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Abstract: A stick of length 1 is broken at random into n smaller sticks. How much inequality does this
procedure produce? What happens if, instead of breaking a stick, we break a square? What happens
asymptotically? Which is the most egalitarian distribution of the smaller sticks (or rectangles)?
Usually, when studying inequality, one uses a Lorenz curve. The more egalitarian a distribution,
the closer the Lorenz curve is to the first diagonal of [0, 1]2. This is why in the first section we study
the space of Lorenz curves. What is the limit of a convergent sequence of Lorenz curves? We try to
answer these questions, firstly, in the deterministic case and based on the results obtained there in the
stochastic one.
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1. Introduction: Defining the Problem

Some time ago we were interested in the emergence and evolution of inequality if a whole is
divided at random into n pieces. How much inequality is there in that division? The whole may be the
surface, the population, the total GDP of the world, the number of species of insects or birds, etc. What
means “at random”, and how can we model this phenomenon?

This is the so-called “broken stick model”. It was introduced by MacArthur [1] in 1957, and it has
been extensively studied since then. A probabilistic approach can be found in Cohen [2]. Since “at random”
usually means “uniformly distributed”, these papers were about uniform spacings. Many books and
papers deal with them, e.g., Aly [3], Bansal et al. [4], Beirlant [5], Barton and David [6], Csörgö [7], Cucala [8],
Durbin [9], Le Cam [10], Pyke [11,12], Rao [13], Stephens [14,15], Tung [16], Wilks [17].

The inequality produced by these models was also considered via Lorenz curves, generalized Lorenz
curves, and Gini coefficients (see for instance Arnold [18,19], Sarabia et al. [20] or Stephens [14,15]).
The convergence of the empirical Lorenz curves to a theoretical one was studied by Goldie in 1977 (see
Reference [21]). The order between Lorenz curves is a particular stochastic ordering (see Marshall and
Olkin [22] and Stoyan [23]).

Our study was prompted by the strange fact that if we replace “at random = uniform distribution”
with “at random = any absolutely continuous distribution on [0, 1]”, the inequality produced in the
broken stick model seems to increase. Simulations with different distributions made us conjecture
that the Lorenz curves of the spacings always have a limit, and that limit is below the graph of
L(x) = x + (1 − x) ln (1 − x), meaning that all the other distributions of spacings dominate the
spacings produced by the uniform distribution in the Lorenz order.

We prove that in a particular case.
In order that this paper be as self-contained as possible, we study in the first three sections the

case when the spacings are produced by a deterministic algorithm, not by a random one. The main
results are Proposition 14 and its analog in terms of spacings, Proposition 20, which say that some
mixtures increase the inequality.

Mathematics 2020, 8, 625; doi:10.3390/math8040625 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8040625
http://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/8/4/625?type=check_update&version=3


Mathematics 2020, 8, 625 2 of 29

The last two sections focus on the random case. The main result is Proposition 27 which implies
the fact that if the density of the random variables used to break the stick is a step function, then
the limit of the corresponding Lorenz curves does exist, and it lies below the Lorenz curve of the
exponential distribution. The last section deals with the broken rectangle: the limit of the Lorenz
curves does exist and one can compute its Gini coefficient even if we do not have an analytic formula
for the Lorenz curve.

We have collected in the Appendix A several results which may be well known, but to which we
were not able to find appropriate references.

2. Generalities: The Lorenz and Pre-Lorenz Curve of a Probability Distribution
on the Non-Negative Half-Line

Notation. Let X ≥ 0 be a non-negative random variable. We will denote by the same letter F or FX both its
distribution and its distribution function. There will be no danger of confusion, since if B is a Borel set, then F(B)
will mean P(X ∈ B), while if x∈ R, F(x) will actually mean F((−∞, x]) = P(X≤ x). Moreover, as FX(x) = 0,
for all x < 0 we may as well think that F : [0,∞) → R .

We will denote by F−1 : [0, 1) → R its superior quantile defined by F−1(p) = in f
{
t : F(t) > p

}
.

Notice that we define the quantiles only on the interval [0, 1) , since F−1 (1) may be ∞ if the
distribution does not have a compact support.

The expectation EX depends only on F. In terms of distribution, it will be denoted by e(F). Since
X is non-negative, it is more or less obvious that:

e(F) =
∫

xdF(x) =
∫ 1

0
F−1(y)dy (1)

whereby
∫ 1

0 F−1(y)dy, we understand the Riemann integral lim
ε↓0

∫ 1−ε
0 F−1(y)dy. If X is integrable, then

e(F) < ∞, otherwise e(F) = ∞.
Let ΛF : [0, 1) → [0, ∞) be defined by:

ΛF(p) =
∫ p

0
F−1(y)dy (2)

As F−1 is non-decreasing, ΛF(p) ≤ pF−1(p), thus the definition of ΛF makes sense. We call ΛF the
pre-Lorenz curve of the distribution F.

The Lorenz curve is defined by:

LF(p) =
ΛF(p)

ΛF(1− 0)
, 0 ≤ p < 1 (3)

and makes sense only for distribution with finite expectation. Here and in the sequel ΛF(1− 0) = lim
p↑1

ΛF(p).

The limit does exist due to the monotonicity reasons.
The pre-Lorenz curve makes sense for any probability distribution on [0,∞), even if its expectation

is infinite.
The pre-Lorenz curve was introduced by Shorrocks [24] in 1983 under the name of “Generalized

Lorenz Curve”, and it was studied by many authors under this name. We think that “pre-Lorenz” is a
more appropriate name, since one computes the Lorenz curve after computing its pre-Lorenz one and
dividing by the expectation of the distribution.

Example 1. Let F = (
a b
p q

)=pδa + qδb with 0 ≤ a < b.
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Here and in the sequel, δa means the Dirac measure at a defined by δa(B) = 1B(a) =

1 i f a ∈ B

0 elsewhere
.

Then F−1(t) = a1(0, p)(t)+ b1[p,1) (t), therefore ΛF(t) = at1(0,p)(t)+ (ap + b(t− p))1[p,1) (t), ΛF(1 − 0) =
ap + bq,

LF(t) =

 at
ap+bq i f t < p
ap+b(t−p)

ap+bq i f p ≤ t < 1
(4)

Example 2. Let F(x) = (1− 1
xα )1[1,∞)(x) be the Pareto distribution of parameter α > 0.

