
mathematics

Article

P-Tensor Product for Group C∗-Algebras

Yufang Li 1,2,* and Zhe Dong 1

1 Department of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China; dongzhe@zju.edu.cn
2 Department of Mathematical and Statistics, Guizhou University, Guiyang 550025, China
* Correspondence: dongzhe@zju.edu.cn

Received: 25 March 2020; Accepted: 14 April 2020; Published: 18 April 2020
����������
�������

Abstract: In this paper, we introduce new tensor products
p
⊗(1 ≤ p ≤ +∞) on C∗`p

(Γ)⊗ C∗`p
(Γ) and

c0
⊗ on C∗c0

(Γ)⊗ C∗c0
(Γ) for any discrete group Γ. We obtain that for 1 ≤ p < +∞ C∗`p

(Γ)
max
⊗ C∗`p

(Γ) =

C∗`p
(Γ)

p
⊗C∗`p

(Γ) if and only if Γ is amenable; C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗c0
(Γ)

c0
⊗C∗c0

(Γ) if and only if Γ
has Haagerup property. In particular, for the free group with two generators F2 we show that

C∗`p
(F2)

p
⊗C∗`p

(F2) � C∗`q
(F2)

q
⊗C∗`q

(F2) for 2 ≤ q < p ≤ +∞.
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1. Introduction

When A and B are C∗-algebras, it can happen that numerous different norms make A�B into a
pre-C∗-algebra. In other words,A�B may carry more than one C∗-norms. For example, the spatial (or
minimal) tensor product norm ‖ · ‖min and the maximal tensor product ‖ · ‖max are always C∗-norms
on A�B. As the names suggest, the spatial (minimal) tensor norm is the smallest C∗-norm one can
place on A�B and the maximal is the largest. In general these norms do not agree. In 1995, Junge and
Pisier [1] proved that

B(`2)
max
⊗ B(`2) 6= B(`2)

min
⊗ B(`2).

In 2014, Ozawa and Pisier [2] demonstrated that B(H)⊗ B(H) admits 2ℵ0 distinct C∗-norms.
Ozawa and Pisier also showed that C∗λ(Fn)⊗ C∗λ(Fn) admits 2ℵ0 distinct C∗-norms where Fn is the
noncommutative free group on n ≥ 2 generators. Recently, Wiersma generalized Ozawa and Pisier’s
result. In [3], Wiersma proved that C∗λ(Γ1)⊗ C∗λ(Γ2) and C∗(Γ1)⊗ C∗λ(Γ2) admit 2ℵ0 distinct C∗-norms
where Γ1 and Γ2 are discrete groups containing copies of noncommutative free groups. In the other
respect, Kirchberg [4] proved the following striking theorem:

C∗(F)
max
⊗ B(H) = C∗(F)

min
⊗ B(H)

for any free group F. Kirchberg’s famous QWEP conjecture is one of the most important open problems
in the theory of operator algebras. Kirchberg showed that QWEP conjecture is equivalent to

C∗(F2)
max
⊗ C∗(F2) = C∗(F2)

min
⊗ C∗(F2).

Brown and Guentner introduced a new C∗-completion of the group ring of a countable discrete
group Γ in [5]. In the following, we first recall some results in [5].
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Let Γ be a countable discrete group and π be a unitary representation of Γ on a Hilbert spaceH.
For ξ, η ∈ H, we denote the matrix coefficient of π by

πξ,η (s) = 〈π (s) ξ|η〉 .

It is clear that πξ,η ∈ `∞ (Γ).
Let D be an algebraic two-side ideal of `∞ (Γ). If there exists a dense subspaceH0 ofH such that

πξ,η ∈ D for all ξ, η ∈ H0, then π is called D−representation. If D is invariant under the left and right
translation of Γ on `∞(Γ), then it is said to be translation invariant. In this paper, we always assume
that D is a non-zero translation invariant ideal of `∞(Γ). For each p ∈ [1,+∞), we denote the norm on
`p(Γ) by

| f |p = (∑
s∈Γ
| f p(s)|)

1
p for f ∈ `p(Γ).

We denote by c0(Γ) the functions of `∞(Γ) with vanishing at infinity. It is clear that `p(Γ) and c0(Γ) are
non-trivial translation invariant ideals of `∞(Γ).

The C∗-algebra C∗D (Γ) is the C∗-completion of the group ring CΓ by‖·‖D, where for ∀ f ∈ CΓ,

‖ f ‖D = sup {‖π ( f )‖ : π is a D− representation }.

We denote by C∗(Γ) the full group C∗-algebra and by Cλ
∗(Γ) the reduced group C∗-algebra,

where C∗(Γ) is the completion of C(Γ) with respect to the norm

‖x‖u = sup {‖π (x)‖ : π is a cyclic representation }.

and Cλ
∗(Γ) is the completion of C(Γ) with the norm

‖x‖r = sup {‖λ (x)‖ : π is a le f t regular representation }.

In [5], the following results are obtained:
(1) C∗ (Γ) = Cl∞

∗ (Γ) and Cλ
∗ (Γ) = Ccc

∗ (Γ) ; Where Cc(Γ) is the function of finitely supported
functions on Γ.

