{aligned}
$$

Hence $\left|f_{1} * g\right|_{q} \leq\left(k_{1}+k_{2}+2\right) \cdot\left|f_{1}\right|_{q} \cdot|g|_{q}$, i.e.

$$
\left|f_{1} * f_{2} * \cdots * f_{4 n}\right|_{q} \leq\left(k_{1}+k_{2}+2\right) \cdot\left|f_{1}\right|_{q} \cdot\left|f_{2} * \cdots * f_{4 n}\right|_{q}
$$

Inductively we have

$$
\left|\left(f^{*} * f\right)^{* 2 n}\right|_{q} \leq\left(k_{1}+k_{2}+2\right)^{4 n-1} \cdot|f|_{q}^{4 n} .
$$

Therefore, it follows from Lemma 3.2 in [8] that

$$
\|\pi(f)\| \leq \liminf _{n \rightarrow+\infty}\left|\left(f^{*} * f\right)^{* 2 n}\right|_{q}^{\frac{1}{4 n}} \leq\left(k_{1}+k_{2}+2\right) \cdot|f|_{q}
$$

Theorem 4. Let $2 \leq p<\infty$. Let φ be a positve definite function on $\mathbb{F}_{2} \times \mathbb{F}_{2}$. Then the following conditions are equivalent:
(1) φ can be extended to the positive linear functional on $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$;
(2) $\sup \left|\varphi \cdot \chi_{\left(k_{1}, k_{2}\right)}\right|_{p} \cdot\left(k_{1}+k_{2}+2\right)^{-1}<\infty$;
(3) The function $\left(s_{1}, s_{2}\right) \rightarrow \varphi\left(s_{1}, s_{2}\right) \cdot\left(2+\left|s_{1}\right|+\left|s_{2}\right|\right)^{-1-\frac{2}{p}}$ belongs to $\ell_{p}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$;
(4) For any $\alpha \in(0,1)$, the function $\left(s_{1}, s_{2}\right) \rightarrow \varphi\left(s_{1}, s_{2}\right) \cdot \alpha^{\left|s_{1}\right|+\left|s_{2}\right|}$ belongs to $\ell_{p}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$.

Proof. We assume that $\varphi((e, e))=1$.
$(1) \Rightarrow(2)$ It follows from (1) that w_{φ} extends to the station $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$, where

$$
\omega_{\varphi}(f)=\sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}} f\left(\left(s_{1}, s_{2}\right)\right) \cdot \varphi\left(\left(s_{1}, s_{2}\right)\right) \quad \text { for } \quad f \in c_{c}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)
$$

Hence, for $f \in c_{c}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$, we have

$$
\left|\omega_{\varphi}(f)\right| \leq\|f\|_{\ell_{p}}
$$

Set $f=|\varphi|^{p-2} \cdot \bar{\varphi} \cdot \chi_{\left(k_{1}, k_{2}\right)}$.
Then

$$
\begin{aligned}
\left|\omega_{\varphi}(f)\right| & =\sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}} \varphi\left(\left(s_{1}, s_{2}\right)\right) \cdot f\left(\left(s_{1}, s_{2}\right)\right) \\
& =\sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}} \varphi\left(\left(s_{1}, s_{2}\right)\right) \cdot|\varphi|^{p-2}\left(\left(s_{1}, s_{2}\right)\right) \cdot \bar{\varphi}\left(\left(s_{1}, s_{2}\right)\right) \cdot \chi_{\left(k_{1}, k_{2}\right)}\left(\left(s_{1}, s_{2}\right)\right) \\
& =\sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}}|\varphi|^{p}\left(\left(s_{1}, s_{2}\right)\right) \cdot \chi_{\left(k_{1}, k_{2}\right)}\left(\left(s_{1}, s_{2}\right)\right) \\
& =\left|\varphi \cdot \chi_{\left(k_{1}, k_{2}\right)}\right|_{p}^{p} .
\end{aligned}
$$

Let $\pi: \mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow U(\mathcal{H})$ be an ℓ_{p}-representation with a dense subspace \mathcal{H}_{0}, then

$$
\|\pi(f)\|^{2}=\sup _{\xi \in H_{0},\|\xi\|=1}\left\langle\pi\left(f^{*} * f\right) \xi \mid \xi\right\rangle_{\mathcal{H}}
$$

Fix $\xi \in \mathcal{H}_{0}$ with $\|\xi\|=1$. We denote by σ the restriction of π onto the subspace

$$
\mathcal{H}_{\sigma}=\overline{\operatorname{span}}\left\{\pi\left(\left(s_{1}, s_{2}\right)\right) \xi \mid\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}\right\} \subseteq \mathcal{H}
$$