Then F−1(p) = (1− p)−
1
α and

ΛF(p) =


α

1−α (1− (1− p)−
1−α
α ) i f 0 < α < 1

− ln (1− p) i f α = 1
α
α−1 (1− (1− p)

α−1
α ) i f α > 1

, ΛF(1− 0) =

∞ i f α ≤ 1
α
α−1 i f α > 1

(5)

LF(t) =

0 i f α ≤ 1

1− (1− p)
α−1
α i f α > 1

(6)

Unlike the mapping F 7→ LF , the mapping F 7→ ΛF is a one-one operator.

Proposition 1. Let P be the set of all the probability distributions on ([0, ∞) , B([0, ∞) ). Let F ∈ P.
Then ΛF(0) = 0, ΛF(1 − 0) = ΛF(1) = e(F). Moreover, ΛF is convex and non-decreasing, and its right
derivative is F−1.

Proof. Obvious. Lemma A1 says that any convex function defined on [a, b] is continuous on (a, b),

and it has both right and left derivatives. Its right derivative is (ΛF)
′
r(p) = lim

δ↓0

∫ p+δ
p F−1(y)dy

δ = F−1(p)

for all p ∈ [0, 1) if F−1 stands for the superior quantile which is right continuous. �

Let now C be the set of all convex functions L : [0, 1) → [0, ∞) which are convex and
non-decreasing. The following result concerns the unicity.

Proposition 2. The mapping F → ΛF from P to C is onto and one–one.

Proof. Let F, G be two distributions from P such that ΛF = ΛG. Taking the right derivatives, it follows
that F−1 = G−1. As F, G are right continuous, it follows that F = G.

This is a consequence of the following elementary fact: Let F, G : R → R be non-decreasing
functions. Let α : (F(−∞), F(∞))→ R , β : (G(−∞), G(∞))→ R be two functions having the property
that F(α(p) − 0) ≤ p ≤ F(α(p) + 0), G(β(p) − 0) ≤ p ≤ G(β(p) + 0). Ifα = β, then F(x) = G(x) for
any continuity point of F or G. Indeed, suppose, to make a choice, that F(x) < G(x). Let p such that F(x) <
p < G(x). Thus F(x) < F(α(p) + 0), G(x) > G(α(p) − 0) ⇒ x ≤ α(p), x ≥ α(p) ⇒ x = α(p) and
F(x) < F(x + 0), G(x) > G(x− 0). Thus, x must be a discontinuity point both for F and G. This set is
at most countable.

On the other hand, if Λ ∈C then, its right derivative λ = Λ′ is right continuous and non-decreasing.
According to Lemma A4, there exists a distribution function F such that λ = F−1 hence ΛF = Λ. �

Remark 1. If F has finite expectation, we can see that LF (1 − 0) = 1. Indeed, LF(p) =
ΛF(p)
ΛF(1)

=
ΛF(p)
e(F) .

If a function L : [0, 1]→ R is convex, non-decreasing, L(0) = 0, L(1) = 1 but L(1 − 0) < 1, we call it a
defective Lorenz curve.
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If Fn and F are distributions on the real line, their weak convergence will be denoted by “Fn ⇒ F”. Thus Fn ⇒ F
means

∫
f dFn →

∫
f dF for any continuous and bounded f : [0,∞) → R .

The connection between the Λ- transform and the weak convergence is given by the following.

Proposition 3. Let Fn, F ∈ P be probability distributions on [0, ∞) . Then Fn ⇒ F if and only if
ΛFn(p)→ ΛF(p) for any p ∈ (0, 1). Moreover, if the limit Λ of the sequence (ΛFn)n does exist and it is finite,
then the weak limit of the sequence (Fn)n does exist, too, and Λ = ΛlimFn .

Proof. According to Lemma A5 from the Appendix A, Fn ⇒ F if and only if Fn
−1(p) → F−1(p) for

p ∈ [0, 1], with the possible exception of a countable set, N.
If p < N, then for any ε > 0 there exists nε such that n ≥ nε ⇒ Fn

−1(p) ≤ F−1(p) + ε . As Fn
−1

are non-decreasing and non-negative, for any 0 ≤ Fn
−1(t) ≤ F−1(p) + ε for all t ≤ p, t < N. Therefore,

we may apply Lebesgue theorem of dominated convergence to infer that
∫ p

0 Fn
−1(t)dt→

∫ p
0 F−1(t)dt

or, which is the same thing, that ΛFn(p)→ ΛF(p) .
Conversely, if ΛFn(p)→ ΛF(p) , then, according to Lemma A3, the right derivatives converge

too: (ΛFn)
′(p)→ (ΛF)

′(p) at all points p where (ΛF)r
′(p) = (ΛF)l

′(p). But the right derivatives are
Fn
−1(p) and F−1(p): it follows that Fn

−1
→ F−1 with the possible exception of a countable set. Apply

again Lemma A5 (iv) to derive that Fn converges to F with the possible exception of a countable set.
But this means precisely that Fn ⇒ F .

If we only know that ΛFn(p)→ Λ(p) for all 0 < p < 1 and Λ is finite, then its right derivative, Λ′,
is the superior quantile of some probability distribution on [0, ∞) , and the proof goes in the same way. �

The Lorenz curve does not have the same good properties: it is possible that Fn ⇒ F but LFn(p)
does not converge to LF.

Example 3. Let Fn = (
a na

1− 1
n

1
n

), a > 0. Obviously Fn ⇒ δa but LFn(t) =
at

2a− 1
n

i f t < 1− 1
n

a(1− 1
n )+na(t−1+ 1

n )

2a− 1
n

i f 1− 1
n ≤ t < 1

converges to t
2 and not to Lδa(t) = t.

Example 4. The same, modified a bit: Fn = (
1 an + 1

1− 1
n

1
n

). Then Fn ⇒ δ1 , ΛFn(p)→ p ∀p ∈ [0, 1) but

LFn(p) =
p

1+ an
n
∀p ∈

[
0, 1− 1

n ) may have no limit at all if the sequence an
n has no limit.

The reason is the loss of mass to the infinity: if Xn ≥ 0 and Xn → X then EX ≤ limn→∞ EXn. This happens
due to Fatou’s Lemma.
If there is no loss of mass we can state.

Proposition 4. Let P1 be the set of the probability distributions from P which have finite expectation. Suppose
that Fn, F ∈P1, Fn ⇒ F and e(Fn) → e(F) > 0 . Then, LFn(p)→ LF(p) for all 0 ≤ p ≤ 1.
Conversely, if Ln : [0, 1] → [0, 1] are Lorenz curves, Ln → L and L is continuous at p = 1, then there exist
probability distributions Fn and F from P1 such that e(Fn) = e(F) = 1 and Fn ⇒ F.
Or, reformulated in terms of random variables:

Let (Xn)n ≥ 0 be random variables from L1. Let X ≥ 0 be another random variable such that EX = 1. Then Xn
EXn

D
→ X

⇒ LXn → LX . Conversely, if LXn → L and L is continuous at p = 1, then there exists a non-negative random

variable on the probability space (Ω, K, P) = ((0, 1), B((0, 1)), Lebesgue) such that Xn
EXn

L1
→ X.