(2) Clp
∗ (Γ) = Cλ

∗ (Γ) for every p ∈ [1, 2];
(3) C∗ (Γ) = CD

∗ (Γ) if and only if there exists a sequence {hn} of positive definite functions in D
such that hn → 1;

(4) Γ is amenable if and only if C∗ (Γ) = Ccc
∗(Γ);

(5) Γ has the Haagerup property if and only if C∗ (Γ) = Cc0
∗ (Γ).

In this paper, we introduce new tensor products
p
⊗(1 ≤ p ≤ +∞) on C∗`p

(Γ)⊗ C∗`p
(Γ) and

c0
⊗ on

C∗c0
(Γ) ⊗ C∗c0

(Γ) for any discrete group Γ. We obtain that for 1 ≤ p < +∞ , C∗`p
(Γ)

max
⊗ C∗`p

(Γ) =

C∗`p
(Γ)

p
⊗C∗`p

(Γ) if and only if Γ is amenable; C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗c0
(Γ)

c0
⊗C∗c0

(Γ) if and only if Γ
has Haagerup property. In last section, for the free group with two generators F2 we show that

C∗`p
(F2)

p
⊗C∗`p

(F2) � C∗`q
(F2)

q
⊗C∗`q

(F2) for 2 ≤ q < p ≤ +∞.

2. Amenability and Haagerup Property

Definition 1. For a discrete group Γ and 1 ≤ p ≤ +∞, we define

C∗`p
(Γ)

p
⊗C∗`p

(Γ) , C∗`p
(Γ× Γ).
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We need to check that
p
⊗ is a C∗-tensor product of C∗`p

(Γ) and C∗`p
(Γ). First we will show that the

map x → x⊗ e from C∗`p
(Γ) into C∗`p

(Γ× Γ) is isometric, where e is the unit of Γ. For x = ∑
s∈Γ

ass ∈ CΓ

and the unit e of Γ, x⊗ e ∈ C(Γ)⊗C(Γ) ⊆ C(Γ× Γ). We compute

‖ x⊗ e ‖`p = sup{‖ π(x⊗ e) ‖ |π : Γ× Γ→ B(H) is `p(Γ× Γ)− representation}
= sup{‖ π( ∑

s∈Γ
ass⊗ e) ‖ |π : Γ× Γ→ B(H) is `p(Γ× Γ)− representation}

= sup{‖ ∑
s∈Γ

asπ(s⊗ e) ‖ |π : Γ× Γ→ B(H) is `p(Γ× Γ)− representation}

≤ sup{‖ ∑
s∈Γ

asσ(s) ‖ |σ is `p(Γ)− representation}

≤ sup{‖ σ(x) ‖ |σ is `p(Γ)− representation}
= ‖ x ‖`p ,

since it is easy to check that s→ π(s⊗ e) is an `p(Γ)− representation.
Conversely, we have

‖ x⊗ e ‖`p = sup{‖ π(x⊗ e) ‖ |π : Γ× Γ→ B(H) is `p(Γ× Γ)− representation}
= sup{‖ ∑

s∈Γ
asπ(s⊗ e) ‖ |π : Γ× Γ→ B(H) is `p(Γ× Γ)− representation}

≥ sup{‖ ∑
s∈Γ

asσs ⊗ σe ‖ |σ is `p(Γ)− representation}

= sup{‖ ∑
s∈Γ

asσs ‖ |σ is `p(Γ)− representation}

= ‖ x ‖`p ,

since it is routine to show that (s, t) ∈ Γ× Γ → σs ⊗ σt ∈ B(H⊗H) is an `p(Γ× Γ)-representation.
Under this identification, we have

C(Γ× Γ) ⊆ C∗`p
(Γ)� C∗`p

(Γ) ⊆ C∗`p
(Γ× Γ).

This implies that Definition 1 is well defined.
If 1 ≤ p ≤ 2, it follows from Proposition 2.11 in [5] that

C∗λ(Γ)
p
⊗C∗λ(Γ) = C∗`p

(Γ)
p
⊗C∗`p

(Γ)

= C∗`p
(Γ× Γ)

= C∗λ(Γ× Γ)

= C∗λ(Γ)
min
⊗ C∗λ(Γ).

This shows that
p
⊗ =

min
⊗ for 1 ≤ p ≤ 2. If p = ∞, we have

C∗(Γ)
∞
⊗C∗(Γ) = C∗`∞

(Γ)
∞
⊗C∗`∞

(Γ)
= C∗`∞

(Γ× Γ)
= C∗(Γ× Γ)

= C∗(Γ)
max
⊗ C∗(Γ).

This shows that

C∗λ(Γ)
p
⊗C∗λ(Γ) = C∗λ(Γ)

min
⊗ C∗λ(Γ).

Theorem 1. For 1 ≤ p < +∞, C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗`p
(Γ)

p
⊗C∗`p

(Γ) if and only if Γ is amenable.
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Proof. Suppose that Γ is amenable, ‖ · ‖min=‖ · ‖max on C(Γ). Since

‖ · ‖min≤‖ · ‖`p≤‖ · ‖max

on C(Γ), we have ‖ · ‖min=‖ · ‖p=‖ · ‖max on C(Γ). This implies that C∗λ(Γ) = C∗`p
(Γ) = C∗(Γ). Thus

C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗(Γ)
max
⊗ C∗(Γ) = C∗(Γ× Γ).