Then

$$
\left\langle\pi\left(f^{*} * f\right) \xi \mid \xi\right\rangle_{\mathcal{H}}=\left\langle\sigma\left(f^{*} * f\right) \xi \mid \xi\right\rangle_{\mathcal{H}_{\sigma}} .
$$

Note that ξ is cyclic for σ such that $\sigma_{\xi, \xi} \in \ell_{p}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$. Take a real number q with $\frac{1}{p}+\frac{1}{q}=1$. Since $2 \leq p<+\infty$, we have $1<q \leq 2$. Since supp $f \subseteq W_{\left(k_{1}, k_{2}\right)}$, it follows the Lemma 2 that

$$
\|\sigma(f)\| \leq\left(k_{1}+k_{2}+2\right) \cdot|f|_{q}
$$

Hence

$$
\left\|\sigma\left(f^{*} * f\right)\right\|=\|\sigma(f)\|^{2} \leq\left(k_{1}+k_{2}+2\right)^{2} \cdot|f|_{q}^{2}
$$

Therefore,

$$
\begin{aligned}
\|f\|_{l_{p}}^{2} & =\sup \left\{\|\pi(f)\| \mid \pi \text { is an } \ell_{p} \text { - representation }\right\} \\
& \leq\left(k_{1}+k_{2}+2\right) \cdot|f|_{q} \\
& =\left(k_{1}+k_{2}+2\right) \cdot\left(\sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}}\left|f\left(\left(s_{1}, s_{2}\right)\right)\right|^{q}\right)^{\frac{1}{q}} \\
& =\left(k_{1}+k_{2}+2\right) \cdot\left(\sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}}|\varphi|^{(p-1) q}\left(\left(s_{1}, s_{2}\right)\right) \cdot \chi_{\left(k_{1}, k_{2}\right)}\left(\left(s_{1}, s_{2}\right)\right)\right)^{\frac{1}{q}} \\
& =\left(k_{1}+k_{2}+2\right) \cdot\left(\sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}}|\varphi|^{p}\left(\left(s_{1}, s_{2}\right)\right) \cdot \chi_{\left(k_{1}, k_{2}\right)}\left(\left(s_{1}, s_{2}\right)\right)\right)^{\frac{1}{q}} \\
& =\left(k_{1}+k_{2}+2\right) \cdot\left|\varphi \cdot \chi_{\left(k_{1}, k_{2}\right)}\right|_{p}^{\frac{p}{q}} \\
& =\left(k_{1}+k_{2}+2\right) \cdot\left|\varphi \cdot \chi_{\left(k_{1}, k_{2}\right)}\right|_{p}^{p-1}
\end{aligned}
$$

Since $f=|\varphi|^{p-2} \cdot \bar{\varphi} \cdot \chi_{\left(k_{1}, k_{2}\right)}$, we have

$$
\begin{aligned}
\left|\omega_{\varphi}(f)\right| & =\left|\varphi \cdot \chi_{\left(k_{1}, k_{2}\right)}\right|_{p}^{p} \\
& \leq\|f\|_{\ell_{p}} \\
& \leq\left(k_{1}+k_{2}+2\right) \cdot\left|\varphi \cdot \chi_{\left(k_{1}, k_{2}\right)}\right|_{p}^{p-1}
\end{aligned}
$$

Consequently,

$$
\left|\varphi \cdot \chi_{\left(k_{1}, k_{2}\right)}\right| \leq k_{1}+k_{2}+2
$$

$(2) \Rightarrow(3)$

$$
\begin{aligned}
& \sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}}\left|\varphi\left(\left(s_{1}, s_{2}\right)\right)\right|^{p} \cdot\left(2+\left|s_{1}\right|+\left|s_{2}\right|\right)^{-p-2} \\
& =\sum_{k_{1}, k_{2}=0}^{+\infty} \sum_{\left|s_{1}\right|=k_{1}}\left|\varphi\left(\left(s_{1}, s_{2}\right)\right)\right|^{p} \cdot\left(2+k_{1}+k_{2}\right)^{-p-2} \\
& \left|s_{2}\right|=k_{2}
\end{aligned} \left\lvert\, \begin{aligned}
& \sum_{k_{1}, k_{2}=0}^{+\infty} \mid \varphi \cdot \chi_{\left.\left(k_{1}, k_{2}\right)\right|_{p} ^{p} \cdot\left(2+k_{1}+k_{2}\right)^{-p} \cdot\left(2+k_{1}+k_{2}\right)^{-2}}^{\leq\left\{\sup _{k_{1}, k_{2}}\left|\varphi \cdot \chi_{\left(k_{1}, k_{2}\right)}\right|_{p} \cdot\left(2+k_{1}+k_{2}\right)^{-1}\right\}^{p} \cdot \sum_{k_{1}, k_{2}=0}^{+\infty}\left(2+k_{1}+k_{2}\right)^{-2}<+\infty .}
\end{aligned}\right.
$$