Proof. From Proposition 3, we know that Fn ⇒ F ⇔ ΛFn(p)→ ΛF(p) . On the other hand,
e(Fn) = ΛFn(1− 0) and e(Fn) = ΛF(1− 0). Thus,
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Fn ⇒ F ⇒ ΛFn(p)→ ΛF(p), ΛFn(1− 0)→ ΛF(1− 0) ⇒ ΛFn (p)
ΛFn (1−0) →

ΛF(p)
ΛF(1−0) ⇒ LFn(p)→ LF(p) for

all 0 ≤ p ≤ 1. Conversely, if LFn(p)→ LF(p), we apply Lemma A3 from the Appendix A, and the
right derivatives converge in L1. The right derivatives λn = (L′n)r and λ = (L′)r are right continuous
and non-decreasing, thus there exist distribution functions Fn and F such that F−1

n = λn and F−1 = λ

(Lemma A4(iv)). Obviously, e(Fn) = e(F) =
∫ 1

0 λn(x)dx =
∫ 1

0 λ(x)dx = 1 and, according to Lemma A5,
we see that Fn ⇒ F . �

The situation changes if e(Fn) does not converge to e(F).

If the sequence (e(Fn))n has no limit at all, then Example 4 points out that the sequence LFn(p) =
ΛFn (p)
e(Fn)

has no limit, too, (since ΛFn(p) → ΛF(p) for any 0 < p < 1).
If e(Fn) → ke(F) , we know that k ≥ 1 (Fatou’s Lemma). Then the limit is a defective Lorenz curve:

lim
n

LFn(p) = lim
n

ΛFn (p)
e(Fn)

=
ΛF(p)
ke(F) = 1

k LF(p). Thus, we can add to the proposition 4 the following fact.

Proposition 5. Suppose that Fn, F ∈ P1, Fn ⇒ F and e(Fn) → ke(F) > 0 . Then, LFn(p)→
1
k LF(p) for

all 0 ≤ p < 1. If the limit of a sequence of Lorenz curves is defective, then the convergence does not ensure the
convergence of expected values. As a limit case, if LFn(p)→ 0 for 0 ≤ p < 1 and 0 < e(Fn) < M for some
M > 0 then, Fn ⇒ δ0 .

Proof. Only the last claim needs a proof. Remark that Λδ0(p) = 0 thus if LFn(p)→ 0 then ΛFn → Λδ0 .
In this case Proposition 3 says that Fn ⇒ δ0 . If the the sequence (e(Fn))n is not bounded, the claim is

not true. For instance, if Fn = (
1 n2

1− 1
n

1
n

) then LFn(p)→ 0 but Fn ⇒ δ1 and not to δ0. �

3. The Empirical Lorenz and Pre-Lorenz Curves of a Sequence of Non-Negative Real Numbers

Here, we study the deterministic case: if the sequence of points which generates the smaller sticks
is an usual one. We generalize a bit, giving up the restriction that the points lie between 0 and 1.

Let a = (an)n ≥ 1 be a sequence of non-negative reals. We attach to it the sequence of
probability distributions.

Fn = Fn(a) =

∑n
k=1 δak

n
, F∗n = F∗n(a) =

∑n
k=1 δ n

sn ak

n
, sn = a1 + · · ·+ an (7)

Next, we denote by Λn = Λn(a) and Ln = Ln(a) the pre-Lorenz and the Lorenz curves of Fn.
Thus:

Λn = Λn(a) = ΛFn (a), Ln = Ln(a) = LFn (a) (8)

We want to know when these curves have a limit. First, a remark which is useful for calculus:

Proposition 6. Let a = (an)n ≥ 1 be a sequence of non-negative reals. Let n ≥ 2 be fixed. Let also
On(a) = (a1:n , a2:n , . . . , an,n) be the sorted (ascending) values of (a1, a2 . . . , an). Denote by Sk:n the sum

Sk:n = a1:n + a2:n + · · ·+ ak:n, f or1 ≤ k ≤ n (9)

Then,

(i) Λn is the polygonal line which joins the points (0,0), ( 1
n , S1,n

n ),( 2
n , S2,n

n ), . . . ,( n
n , Sn,n

n ), and Ln is the

polygonal line which joins the points (0, 0), ( 1
n , S1,n

Sn,n
),( 2

n , S2,n
Sn,n

), . . . ,( n
n , Sn,n

Sn,n
). Or, formally, for any

1 ≤ · · · k ≤ n we have:

Λn(
k− 1 + ε

n
) =

(1− ε)Sk−1,n + εSk,n

n
, Ln(

k− 1 + ε
n

) =
(1− ε)Sk−1,n + εSk,n

Sn,n
(10)
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(ii) LFn(a) = ΛF∗n(a).
(iii) Λn(αa) = αΛn(a), Ln(αa) = Ln(a) for any α > 0. The Lorenz curve is invariant to homotheties.
(iv) if σ ∈ Sn is a permutation, then Λn(a(1), a(2), . . . , a(n)) = Λn(a). Both Λn and Ln are invariant with

respect to permutation of the first n terms of a.

Proof. The distribution function of Fn is Fn(x) =
∑n

k=1 1[ak ,∞)(x)
n a.s.o. The assertions are elementary and

left to the reader. �

Example 5. If z j are some points in plane, we denote by Poly(z1 → z2 → . . .→ zk ) = Poly (z j ; 1 ≤ j ≤ k)
the polygonal line which joins the points z1, z2, . . . , zk from plane (in this order). Then:

(i) a = (1, 0, 1, 0, 1, 0, . . .). Then On(a) = (0, . . . , 0, 1, . . . , 1) where, if n = 2k, we have k
zeros and k ones, and if n = 2k + 1, we have k zeros and k + 1 ones. If n = 2k, then Λn is the
polygonal line which joins the points (0, 0), ( 1

n , 0), . . . , ( k
n , 0), ( k+1

n , 1
n ), . . . , (

n
n , k

n ). Many points are
on the same line, thus it is easier to write Λ2k = Poly( (0, 0)→ ( 1

2 , 0)→ (1, 1
2 ) ) and Λ2k+1 =

Poly( (0, 0)→ ( k
2k+1 , 0)→ (1, k+1

2k+1 ) ). As Sn:n = k if n = 2k and Sn:n = k + 1 if n = 2k + 1, it
follows that L2k = Poly( (0, 0)→ ( 1

2 , 0)→ (1, 1) ) and Λ2k+1 = Poly( (0, 0)→ ( k
2k+1 , 0)→ (1, 1) ) .