Since Γ× Γ is also amenable, it follows from the Definition 1 that

C∗`p
(Γ)

p
⊗C∗`p

(Γ) = C∗`p
(Γ× Γ) = C∗(Γ× Γ).

Therefore
C∗`p

(Γ)
max
⊗ C∗`p

(Γ) = C∗`p
(Γ)

p
⊗C∗`p

(Γ).

Conversely, we suppose that

C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗`p
(Γ)

p
⊗C∗`p

(Γ) = C∗`p
(Γ× Γ).

Then C∗`p
(Γ)

max
⊗ C∗`p

(Γ) has a faithful `p(Γ× Γ)-representation π : C∗`p
(Γ)

max
⊗ C∗`p

(Γ)→ B(H) and

by taking an infinite direct sum if necessary, we can assume π(C∗`p
(Γ)

max
⊗ C∗`p

(Γ)) contains no compact

operators. By Glimm’s Lemma [6], for any state ϕ of π(C∗`p
(Γ)

max
⊗ C∗`p

(Γ)), there exist orthonormal
vectors vn ∈ H such that

〈π(x)vn|vn〉 → ϕ(π(x)), ∀x ∈ C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗`p
(Γ× Γ).

Choose ϕ the trivial state, we have

〈π(x)vn|vn〉 → 1, ∀x ∈ C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗`p
(Γ× Γ).

In particular,
〈πs,tvn|vn〉 → 1, ∀s, t ∈ Γ.

Since π is a `p(Γ × Γ)-representation, we can approximate the vn’s with vectors having
associated matrix coefficients in `p(Γ × Γ). Thus we may assume that πvn ,vn ∈ `p(Γ × Γ) for each
n, where πvn ,vn(s, t) = 〈πs,tvn|vn〉. Since πvn ,vn are positive definite functions in `p(Γ× Γ) tending
pointwise to one, it follows from the Remark 2.13 in [5] that Γ× Γ is amenable and so is Γ.

Theorem 2. For 1 ≤ p < +∞, C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗`p
(Γ)

min
⊗ C∗`p

(Γ) if and only if Γ is amenable.

Proof. Suppose that Γ is amenable, we have

C∗(Γ) = C∗`p
(Γ) = C∗λ(Γ)

and
C∗(Γ× Γ) = C∗`p

(Γ× Γ) = C∗λ(Γ× Γ).

Thus
C∗`p

(Γ)
max
⊗ C∗`p

(Γ) = C∗(Γ)
max
⊗ C∗(Γ) = C∗(Γ× Γ)
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and

C∗`p
(Γ)

min
⊗ C∗`p

(Γ) = C∗λ(Γ)
min
⊗ C∗λ(Γ) = C∗λ(Γ× Γ).

Therefore

C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗`p
(Γ)

min
⊗ C∗`p

(Γ).

Conversely, suppose that C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗`p
(Γ)

min
⊗ C∗`p

(Γ). Since

‖ · ‖min≤‖ · ‖`p≤‖ · ‖max

on the algebraic tensor product C∗`p
(Γ)� C∗`p

(Γ),

C∗`p
(Γ)

max
⊗ C∗`p

(Γ) = C∗`p
(Γ)

p
⊗C∗`p

(Γ).

It follows from Theorem 1 that Γ is amenable.

Corollary 1. For free group Fn(2 ≤ n ≤ +∞), we have

C∗`p
(Fn)

max
⊗ C∗`p

(Fn) 6= C∗`p
(Fn)

min
⊗ C∗`p

(Fn) ∀1 ≤ p < +∞.

It is well known that the famous QWEP conjecture is equivalent to

C∗(F2)
max
⊗ C∗(F2) = C∗(F2)

min
⊗ C∗(F2).

From Proposition 2.10 in [5], C∗(Γ) = C∗`∞
(Γ). Compare with Corollary 1, maybe we can get some

ideas about QWEP.

Definition 2. For a discrete group Γ, we define

C∗c0
(Γ)

c0
⊗C∗c0

(Γ) , C∗c0
(Γ× Γ).

By a similar argument after Definition 1, we can show that Definition 2 is well defined also.

Theorem 3. C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗c0
(Γ)

c0
⊗C∗c0

(Γ) if and only if Γ has Haagerup property.

Proof. The proof is similar to the argument in Theorem 1. Suppose that Γ has Haagerup property.
It is well known that Γ× Γ also has Haagerup property. Thus it follows from Corollary 3.4 in [5] that
we have

C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗(Γ)
max
⊗ C∗(Γ) = C∗(Γ× Γ)

and
C∗c0

(Γ)
c0
⊗C∗c0

(Γ) = C∗c0
(Γ× Γ) = C∗(Γ× Γ).

So C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗c0
(Γ)

c0
⊗C∗c0

(Γ).
Conversely, suppose that

C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗c0
(Γ)

c0
⊗C∗c0

(Γ) = C∗c0
(Γ× Γ).
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Then C∗c0
(Γ)

max
⊗ C∗c0

(Γ) has a faithful C0(Γ× Γ)-representation

π : C∗c0
(Γ)

max
⊗ C∗c0

(Γ)→ B(H)

and by taking an infinite direct sum if necessary, we can assume π(C∗c0
(Γ)

max
⊗ C∗c0

(Γ)) contains no

compact operators. By Glimm’s Lemma [6], for any state ϕ of π(C∗c0
(Γ)

max
⊗ C∗c0

(Γ)), there exist
orthonormal vectors vn ∈ H such that

〈π(x)vn|vn〉 → ϕ(π(x)), ∀x ∈ C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗c0
(Γ× Γ).