$(3) \Rightarrow(4)$ Obviously.
$(4) \Rightarrow(1)$ Set

$$
\varphi_{\alpha}:\left(s_{1}, s_{2}\right) \mapsto \alpha^{\left|s_{1}\right|}, \psi_{\alpha}:\left(s_{1}, s_{2}\right) \mapsto \alpha^{\left|s_{2}\right|} \quad \text { from } \quad \mathbb{F}_{2} \times \mathbb{F}_{2} \rightarrow \mathbb{R}
$$

For any $a_{i} \in \mathbb{C}$ and $\left(s_{1 i}, s_{2 i}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}$, we have

$$
\begin{aligned}
\sum a_{i} \bar{a}_{j} \varphi_{\alpha}\left(\left(s_{1 j}, s_{2 j}\right)^{-1} \cdot\left(s_{1 i}, s_{2 i}\right)\right) & =\sum a_{i} \bar{a}_{j} \varphi_{\alpha}\left(s_{1 j}^{-1} s_{1 i}, s_{2 j}^{-1} s_{2 i}\right) \\
& =\left.\sum a_{i} \bar{a}_{j} \alpha\right|^{\left|s_{1 j}^{-1} s_{1 i}\right|} \geq 0 .
\end{aligned}
$$

So φ_{α} and similarly ψ_{α} are positive definite functions on $\mathbb{F}_{2} \times \mathbb{F}_{2}$. This implies that the function

$$
\Phi_{\alpha}\left(\left(s_{1}, s_{2}\right)\right) \triangleq \alpha^{\left|s_{1}\right|+\left|s_{2}\right|}=\alpha^{\left|s_{1}\right|} \alpha^{\left|s_{2}\right|}=\varphi_{\alpha}\left(\left(s_{1}, s_{2}\right)\right) \psi_{\alpha}\left(\left(s_{1}, s_{2}\right)\right)
$$

is positive definite and $\Psi_{\alpha}\left(\left(s_{1}, s_{2}\right)\right)=\varphi\left(\left(s_{1}, s_{2}\right)\right) \alpha^{\left|s_{1}\right|+\left|s_{2}\right|}$ is also positive definite on $\mathbb{F}_{2} \times \mathbb{F}_{2}$. By the GNS construction(The unitary representation via GNS approach refers to the conclusions of appendix C in reference [9]), we obtain the unitary representation σ_{α} of $\mathbb{F}_{2} \times \mathbb{F}_{2}$ with the cyclic vector ξ_{α} such that

$$
\Psi_{\alpha}\left(\left(s_{1}, s_{2}\right)\right)=\left\langle\sigma_{\alpha}\left(\left(s_{1}, s_{2}\right)\right) \xi_{\alpha} \mid \xi_{\alpha}\right\rangle .
$$

Since σ_{α} is an $\ell_{p}-$ representation,Ψ_{α} can be considered as a state on $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$. By taking the $w^{*}-$ limit of Ψ_{α} as $\alpha \uparrow 1$, we obtain that φ can be extended to the state of $C_{l_{p}}{ }^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$.

Corollary 3. Let $p \in[2, \infty)$ and $\alpha \in(0,1)$. The positive definite function $\Phi_{\alpha}\left(s_{1}, s_{2}\right)=\alpha^{\left|s_{1}\right|+\left|s_{2}\right|}$ can be extended to the state on $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ if and only if $\alpha<3^{-\frac{1}{p}}$.

Proof. Since

$$
\begin{aligned}
\sum_{k_{1}, k_{2}=1}^{+\infty} 3^{k_{1}+k_{2}-2} \alpha^{p\left(k_{1}+k_{2}\right)} & =3^{-2} \sum_{k_{1}, k_{2}=1}^{+\infty}\left(3 \cdot \alpha^{p}\right)^{\left(k_{1}+k_{2}\right)} \\
& =3^{-2}\left[\sum_{k_{1}=1}^{+\infty}\left(3 \cdot \alpha^{p}\right)^{k_{1}}\right]\left[\sum_{k_{2}=1}^{+\infty}\left(3 \cdot \alpha^{p}\right)^{k_{2}}\right]
\end{aligned}
$$