(ii) More general, if a is a periodic sequence: a = (x1, . . . , xk, x1, . . . , xk, . . .), then the describing of Λn

and Ln become very annoying if we do not know the ordering of the numbers x j. But if we assume that
x1 ≤ . . . ≤ xk, the describing can be done as follows: suppose that n = km + r with 0 ≤ r < k,
then On(a) = (x1, . . . , x1, x2, . . . , x2 , . . . , xr, . . . , xr, xr+1, . . . , xr+1, . . . , xk, . . . , xk), where x j occur
m + 1 times if j ≤ r, and it occurs m times if j > r. Thus Sn:n = mSk:k + Sr:k and

Λn = Poly((0, 0)→ (m+1
n , m+1

n x1)→ (
2(m+1)

n , m+1
n (x1+

x2))→ . . .→ (
r(m+1)

n , m+1
n (x1 + . . .+ xr))→ (

r(m+1)+m
n , m+1

n (x1 + x2 + . . .+ xr)+

m
n xr+1)→ (

r(m+1)+m(k−r)
n , m+1

n (x1 + x2 + . . .+ xr) +
m
n (xr+1 + . . .+ xk))→ (1, mSk:k+Sr:k

n ) ) , and

Ln = Poly( (0, 0)→ (m+1
n , m+1

Sn:n
x1)→ (

2(m+1)
n , m+1

Sn:n
(x1 + x2))→ . . .→ (

r(m+1)
n , m+1

Sn:n
(x1 + x2 + . . .+

xr))→ (
r(m+1)+m

n , m+1
Sn:n

(x1 + x2 + . . .+ xr) +
m
n xr+1)→ (

r(m+1)+m(k−r)
n , m+1

Sn:n
(x1 + x2 + . . .+ xr)+

m
Sn:n

(xr+1 + . . .+ xk))→ (1, 1))

(iii) Suppose that an = αn. If α > 0, the sequence is increasing, if α = 0 it is constant, and if α < 0 it is
decreasing. In the first two cases, no sort is necessary hence Λn=Poly ( (0, 0)→

{
( k

n , sk
n ); 1 ≤ k ≤ n

}
),

Ln = Poly ( (0, 0)→
{
( k

n , sk
sn
); 1 ≤ k ≤ n

}
) where sn = 1α + 2α + . . . + nα and s0 = 0. If α = −β < 0

then On(a) = ( 1
nβ

, 1
(n−1)β

, . . . , 1
2β

, 1), therefore Λn = Poly ( (0, 0)→
{
( k

n , sn−sn−k
n ); 1 ≤ k ≤ n

}
), Ln =

Poly ( (0, 0)→
{
( k

n , sk−sn−k
sn

); 1 ≤ k ≤ n
}
)

(iv) a = (1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, . . . (24 times), 0, 0, . . . (25 times), . . . .)
Let N = 1 + 2 + . . . + 2n−1 = 2n

− 1 If n = 2m is even, On(a) =

(0, 0, . . . ( 2
3 (2

n
− 1) times ), 1, 1, . . . , ( 1

3 (2
n
− 1) times)) and if n = 2m + 1 is odd,

On(a) = (0, 0 . . . ( 1
3 (2

n
− 1) times ), 1, 1, . . . , ( 2

3 (2
n
− 1) times)). In the first case, Fn = (

0 1
2
3

1
3
),

and in the second one it is Fn = (
0 1
1
3

2
3
). For other types of n, we obtain intermediate values.

The pre-Lorenz curves move between (p − 2
3 )+ and (p − 1

3 )+, and the Lorenz ones move between
3(p − 2

3 )+ and 2(p − 1
3 )+. None of them have a limit.

The first problem is: for what kind of sequences does the sequence Λn(a) have a finite limit.
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This is the easy one.

Proposition 7. Let a = (an)n ≥ 1 be a sequence of non-negative integers. The following assertions are equivalent:

(i) The sequence (Fn(a))n≥1 has a weak limit, F = F(a);
(ii) The sequence (Λn(a))n≥1 has a finite limit, ΛF(a);
(iii) The sequence ( f (an))n ≥ 1 has finite Cesaro limit for any continuous bounded f : [0,∞) → R and this

limit is equal to
∫

f dF.

Proof. The equivalence (i) ⇔ (ii) is actually Proposition 3. According to the well-known
Portmanteau proposition (see, for instance, References [25,26]), one knows that Fn ⇒ F if and
only if

∫
f dFn →

∫
f dF for any f : R→ R bounded continuous. In our case,

∫
f dFn(a) =

f (a1)+ f (a2)+...+ f (an)
n . If this limit exists for any continuous and bounded f , then the sequence of probability

measures (Fn)n should have a limit weak limit too.

In order to detect the limit, we have to study the empirical distribution functions Fn(x) =
|{k≤n:ak≤x}|

n .
The hard way is to compute Λn(a). If we want to find the limit of Ln(a), the fact that Fn ⇒ F does not
help very much unless we can prove that e(Fn) converges to e(F), too. �

Sometimes the following result may help.

Lemma 1. Let fn : [a, b]→ [m, M] be convex and non-decreasing. Suppose that for any x ∈ (a, b) there
exists a sequence (xn)n such that xn → x and the sequence ( fn(xn))n is convergent.
Then, the limit f (x) := limn fn(x) does exist for any x ∈ (a, b), and it is convex and non-decreasing. Moreover,
f (x) = limn fn(x).

Proof. Let a < x < b and f (x) = limn→∞ fn(xn). Write f (x) − fn(x) = f (x) − fn(xn) +

fn(xn) − fn(x). Let ε > 0 be small enough in order that a < x − ε < x + ε < b. Let nε
be such that n ≥ n ⇒ x− ε < xn < x + ε . For n ≥ nε, we have fn′l(x− ε) ≤

fn(x)− fn(xn)
x−xn

≤

( fn)
′

r(x + ε) hence
∣∣∣ fn(x) − fn(xn)

∣∣∣ ≤ ( fn)
′

r(x + ε)|x− xn|. By chord inequality, ( fn)
′

r(x + ε) ≤
fn(b)− fn(x+ε)

b−(x+ε) and the last quantity is smaller than M−m
b−(x+ε) . Thus, we obtained the evaluation∣∣∣∣ f (x) − fn(x)| ≤| f (x) − fn(xn)

∣∣∣∣+ M−m
b−(x+ε)

∣∣∣∣x− xn

∣∣∣∣ → 0 if n → ∞ . �

A first positive answer for the existence of the limit is:

Proposition 8. Let a ≥ 0. Suppose that an → a . If a > 0, then Fn(a) ⇒ δa , F∗n(a) ⇒ δ0 and
Ln(a)(t) → t, 0 ≤ t ≤ 1 . If = 0, then Fn(a)⇒ δ0 . If, moreover, the series

∑
∞

k=1 ak is convergent then
F∗n(a) ⇒ δ0 and Ln(a)(t) → 0 .