Choose ϕ the trivial state, we have

〈π(x)vn|vn〉 → 1, ∀x ∈ C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗c0
(Γ× Γ).

In particular,
〈πs,tvn|vn〉 → 1, ∀s, t ∈ Γ.

Approximating the vn’s with vectors having associated matrix coefficients in c0(Γ× Γ), we may
assume that πvn ,vn ∈ c0(Γ× Γ) for each n. Therefore {πvn ,vn} is a sequence of positive definite functions
in c0(Γ× Γ) tending pointwise to one, this implies that Γ× Γ has Haagerup property and so does Γ.

Corollary 2. If C∗c0
(Γ)

max
⊗ C∗c0

(Γ) = C∗c0
(Γ)

min
⊗ C∗c0

(Γ), then Γ has Haagerup property.

3. P-Tensor Product on F2

In this section, we mainly consider the p-tensor product
p
⊗ on the free group with two

generators F2.
We recall that a function ϕ: Γ→ C is said to be positive definite if the matrix

[ϕ(s−1t)]s,t∈F ∈ MF(C)

is positive for every finite set F ⊂ Γ.

Proposition 1. Let F2 be the free group with two generators. Then there exists a p ∈ (2, ∞) such that

C∗(F2)
max
⊗ C∗(F2) 6= C∗`p

(F2)
p
⊗C∗`p

(F2) 6= C∗λ(F2)
min
⊗ C∗λ(F2).

Proof. Since F2 × F2 is not amenable, by Prop 2.12 in [5] C∗ (F2 × F2) 6= C∗`p
(F2 × F2) for any p ∈

[1,+∞). Since C∗(F2)
max
⊗ C∗(F2) = C∗ (F2 × F2) and C∗`p

(F2)
p
⊗C∗`p

(F2) = C∗`p
(F2 × F2), we have for

any p ∈ [1,+∞) C∗(F2)
max
⊗ C∗(F2) 6= C∗`p

(F2)
p
⊗C∗`p

(F2).

Since C∗`p
(F2)

p
⊗C∗`p

(F2) = C∗`p
(F2 × F2) and C∗λ (F2 × F2) = C∗λ(F2)

min
⊗ C∗λ(F2), we only need to

find some p ∈ (2,+∞) with C∗`p
(F2 × F2) 6= C∗λ (F2 × F2). Let S =

{
a, b, a−1, b−1} ⊆ F2 be the

standard generating set and let |·| denote the corresponding word length. A well known result of [7]
states that for every n ∈ N,

hn (s) := e−
|s|
n
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is positive definite function on F2 and clearly hn → 1 pointwise. Now for (s, t) ∈ F2 × F2, we define

ϕn ((s, t)) := hn(s) = e−
|s|
n

and
ψn ((s, t)) := hn(t) = e−

|t|
n .

For any αi ∈ C and (si, ti) ∈ F2 × F2,1 ≤ i ≤ n , we have

∑
i,j

αiᾱj ϕn(
(
sj, tj

)−1
(si, ti))

= ∑
i,j

αiᾱj ϕn(
(

s−1
j si, t−1

j ti

)
)

= ∑
i,j

αiᾱjhn

(
s−1

j si

)
≥ 0.

So each ϕn is a positive definite function on F2 × F2, (Similarly ψn is a positive definite
function). Fixing n, we have ϕn ∈ `pn (F2 × F2) for sufficiently large pn. Let πn : C∗`pn

(F2 × F2) →
B (Hn) be the GNS presentations related to ϕn, and let ξn ∈ Hn be the canonical cyclic vector.
Since ϕn ((s, t)) → 1, we see that ‖πn ((s, t)) ξn − ξn‖ → 0 for all (s, t) ∈ F2 × F2. Hence the
trivial representation is contained in the direct sum representation ⊕πnweakly. If for each n,
C∗`pn

(F2 × F2) = C∗λ (F2 × F2) ,⊕πn would be defined on C∗λ (F2 × F2). Since F2 × F2 is not amenable,
the trivial representation cannot be contained in any representation of C∗λ (F2 × F2) weakly. This is a
contradiction. Therefore for some n, C∗`pn

(F2 × F2) 6= C∗λ (F2 × F2)

In the paper [8], Okayasu give a characterization of positive definite functions on a free group with
finite generators, which can be extended to the positive linear functionals on the free group C∗-algebras
associated with the ideal `p. This is a generalization of Haagerup’s famous characterization for the case of
the reduced free group C∗-algebra. The strategy in these two papers also works for the group F2 × F2.

For non negative integers k1, k2, we define

W(k1,k2)
= {(s1, s2) ∈ F2 × F2| |s1| = k1 and |s2| = k2}.

χ(k1,k2)
denotes the characteristic function on W(k1,k2)

.