it follows from Theorem 4 (4) that we have

$$
\begin{aligned}
\Phi_{\alpha} \in l_{p}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right) & \Leftrightarrow \forall \beta \in(0,1),(\alpha \beta)^{\left|s_{1}\right|+\left|s_{2}\right|} \in \ell_{p}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right) \\
& \Leftrightarrow \sum_{\left(s_{1}, s_{2}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{2}}(\alpha \beta)^{p\left(\left|s_{1}\right|+\left|s_{2}\right|\right)}<+\infty \\
& \Leftrightarrow \sum_{k_{1}, k_{2}=1\left|s_{1}\right|=k_{1}\left|s_{2}\right|=k_{2}}^{+\infty}(\alpha \beta)^{p\left(\left|s_{1}\right|+\left|s_{2}\right|\right)}<+\infty \\
& \Leftrightarrow \sum_{k_{1}, k_{2}=1}^{+\infty} 3^{k_{1}+k_{2}-2} \alpha^{p\left(k_{1}+k_{2}\right)}<+\infty \\
& \Leftrightarrow 3 \alpha^{p}<1 \\
& \Leftrightarrow \alpha<3^{-\frac{1}{p}} .
\end{aligned}
$$

Corollary 4. For $2 \leq q<p \leq \infty$, the canonical quotient map from $C_{\ell_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right) \xrightarrow{\text { onto }} C_{\ell_{q}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ is not injective. So

$$
C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{p}{\otimes} C_{\ell_{p}}^{*}\left(\mathbb{F}_{2}\right) \not \not C_{\ell_{q}}^{*}\left(\mathbb{F}_{2}\right) \stackrel{\otimes}{\otimes} C_{\ell_{q}}^{*}\left(\mathbb{F}_{2}\right) .
$$

Proof. If $p=+\infty$ and $C^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)=C_{q}{ }^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$, we obtain that $\mathbb{F}_{2} \times \mathbb{F}_{2}$ is amenable by Prop2.12 in [5]. This is a contradiction.

In the following, we consider $2 \leq q<p<+\infty$. Suppose that the canonical map from $C_{l_{p}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ onto $C_{l_{q}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$ is injective from some $q<p$. Take a real number α with

$$
3^{-\frac{1}{q}}<\alpha<3^{-\frac{1}{p}}
$$

For $\Phi_{\alpha}\left(s_{1}, s_{2}\right)=\alpha^{\left|s_{1}\right|+\left|s_{2}\right|}$, by Corollary 3 we have

$$
\left|\omega_{\Phi_{\alpha}}(f)\right| \leq\|f\|_{\ell_{p}}=\|f\|_{\ell_{q^{\prime}}} \text { for } f \in c_{c}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)
$$

Therefore, it follows again that Φ_{α} can be extended to the state on $C_{l_{q}}^{*}\left(\mathbb{F}_{2} \times \mathbb{F}_{2}\right)$, but it contradicts to the choice of α and Corollary 3.

Author Contributions: Funding acquisition, Z.D.; Methodology, Z.D.; Writing-review \& editing, Y.L. All authors have read and agreed to the published version of the manuscript.
Funding: This project was partially supported by the National Natural Science Foundation of China (No.11871423).
Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Junge, M.; Pisier, G. Bilinear forms on exact operator spaces and $\mathbb{B}(\mathcal{H}) \otimes \mathbb{B}(\mathcal{H})$. Geom. Funct. Anal. 1995, 5, 329-363. [CrossRef]
2. Ozawa, N.; Pisier, G. A continuum of C^{*}-norms on $\mathbb{B}(\mathcal{H}) \otimes \mathbb{B}(\mathcal{H})$ and related tensor products. preprint 2014. [CrossRef]
3. Wiersma, M. C*-norms for tensor products of discrete group C*-algebras. Bull. Lond. Math. Soc. 2015, 47, 219-224. [CrossRef]
4. Kirchberg, E. On nonsemisimple extensions, tensor products and exactness of group C^{*}-algebras. Invent. Math. 1994, 452, 449-489.
5. Brown, N.P.; Guentner, E. New C*-completions of discrete groups and related spaces. Bull. Lond. Math. Soc. 2013, 45, 1181-1193. [CrossRef]
6. Brown, N.P.; Ozawa, N. C*-algebras and Finite Dimensional Approximations; Graduate Studies in Math; American Mathematical Society: Providence, RI, USA, 2008; Volume 88.
7. Haagerup, U. An example of a nonnuclear C*-algebra which has the metric approximation property. Invent. Math. 1978, 50, 279-293. [CrossRef]
8. Okayasu, R. Free group C*-algebras associated with ℓ_{p}. Int. J. Math. 2014, 25, 65-66. [CrossRef]
9. Bekka, M.B.; Harpe, P.D.; Valette, A. Kazhdan's Property (T), New Mathematical Monographs 11; Cambridge University Press: Cambridge, UK, 2008.