Proof. The first claim is obvious: if f is continuous and bounded, then lim
∑n

k=1 f (ak)

n = lim f (an) = f (a)
for a ≥ 0. To prove that F∗n(a) ⇒ δ1 write an = a + εn with εn → 0 . Let Tn = ε1 + · · · + εn,

Sn = a1 + · · ·+ an = na+ Tn. Notice that nak
Sn

=
na+nεk
na+Tn

=
1+

εk
n

1+ Tn
na

converge to 1 as n → ∞ for any k ≤ n.

Let f : [0,∞) → [0,∞) be uniformly continuous and bounded. Let ε > 0 be arbitrary small and let
δ = δ(ε) be such that

∣∣∣x− y
∣∣∣< δ ⇒ | f (x) − f (y)

∣∣∣< ε .

Let nε be such that n > nε ⇒
∣∣∣nak

Sn
− 1

∣∣∣ < δ. Notice that lim
n→∞

∑n
k=1 f (

nak
Sn

)

n = lim
n→∞

∑n
k=nε+1 f (

nak
Sn

)

n hence

f (1) − ε = lim
n→∞

(n−nε)( f (1)−ε)
n ≤ lim

n→∞

∑n
k=nε+1 f (

nak
Sn

)

n ≤ lim
n→∞

(n−nε)( f (1)+ε)
n = f (1) + ε. As ε is arbitrary,

lim
n→∞

∑n
k=1 f (

nak
Sn

)

n = f (1) =
∫

f dδ1. As e(δ1) = e(F∗n) = 1, the Lorenz curves Ln(a) converge to the

Lorenz curve of δ1, namely, to L(t) = t.
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If a = 0, we compute the Lorenz curve, i.e., the polygonal line given by the points ( k
n , b1+...+bk

Sn
),

where bk = ak:n. Let cn = bn−k+1 and k = c1 + · · ·+ ck. Note that the sequence (cn)n is non-increasing,

Sn = Σn = c1 + · · ·+ cn,b1 + · · ·+ bk = Σn − Σn−k. If we write
b1+...+b[nt]

Sn
=

Σn−Σ[nt]
Σn

= 1 −
Σ[nt]
Σn

and

remark that 0 < t < 1 ⇒ limΣn = lim Σ[nt] =
∑
∞

k=1 ak, it becomes obvious that lim
n→∞

b1+...+b[nt]
Sn

= 0.

⇔ Ln(a)→ 0 .
By Proposition 6 (ii), we know that LFn(a) = ΛFn∗(a). As ΛFn∗ converges to 0, it results that

Fn
∗
⇒ δ0 . �

Remark 2. If
∑
∞

k=1 ak = ∞, an → 0 we can say nothing about the limit of Ln(a). For instance, if a =

( 1
nα )n≥1 0 < α < 1 is the sequence from Example 5(iii) below, then an → 0 but the sequence Ln(a)(p) has the

limitL(p) = 1− (1− p)1−α. Therefore, the limit of Fn
∗(a) is the probability distribution with the distribution

function F∗(x) = (1− ( 1−α
x )

1
α )+ which is a Pareto-type one. Thus, it is very possible that Fn(a) and Fn(b)

have the same limit, but Fn
∗(a) and Fn

∗(b) have a different limit—if any. Conversely, Fn
∗(a) and Fn

∗(λa) have
the same limit, but Fn(a) and Fn(λa) have different limits. Many other examples will follow.

Remark 3. The order does matter. Precisely, if we know that Fn(a) ⇒ F and we modify the terms
of a according to some permutation σ : {1, 2, . . .} → {1, 2, . . .} , then we can say nothing about the limit of
Fn(a ◦ σ). Suppose, for instance, that a = (0,1,0,1,0,1, . . . .) and that σ is chosen in such a way that a ◦
σ = (0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0(23 times), 1(23 times), 0(24 times), 1(24 times), . . . . . .). The reader
can check that (Fn(a ◦ σ))n has no limit. This is a main difference between the Cesaro convergence and the usual
convergence.
We study now what happens if we modify the sequence a. The question is: how sensitive is L with respect to that
change, and, in general if Fn(a) has a limit (or Fn

∗(a) has a limit) what can we say about the limits of Fn(ϕ(a))
or Fn

∗(ϕ(a)) if ϕ : [0,∞) → [0,∞) ?
A partial answer is:

Proposition 9. (i) Let a be a non-decreasing and non-bounded sequence of non-negative reals. Let b be a
bounded sequence of non-negative reals. Suppose that (Fn

∗(a))n is weakly convergent to some probability

distribution F and that S2
n

n2an
→∞ as n → ∞ , where Sn = a1 + a2 + · · ·+ an.

Then Fn
∗(a + b)⇒ F, too, and Ln(a + b) → LF .

(ii) If Fn(a) ⇒ F, then Fn(ϕ(a)) ⇒ F ◦φ−1 .

(iii) If Ln(a) → L, then Ln(αa + β)(t) →
L(t)+ β

αµ t

1+ β
αµ t

, where µ = lim
n

Sn
n > 0,α > 0, β > 0, t ∈ (0, 1).