Lemma 1. Let q ∈ [1, 2]. Let ki, li and mi(i = 1, 2) be non-negative integers. Let f and g be functions
on F2 × F2 such that supp f ⊆ W(k1,k2)

and suppg ⊆ W(l1,l2) respectively. If |ki − li| ≤ mi ≤ ki + li and
ki + li −mi is even, then

|( f ∗ g) · χ(m1,m2)
|q ≤ | f |q · |g|q

and if (m1, m2) is any other values, then

|( f ∗ g) · χ(m1,m2)
|q = 0.

Proof. Note that

( f ∗ g) ((s1, s2)) = ∑
(t1,t2),(u1,u2)∈F2×F2

si=tiui

f ((t1, t2)) · g ((u1, u2))

= ∑
|ti |=ki ,|ui |=li

si=tiui

f ((t1, t2)) · g ((u1, u2)).
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Since the possible values of |tiui| are |ki − li| , |ki − li|+ 2, . . . , ki + li, we have∣∣∣( f ∗ g) χ(m1,m2)

∣∣∣
q
= 0

for any other (m1, m2). We only consider the q 6= 1 (q = 1 is similar and trivial). First, we assume that
mi = ki + li(i = 1, 2). In this case, if |si| = mi, then si can be uniquely written as a product tiui with
ti = |ki| and ui = |li|. Hence

( f ∗ g) ((s1, s2)) = f ((t1, t2)) · g((u1, u2)).

Therefore∣∣∣( f ∗ g) χ(m1,m2)

∣∣∣q
q

= ∑
(s1,s2)∈F2×F2

| ( f ∗ g) ((s1, s2)) · χ(m1,m2) ((s1, s2)) |q

= ∑
|tiui |=ki+li
|ti |=ki ,|ui |=li

| f ((t1, t2))|q · |g ((u1, u2))|q

≤ ∑
|ti |=ki ,|ui |=li

| f ((t1, t2))|q · |g ((u1, u2))|q

= | f |qq · |g|
q
q .

Next we assume that mi = |ki − li| , . . . , ki + li − 2. In these cases, we have mi = ki + li − 2ji,
for 1 ≤ ji ≤ min (ki, li) , (i = 1, 2). Let si = tiui with |si| = mi,|ti| = ki, and |ui| = li. Then si can be
uniquely written as a product t′ iu′ i such that ti = t′ ivi, ui = v−1

i u′ i with |t′ i| = ki − ji, |u′ i| = li − ji,
and |vi| = |v−1

i | = ji. We define

f ′ ((t1, t2)) =

(
∑
|vi |=ji

| f ((t1v1, t2v2))|q
) 1

q

, i f |ti| = ki − ji,

and f ′ ((t1, t2)) = 0 otherwise. Similarly, we define

g′ ((u1, u2)) =

(
∑
|vi |=ji

∣∣∣g ((v−1
1 u1, v−1

2 u2

))∣∣∣q) 1
q

, i f |ui| = li − ji,

and g′ ((u1, u2)) = 0, otherwise. Note that supp f ′ ⊆ W(k1−j1,k2−j2), and suppg′ ⊆ W(l1−j1,l2−j2).
Moreover, ∣∣ f ′∣∣qq = ∑

|ti |=ki−ji

 ∑
|vi |=ji

| f ((t1v1, t2v2))|
q

 = | f |qq ,

and |g′|qq = |g|qq. Take a real number p with 1
p + 1

q = 1. Since 1 < q ≤ 2, 2 ≤ p < +∞, so q ≤ p in
general. Owing to Hölder inequality, we have
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|( f ∗ g) ((s1, s2))| =

∣∣∣∣∣∣∣ ∑
|ti |=ki ,|ui |=li
si=tiui

f ((t1, t2)) · g ((u1, u2))

∣∣∣∣∣∣∣
=

∣∣∣∣∣ ∑
|vi |=ji

f ((t′1v1, t′2v2)) · g
((

v−1
1 u′1, v−1

2 u′2
))∣∣∣∣∣

≤
∣∣∣∣∣ ∑
|vi |=ji

| f ((t′1v1, t′2v2))|q
∣∣∣∣∣

1
q

·
∣∣∣∣∣ ∑
|vi |=ji

∣∣∣g ((v−1
1 u′1, v−1

2 u′2
))∣∣∣p∣∣∣∣∣

1
p

≤
∣∣∣∣∣ ∑
|vi |=ji

| f ((t′1v1, t′2v2))|q
∣∣∣∣∣

1
q

·
∣∣∣∣∣ ∑
|vi |=ji

∣∣∣g ((v−1
1 u′1, v−1

2 u′2
))∣∣∣q∣∣∣∣∣

1
q

= f ′ (t′1, t′2) · g (u′1, u′2) = ( f ′ ∗ g′) ((s1, s2)) ,

where si = t′ iu′ i and |si| = ki + li− 2ji = |t′ i|+ |u′ i|. Therefore,
∣∣∣( f ∗ g) · χ(m1,m2)

∣∣∣ ≤ ( f ′ ∗ g′) · χ(m1,m2).
Since (ki − ji) + (li − ji) = mi, it follows from the first part of the proof that∣∣∣( f ∗ g) χ(m1,m2)

∣∣∣ ≤ ∣∣∣( f ′ ∗ g′) · χ(m1,m2)

∣∣∣
≤ | f ′|q · |g′|q
= | f |q · |g|q.