Proof. (i). Let Tn = b1 + b2 + · · ·+ bn. The assumption is that
∫

f dFn
∗(a)→

∫
f dF for any f : R→ R

bounded and uniformly continuous. According to the definition of Fn
∗, that is the same with:∑n

j=1 f ( n
Sn

a j)

n
→

∫
f dF (11)

The claim is that: ∑n
j=1 f ( n

Sn+Tn
(a j + b j))

n
→

∫
f dF (12)

Let ε > 0 be arbitrary and let δ = δ(ε) such that |x − x′| ≤ δ ⇒
∣∣∣ f (x) − f (x′)

∣∣∣ ≤ ε . We prove
that there exists a positive integer n0 such that n ≥ n0 ⇒

∣∣∣ n
Sn

a j −
n

Sn+Tn
(a j + b j)

∣∣∣ < δ for any 1 ≤ j ≤ n.
Indeed, let M > 0 such that b j ≤ M for any j. Since a is non-decreasing, we have∣∣∣∣∣na j

Sn
−

n(a j+b j)

Sn+Tn

∣∣∣∣∣ = n
Sn

∣∣∣Tna j−Snb j
∣∣∣

Sn+Tn
≤

n
Sn

Tna j+Snb j
Sn+Tn

≤
n

Sn

nMa j+SnM
Sn+Tn

≤
nM
Sn

nan+Sn
Sn+Tn

≤M( n2an
Sn2 + n

Sn
).
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According to our assumptions S2
n

n2an
→∞ ⇒

n2an
Sn2 → 0 . On the other hand, n

Sn
→ 0 , since an is

non-decreasing and non-bounded. It follows that there exists n0 such that n ≥ n0 ⇒

∣∣∣∣∣na j
Sn
−

n(a j+b j)

Sn+Tn

∣∣∣∣∣
< δ for 1 ≤ j ≤ n ⇒

∣∣∣∣∣ f ( na j
Sn

) − f (
n(a j+b j)

Sn+Tn
)

∣∣∣∣∣ < ε. Therefore,

∣∣∣∣∑n
j=1 f ( n

Sn+Tn
(a j+b j))−

∑n
j=1 f (

naj
Sn

)
∣∣∣∣

n < ε for any

n ≥ n0. As ε is arbitrary, the claim (12) immediately follows.
(ii) is obvious.
(iii) The assumption is that the sequence of polygonal lines given by the points ( k

n , a1:n+...+ak:n
Sn

)
0≤k≤n

converges to some Lorenz curve L. We want to see what happens with the polygonal lines given

by the points ( k
n , α(a1:n+...+ak:n)+kβ

αSn+nβ )
0≤k≤n

= ( k
n ,

a1:n+...+ak:n
Sn

+
kβ
αSn

1+ nβ
αSn

)
0≤k≤n

. If k = [nt] with 0 < t < 1, then

n→ ∞ ⇒
a1:n+...+ak:n

Sn
→ L(t) , k β

αSn
→

βt
αµ , nβ

αSn
→

β
αµ if µ < ∞. If µ = ∞, the limit remains L(t). �

Remark 4. If µ = 0, the result fails to be true. However, one may check that if
∑
∞

k=1 ak < ∞,
then Fn(αa + β) ⇒ δ1 .

Remark 5. One may see that if β ≥ 0, the Lorenz curve increases. This is a particular case of a theorem of
Arnold [27] which says that if X ≥ 0 a random variable, EX > 0 then the Lorenz curve of f (X) is above the
Lorenz curve of X if and only if f is non-decreasing and f (x)

x is non-increasing. In our case f (x) = αx + β.

Combining. Now we study what happens if we combine two sequences a and b. Precisely, if we know the limits
for Ln(a) and Ln(b), what can we say about the limit of this combination.
By combination we mean the sequence a&b = (a1, b1, a2, b2, . . . .).
A problem that arises is to describe the limit of F∗n(a&b) if we know the limits of F∗n(a) and F∗n(b).

We cannot expect the result to be some mixture of the two limit distributions as the following
example shows:

Proposition 10. Let a = (1, 2, 3, 4, . . . ..) and b = (α, 2α, 3α, . . . .). Then F∗n(a) = F∗n(b)⇒ Uni f orm(0, 2) .
However F∗n(a&b) ⇒ 1

2 (Uniform(0, 4
1+α ) + Uniform(0, 4α

1+α )) .

Proof. F∗n(a) = F∗n(b) =

∑n
k=1 δ 2k

n+1
n . If f is bounded and continuous, then∫

f dF∗n(a) =
∑n

k=1 f ( 2k
n+1 )

n →

∫ 1
0 f (2x)dx = 1

2

∫ 2
0 f (x)dx =

∫
f dµ where µ = Uni f orm(0, 2).

In order to compute
∫

f dF∗n(a&b), we have to consider two cases: if n is odd or even. If n = 2m then:

∫
f dF∗n(a&b) =

∑m
j=1 f ( 4 j

(1+α)(m+1) )+
∑m

j=1 f ( 4α j
(1+α)(m+1) )

2m =

= m+1
2m ( 1

m+1

m∑
j=1

f ( 4
1+α ·

j
m+1 )

+ 2
2m+1

m∑
j=1

f ( 4α
1+α ·

j
m+1 ))

and the last sum converges to:

1
2
(

∫ 1

0
f (

4
1 + α

x)dx +
∫ 1

0
f (

4α
1 + α

x)dx) =
1
2

∫
f d(Uniform(0,

4
1 + α

) + Uniform(0,
4α

1 + α
))

If n = 2m + 1, the computations are almost the same.
Notice that if α = 1 (hence a = b), then F∗n(a&b) ⇒ Uniform(0, 2) . �

There is no general result concerning the limit of Ln(a&b). However, we can state some partial ones.
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Proposition 11. Let a, b be two non-decreasing sequences of positive numbers and let Sn = a1 + a2 + · · ·+ an.
Suppose that a&b is also non-decreasing, Sn+1

Sn
→ 1 as n→ ∞ and that the weak limit limnF∗n(a) = F does

exist and e(F) = 1.
Then, both Ln(b) and Ln(a&b) converge to the Lorenz curve of F, LF.
Or, otherwise written, lim

n→∞
F∗n(b) = lim

n→∞
F∗n(a&b) = F.

Proof. The assumption is that the points (
[np]

n ,
S[np]
Sn

)→ (p, LF(p) as n→∞ for any 0 < p < 1.

Let then Tn = b1 + b2 + · · ·+ bn. Notice that Sn ≤ Tn ≤ Sn+1. It means that
S[np]
Sn+1

≤
T[np]
Sn
≤

S[np]+1
Sn

.

We supposed that Sn+1
Sn
→ 1 as n→∞ . It follows that lim

n→∞

S[np]+1
Sn

= lim
n→∞

S[np]+1
S[np]

lim
n→∞

S[np]
Sn

= 1 · LF(p) and

lim
n→∞

S[np]
Sn+1

= lim
n→∞

S[np]
Sn

lim
n→∞

Sn
Sn+1

= LF(p) · 1 hence lim
n→∞

(
[np]

n ,
T[np]
Tn

) = (p, LF(p), or, which is the same thing,

that Ln(b) → LF . �

Let c = a&b and let Un = c1 + · · ·+ cn. If n = 2m is even, then Un = Sn + Tn an if n = 2m− 1 is
odd, then Un = Sm + Tm−1. On the other hand:

Uk
Un

=



S j+T j
Sm+Tm

i f k = 2 j, n = 2m
S j+T j−1
Sm+Tm

i f k = 2 j− 1, n = 2m
S j+T j

Sm+Tm−1
i f k = 2 j, n = 2m− 1

S j+T j−1
Sm+Tm−1

i f k = 2 j− 1, n = 2m− 1

(13)

Suppose that n→∞ and k→∞ in such a way that k
n → p for some 0 < p < 1. Then [k/2]

[n/2] → p too.

In other words, j
m → p , where j and m are those from (13). In all the four cases Uk

Un
→ LF(p) .

For instance:∣∣∣∣∣∣ S j + T j

Sm + Tm
− LF(p)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ Sm

Sm + Tm
(

S j

Sm
− LF(p)) +

Tm

Sm + Tm
(

T j

Tm
− LF(p))

∣∣∣∣∣∣ ≤ max(

∣∣∣∣∣∣ S j

Sm
− LF(p)

∣∣∣∣∣∣,
∣∣∣∣∣∣ T j

Tm
− LF(p)

∣∣∣∣∣∣) �

As a byproduct, we may notice:

Proposition 12. Let a, b be two non-decreasing sequences of positive numbers. Suppose that a&b is also
non-decreasing, the weak limits coincide: lim

n→∞
F∗n(a) = lim

n→∞
F∗n(b) = F and e(F) = 1. Then lim

n→∞
F∗n(a&b) = F.

As a particular case, lim
n→∞

F∗n(a&a) = F.

Proof. It is the same. We do not need the hypothesis that Sn+1
Sn
→ 1 . �

Mixture. Mixture is a generalization of combining. If b and c are two sequences and a = b& c, then b and c
have the same weight in a. It is possible that the weights can be different. Then, we have a mixture.

Definition 1. Let N be the set of positive integers. Let B = {i1 < i2 < i3 < · · ·}, C =
{
j1 < j2 < j3 < · · ·

}
⊆ N be

such that B∪ C = N and B and C are disjointed. Let b and c be two sequences of reals. Let βn = |B∩ {1, . . . , n}|
β, γn = |C∩ {1, . . . , n}|γ. Suppose that βn

n → p ∈ (0, 1) and γn
n → q ∈ (0, 1) = q = 1− p . Define an = bk

if n ∈ B, n = ik and an = ck if n ∈ C, n = jk. Then a is called a (B, C)—mixture of b and c. Let Sn(b) =
b1 + · · ·+ bn and Sn(c) = c1 + · · ·+ cn. Then it is obvious that Sn(a) = Sβn(b) + Sγn(c). If, moreover

the limits lim
Sβn (b)
Sn(a)

= πb, lim
Sγn (c)
Sn(a)

= πc do exist, then we call the sequence “a good(B, C)—mixture of b
and c”. One may notice that, for instance, if B = {1, 3, 5, . . .}, C = {2, 4, 6}, then a = b& c. Thus, combining
is indeed a particular case of mixture.
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The generalization is obvious. Split the positive integers in sets B1, . . . , Bk. Consider k sequences
b1, . . . , bk. Suppose that all the sets B j =

{
i j.1, i j.2, . . .

}
are infinite. Let β j,n =

∣∣∣B j ∩ {1, 2, . . . , n}
∣∣∣ and

p j = limn
β j,n
n . Define the mixture by an = b j,k if n ∈ B j, n = i j,k. Then Sn(a) = Sβ1,n(b1) + Sβ2,n(b2) +

. . .+ Sβk,n(bk).

Good Mixtures. The mixture (B1, . . . , Bk) of (b1, . . . , bk) is called a good mixture if all the limits π j =

lim
n

Sβ j,n (b j)

Sn(a)
do exist. Remark that always π1 + π2 + · · ·+ πk = 1.

Proposition 13. (i) Let a be a (B, C) –mixture of b and c. Suppose that Fn(b) ⇒ Hb and Fn(c) ⇒ Hc .
Then Fn(a) ⇒ pHb + qHc .
(ii) Suppose that a is a good (B, C) mixture of b and c and F∗n(b)⇒ H∗b and F∗n(c)⇒ H∗c . Then

F∗n(a)⇒ pH∗b ◦ (hπb/p)
−1 + qH∗c ◦ (hπc/q)

−1 where hλ(x) = λx is the homothety. Here H ◦ f−1 means
the image of H given by f , defined by H ◦ f−1(B) = µ( f−1(B)) for all Borel sets B.
(iii) Generalization.
If B is a (B1, B2, . . . , Bk)) mixture of b1, . . . , bk and Fn(b j)⇒ Hj then Fn(a)⇒

∑n
k=1 p jH j . If the mixture is

good and F∗n(b j)⇒ H∗b j
then F∗n(a)⇒

∑k
j=1 p jH∗b j

◦ (hπ j/p j)
−1 .

Proof. (i) Let f : [0,∞) → [0,∞) be continuous and bounded. We know that as n→ ∞ ,∑n
k=1 f (bk)

n →

∫
f dHb and

∑n
k=1 f (ck)

n →

∫
f dHc . We also know that βn

n → p ∈ (0, 1) and γn
n → q . Then∑n

k=1 f (ak)

n =
βn
n

∑αn
k=1 f (bk)

βn
+

γn
n

∑βn
k=1 f (ck)

γn
→ p

∫
f dHb + q

∫
f dHc =

∫
f d(pHb + qHc) .

(ii) Recall that F∗n(a) =

∑n
k=1 δ n

sn ak
n We know by hypothesis that

∑n
k=1 f (

nbk
Sn(b)

)

n →

∫
f dH∗b and∑n

k=1 f (
nbk

Sn(c)
)

n →

∫
f dH∗c for any uniform continuous and bounded f : [0,∞) → [0,∞) . We want to

prove that
∑n

k=1 f (
nak

Sn(a)
)

n → p
∫

f ◦ hπb/pdH∗b + q
∫

f ◦ hπb/qdH∗c for any bounded continuous f. It is
known (see, for instance, Reference [26] p. 371) that it is enough to consider only continuous functions
with compact support, provided that the guessed limit is indeed a probability. This is our case.
Thus, we write:

∑n
k=1 f ( nak

Sn(a)
)

n
=
βn

n

∑αn
k=1 f (

nSβn (b)
Sn(a)βn

·
βnbk

Sβn (b)
)

βn
+
γn

n

∑βn
k=1 f ((

nSγn (c)
Sn(a)βn

·
γnbk

Sγn (c)
))

γn

Notice that when n→∞ ,
nSβn (b)
Sn(a)βn

= n
βn

Sβn (b)
Sn(a)