At last, we assume that m1 = k1 + l1 and m2 = |k2 − l2|, . . . , k2 + l2 − 2; or m1 = |k1 − l1|, . . . , k1 +

l1 − 2 and m2 = k2 + l2. We only need to consider the first case.In this case, m1 = k1 + l1, and m2 =

k2 + l2 − 2j2 for 1 ≤ j2 ≤ min(k2, l2). Then s1 can be uniquely written as a product t1u1 with
|t1| = k1 and |u1| = l1. Let s2 = t2u2 with |s2| = m2, |t2| = k2, |u2| = l2. Then s2 can be uniquely
written as a product t′2u′2 such that t2 = t′2v2, u2 = v−1

2 u′2, with |t′2| = k2 − j2, |u′2| = l2 − j2 and
|v2| = |v−1

2 | = j2. The following proof is almost the same as the second part with j1 = 0.

Lemma 2. Let k1, k2 be non-negative integers. Let 1 ≤ q ≤ p ≤ ∞ with 1
p +

1
q = 1. If a unitary representation

π : F2 × F2 → U (H) has a cyclic vector ξ such that πξ,ξ ∈ `p(F2 × F2) then

‖ π( f ) ‖≤ (k1 + k2 + 2) · | f |q,

for f ∈ Cc(F2 × F2) with supp f ⊆W(k1,k2)
.

Proof. We only consider 1 ≤ q ≤ 2 and 2 ≤ p ≤ +∞ with 1
p + 1

q = 1 . We consider the norm∣∣∣( f ∗ ∗ f )(∗2n)
∣∣∣
q
. Write f2j−1 = f ∗ and f2j = f for j = 1, . . . , 2n. Then

( f ∗ ∗ f )(∗2n) = f1 ∗ f2 ∗ · · · ∗ f4n.

We also denote g = f2 ∗ · · · ∗ f4n. So we have

( f ∗ ∗ f )(∗2n) = f1 ∗ g.

Since f ∗((s1, s2)) = f̄ ((s−1
1 , s−1

2 )), supp f j ⊆ W(k1,k2), for j = 1, 2, . . . , 4n and g ∈ cc (F2 × F2).
Put g(l1,l2) = gX(l1,l2). Then supp g(l1,l2) ⊆W(l1,l2) and

|g|qq =
+∞

∑
l1,l2=0

∣∣∣g(l1,l2)

∣∣∣q
q
.
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Clearly,
∣∣∣g(l1,l2)

∣∣∣
q
= 0 for all but finitely many l1, l2. Moreover set

h = f1 ∗ g =
+∞

∑
l1,l2=0

f1 ∗ g(l1,l2),

and h(m1,m2) = hχ(m1,m2). Then h ∈ cc(F2 × F2) and

|h|qq =
+∞

∑
m1,m2=0

∣∣∣h(m1,m2)

∣∣∣q
q
.

∣∣∣h(m1,m2)

∣∣∣
q
= 0 for all but finitely many m1, m2. By Lemma 1,

∣∣∣( f1 ∗ g(l1,l2)

)
· χ(m1,m2)

∣∣∣
q
≤ | f1|q ·

∣∣∣g(l1,l2)

∣∣∣
q

in the case where |ki − li| ≤ mi ≤ ki + li, and ki + li −mi is even, and |( f1 ∗ g) · χ(m1,m2)|q = 0 for any
other values of mi. Hence,

∣∣∣h(m1,m2)

∣∣∣
q

=

∣∣∣∣∣ +∞
∑

l1,l2=0

(
f1 ∗ g(l1,l2)

)
· χ(m1,m2)

∣∣∣∣∣
q

≤
+∞
∑

l1,l2=0

∣∣∣( f1 ∗ g(l1,l2)

)
· χ(m1,m2)

∣∣∣
q

≤ | f1|q ·
mi+ki

∑
li=|mi−ki |
mi+ki−li even

∣∣∣g(l1,l2)

∣∣∣
q
.

By writing li = mi + ki − 2ji , we have

|h (m1, m2)|q ≤ | f1|q ·
min(m1,k1)

∑
j1=0

min(m2,k2)

∑
j2=0

∣∣∣g(m1+k1−2j1,m2+k2−2j2)

∣∣∣
q

≤ | f1|q ·
(

∑
j1,j2

∣∣∣g(m1+k1−2j1,m2+k2−2j2)

∣∣∣q
q

) 1
q

·
(

∑
j1,j2

1p

) 1
p

≤ (k1 + k2 + 2)
1
p · | f1|q ·

(
∑

j1,j2

∣∣∣g(m1+k1−2j1,m2+k2−2j2)

∣∣∣q
q

) 1
q

.

Therefore,

|h|qq =
+∞
∑

m1,m2=0
|h (m1, m2)|qq

≤ (k1 + k2 + 2)
q
p · | f1|qq ·

+∞
∑

m1,m2=0

min(m1,k1)

∑
j1=0

min(m2,k2)

∑
j2=0

∣∣∣g(m1+k1−2j1,m2+k2−2j2)

∣∣∣q
q

= (k1 + k2 + 2)
q
p · | f1|qq ·

k1
∑

j1=0

+∞
∑

m1=j1

k2
∑

j2=0

+∞
∑

m2=j2

∣∣∣g(m1+k1−2j1,m2+k2−2j2)

∣∣∣q
q

= (k1 + k2 + 2)
q
p · | f1|qq ·

k1
∑

j1=0

+∞
∑

l1=k1−j1

+∞
∑

j2=0

+∞
∑

l2=k2−j2

∣∣∣g(l1l2)

∣∣∣q
q

≤ (k1 + k2 + 2)
q
p · | f1|qq ·

k1
∑

j1=0

k2
∑

j2=0
|g|qq

≤ (k1 + k2 + 2)
q
p +1 · | f1|qq · |g|

q
q .
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Hence | f1 ∗ g|q ≤ (k1 + k2 + 2) · | f1|q · |g|q, i.e.

| f1 ∗ f2 ∗ · · · ∗ f4n|q ≤ (k1 + k2 + 2) · | f1|q · | f2 ∗ · · · ∗ f4n|q.

Inductively we have ∣∣∣( f ∗ ∗ f )∗2n
∣∣∣
q
≤ (k1 + k2 + 2)4n−1 · | f |4n

q .

Therefore, it follows from Lemma 3.2 in [8] that

‖π ( f )‖ ≤ lim inf
n→+∞

∣∣∣( f ∗ ∗ f )∗2n
∣∣∣ 1

4n

q
≤ (k1 + k2 + 2) · | f |q.

Theorem 4. Let 2 ≤ p < ∞. Let ϕ be a positve definite function on F2 × F2. Then the following conditions
are equivalent:

(1) ϕ can be extended to the positive linear functional on C∗`p
(F2 × F2);

(2) sup
k1,k2

|ϕ · χ(k1,k2)
|p · (k1 + k2 + 2)−1 < ∞;

(3) The function (s1, s2)→ ϕ(s1, s2) · (2 + |s1|+ |s2|)−1− 2
p belongs to `p(F2 × F2);

(4) For any α ∈ (0, 1), the function (s1, s2)→ ϕ(s1, s2) · α|s1|+|s2| belongs to `p(F2 × F2).

Proof. We assume that ϕ ((e, e)) = 1.

(1)⇒(2) It follows from (1) that wϕ extends to the station C∗`p
(F2 × F2), where

ωϕ ( f ) = ∑
(s1,s2)∈F2×F2

f ((s1, s2)) · ϕ ((s1, s2)) for f ∈ cc (F2 × F2)

Hence, for f ∈ cc (F2 × F2), we have ∣∣ωϕ ( f )
∣∣ ≤ ‖ f ‖`p

.

Set f = |ϕ|p−2 · ϕ̄ · χ(k1,k2).
Then∣∣ωϕ ( f )

∣∣ = ∑
(s1,s2)∈F2×F2

ϕ ((s1, s2)) · f ((s1, s2))

= ∑
(s1,s2)∈F2×F2

ϕ ((s1, s2)) · |ϕ|p−2 ((s1, s2)) · ϕ̄ ((s1, s2)) · χ(k1,k2) ((s1, s2))

= ∑
(s1,s2)∈F2×F2

|ϕ|p ((s1, s2)) · χ(k1,k2) ((s1, s2))

=
∣∣∣ϕ · χ(k1,k2)

∣∣∣p
p

.

Let π : F2 × F2 → U (H) be an `p−representation with a dense subspaceH0, then

‖π ( f )‖2 = sup
ξ∈H0,‖ξ‖=1

〈π ( f ∗ ∗ f ) ξ |ξ 〉H.

Fix ξ ∈ H0 with ‖ξ‖ = 1. We denote by σ the restriction of π onto the subspace

Hσ = span {π ((s1, s2)) ξ |(s1, s2) ∈ F2 × F2 } ⊆ H.
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Then
〈π ( f ∗ ∗ f ) ξ |ξ 〉H = 〈σ ( f ∗ ∗ f ) ξ |ξ 〉Hσ

.

Note that ξ is cyclic for σ such that σξ,ξ ∈ `p (F2 × F2). Take a real number q with 1
p + 1

q = 1.
Since 2 ≤ p < +∞, we have 1 < q ≤ 2. Since supp f ⊆W(k1,k2), it follows the Lemma 2 that

‖σ ( f )‖ ≤ (k1 + k2 + 2) · | f |q.

Hence
‖σ ( f ∗ ∗ f )‖ = ‖σ ( f )‖2 ≤ (k1 + k2 + 2)2 · | f |2q .

Therefore,

‖ f ‖2
lp

= sup
{
‖π ( f )‖|π is an `p − representation

}
≤ (k1 + k2 + 2) · | f |q

= (k1 + k2 + 2) ·
(

∑
(s1,s2)∈F2×F2

| f ((s1, s2))|q
) 1

q

= (k1 + k2 + 2) ·
(

∑
(s1,s2)∈F2×F2

|ϕ|(p−1)q ((s1, s2)) · χ(k1,k2) ((s1, s2))

) 1
q

= (k1 + k2 + 2) ·
(

∑
(s1,s2)∈F2×F2

|ϕ|p ((s1, s2)) · χ(k1,k2) ((s1, s2))

) 1
q

= (k1 + k2 + 2) ·
∣∣∣ϕ · χ(k1,k2)

∣∣∣ p
q

p

= (k1 + k2 + 2) ·
∣∣∣ϕ · χ(k1,k2)

∣∣∣p−1

p
.

Since f = |ϕ|p−2 · ϕ̄ · χ(k1,k2), we have

∣∣ωϕ ( f )
∣∣ =

∣∣∣ϕ · χ(k1,k2)

∣∣∣p
p

≤ ‖ f ‖`p

≤ (k1 + k2 + 2) ·
∣∣∣ϕ · χ(k1,k2)

∣∣∣p−1

p
.

Consequently, ∣∣∣ϕ · χ(k1,k2)

∣∣∣ ≤ k1 + k2 + 2.

(2)⇒(3)
∑

(s1,s2)∈F2×F2

|ϕ ((s1, s2))|p · (2 + |s1|+ |s2|)−p−2

=
+∞
∑

k1,k2=0
∑

|s1|=k1
|s2|=k2

|ϕ ((s1, s2))|p · (2 + k1 + k2)
−p−2

=
+∞
∑

k1,k2=0

∣∣∣ϕ · χ(k1,k2)

∣∣∣p
p
· (2 + k1 + k2)

−p · (2 + k1 + k2)
−2

≤
{

sup
k1,k2

∣∣∣ϕ · χ(k1,k2)

∣∣∣
p
· (2 + k1 + k2)

−1

}p

·
+∞
∑

k1,k2=0
(2 + k1 + k2)

−2 < +∞.

(3)⇒(4) Obviously.
(4)⇒(1) Set

ϕα : (s1, s2) 7→ α|s1|, ψα : (s1, s2) 7→ α|s2| from F2 × F2 → R.
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For any ai ∈ C and (s1i, s2i) ∈ F2 × F2, we have

∑ ai āj ϕα

((
s1j, s2j

)−1 · (s1i, s2i)
)

= ∑ ai āj ϕα

(
s−1

1j s1i, s−1
2j s2i

)
= ∑ ai ājα

∣∣∣s−1
1j s1i

∣∣∣ ≥ 0.

So ϕα and similarly ψα are positive definite functions on F2 × F2. This implies that the function

Φα ((s1, s2))
∆
= α|s1|+|s2| = α|s1|α|s2| = ϕα ((s1, s2))ψα ((s1, s2))

is positive definite and Ψα ((s1, s2)) = ϕ ((s1, s2)) α|s1|+|s2| is also positive definite on F2 × F2. By the
GNS construction(The unitary representation via GNS approach refers to the conclusions of appendix
C in reference [9]), we obtain the unitary representation σα of F2×F2 with the cyclic vector ξα such that

Ψα ((s1, s2)) = 〈σα ((s1, s2)) ξα |ξα 〉 .

Since σα is an `p− representation ,Ψα can be considered as a state on C∗`p
(F2 × F2). By taking the

w∗−limit of Ψα as α ↑ 1, we obtain that ϕ can be extended to the state of Clp
∗ (F2 × F2).

Corollary 3. Let p ∈ [2, ∞) and α ∈ (0, 1). The positive definite function Φα(s1, s2) = α|s1|+|s2| can be

extended to the state on C∗`p
(F2 × F2) if and only if α < 3−

1
p .

Proof. Since

+∞
∑

k1,k2=1
3k1+k2−2αp(k1+k2) = 3−2

+∞
∑

k1,k2=1
(3 · αp)(k1+k2)

= 3−2

[
+∞
∑

k1=1
(3 · αp)k1

] [
+∞
∑

k2=1
(3 · αp)k2

]
,

it follows from Theorem 4 (4) that we have

Φα ∈ lp (F2 × F2) ⇔ ∀β ∈ (0, 1), (αβ)|s1|+|s2| ∈ `p(F2 × F2)

⇔ ∑
(s1,s2)∈F2×F2

(αβ)p(|s1|+|s2|) < +∞

⇔
+∞
∑

k1,k2=1
∑

|s1|=k1,|s2|=k2

(αβ)p(|s1|+|s2|) < +∞

⇔
+∞
∑

k1,k2=1
3k1+k2−2αp(k1+k2) < +∞

⇔ 3αp < 1

⇔ α < 3−
1
p .

Corollary 4. For 2 ≤ q < p ≤ ∞, the canonical quotient map from C∗`p
(F2 × F2)

onto−→C∗`q
(F2 × F2) is not

injective. So

C∗`p
(F2)

p
⊗C∗`p

(F2) � C∗`q
(F2)

q
⊗C∗`q

(F2).

Proof. If p = +∞ and C∗ (F2 × F2) = Cq
∗ (F2 × F2), we obtain that F2 × F2 is amenable by Prop2.12

in [5]. This is a contradiction.
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In the following, we consider 2 ≤ q < p < +∞. Suppose that the canonical map from
C∗lp

(F2 × F2) onto C∗lq (F2 × F2) is injective from some q < p. Take a real number α with

3−
1
q < α < 3−

1
p .

For Φα(s1, s2) = α|s1|+|s2|, by Corollary 3 we have

|ωΦα ( f )| ≤ ‖ f ‖`p
= ‖ f ‖`q

, f or f ∈ cc (F2 × F2) .

Therefore, it follows again that Φα can be extended to the state on C∗lq (F2 × F2), but it contradicts
to the choice of α and Corollary 3.
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