→
πb
p and

nSγn (b)
Sn(a)γn

→
πc
q . Taking into account the fact

that f is uniformly continuous and its support is included in some interval [0, M], the reader can
check that:

lim
n

∑αn
k=1 f (

nSβn (b)

Sn(a)βn
·
βnbk

Sβn (b) )

βn
= lim

n

∑αn
k=1 f (

πb
p ·

βnbk
Sβn (b) )

βn
and in the same way that the same way

lim
n

∑βn
k=1 f ((

nSγn (c)
Snγn

·
γnbk

Sγn (c) ))

γn
= lim

n

∑βn
k=1 f (( πc

q ·
γnbk

Sγn (c) ))

γn
. But, according to our hypothesis lim

n

∑αn
k=1 f (

πb
p ·

βnbk
Sβn (b) )

βn
=∫

f (πb
p x)dH∗b(x) and lim

n

∑βn
k=1 f ((

nSγn (c)
Snβn

·
γnbk

Sγn (c) ))

γn
=

∫
(πc

q x)dH∗c(x).
The result is that

lim
n

∑n
k=1 f ( nak

Sn
)

n
= p

∫
f (
πb
p

x)dH∗b(x) + q
∫

f (
πc

q
x)dH∗c(x) =

∫
f d(pH∗b ◦ (h πb

p
)−1 + qH∗c ◦ (h πc

q
)−1)

(iii) Same proof. �.
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Corollary 1. Assume the same conditions as in Proposition 13. If Hb j = H for al j, then Fn(a)⇒ H and if

H∗b j
= H∗ for all j, then F∗n(a)⇒

∑k
j=1 p jH∗ ◦ (hπ j/p j)

−1 .

Proof. Obvious. �

Lorenz Domination. Let F and G be two probability distributions on [0, ∞) and let LF, LG be their
Lorenz curves. If LF ≥ LG, we say that F is Lorenz dominated by G or, to quote Barry Arnold [28], that
“G exhibits more inequality than F”. Usually one denotes this domination by F ≤L G. It is known that
F ≤L G⇔

∫
udF ≤

∫
udG for all convex functions u : [0,∞) →: [0,∞) for which the integrals are finite.

See Reference [29].

It is interesting that a mixture of the type described in Corollary 1 always increases the inequality.

Proposition 14. Let F be a probability distribution on: [0,∞) . Let (p j)1≤ j≤k, and (π j)1≤ j≤k be convex

combinations with positive coefficients. Let λ j =
π j
p j

. Then F ≤L
∑k

j=1 p jF ◦ (hλ j)
−1.

Proof. Let u be convex. Then,
∫

f d(
∑k

j=1 p jF ◦ (hλ j)
−1) =

∫ ∑k
j=1 p j f (λ jx)dF(x) ≥∫

f (
∑k

p j
p jλ jx)dF(x) =

∫
f dF. �

Example 6. an = nα.
The sequence (Λn)n. If α > 0 an →∞ and the sequence is increasing. (Fn(a))n has no limit (unless
we consider the abstract distribution δ). Thus Λn(a)(p)→∞ . If α = 0, an = 1 ⇒ Fn = δ1 . If α < 0,

an → 0⇒ Fn = δ0 hence the result is lim
n

Λn(p) =


0 i f α < 0
p i f α = 0
∞ i f α > 0

.

The sequence (Ln)n: If α > 0 the sequence is increasing. The extreme points of the polygonal line Ln

are ( k
n , sk

sn
); 1 ≤ k ≤ n. Here sk = 1α + 2α + · · · + kα. Notice that kα+1+α

α+1 < sk <
(k+1)α+1

−1
α+1 hence

kα+1+α
(n+1)α+1

−1
< sk

sn
<

(k+1)α+1
−1

nα+1+α
. Let 0 < p < 1 and (kn)n be a sequence such that kn

n → p . Then
( kn

n )
α+1

+ α
nα+1

(1+ 1
n )
α+1
−

1
nα+1

<

skn
sn
<

( kn+1
n )

α+1
−

1
nα+1

1α+1+ α
nα+1

. Passing to limit as n→∞ we obtain
skn
sn
→ pα+1 . Thus, Ln(

kn
n )→ pα+1 . By Lemma 1,

we get that Ln(p)→ pα+1 . Similar considerations may be applied in the other cases; the result is that

lim
n

Ln(p) =


0 i f α ≤ −1

1− (1− p)α+1 i f −1 < α ≤ 0
pα+1 i f α > 0

. Notice that if α ≤ −1, the limit is a degenerate Lorenz curve.

Example 7. a = (1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, . . . (24 times), 0, 0, . . . (25 times), . . . .).
Let N = 1 + 2 + . . . + 2n−1 = 2n

− 1. If n = 2m is even, On(a) =

(0, 0 . . . ( 2
3 (2

n
− 1)times), 1, 1, . . . ( 1

3 (2
n
− 1)times )) and if n = 2m + 1 is odd, On(a) =

(0, 0 . . . ( 1
3 (2

n
− 1)times), 1, 1, . . . ( 2

3 (2
n
− 1)times )). In the first case, Fn = (

0 1
2
3

1
3
) and in the second

one it is Fn = (
0 1
1
3

2
3
). For other types of n we obtain intermediate values. The pre-Lorenz curves move

between (p− 2
3 )+ and (p− 1

3 )+, and the Lorenz ones move between 3(p− 2
3 )+ and 2(p− 1

3 )+. The limits do
not exist.

Example 8. A generic example of injective sequences a with the property that Fn(a)⇒ U(0, 1) . Let (Ak)k
be a sequence of positive numbers. Suppose that Ak > 1 is increasing and lim

k
Ak = ∞. Let σ(0) = 0,

σ(k) = [A1] + [A2] + · · ·+ [Ak] for k ≥ 1. ([A]means the integer part of A). Suppose, moreover, that
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Ak+1
Ak
→ 1 and that the ratio Am

Ak
is not a rational number. Any positive integer n can be written uniquely as

n = σ(k) + j for some k = k(n) and j = j(n) ∈
{
0, . . . , [Ak+1] − 1

}
. For this n, define an =

j+1
Ak+1

.

Then, all the elements of a are different, Fn(a)⇒ U(0, 1) and Ln(a)(p)→ p2 = LU(0,1)(p) .

Proof. The first assertion is obvious: if am = an for some m , n, then i
Ak

=
j

Am
for some i, j, k, m

positive integers, contradicting the fact that Am
Ak

is not a rational number. For the second one,

we have to check that f (a1)+ f (a2)+...+ f (an)
n →

∫ 1
0 f (x)dx for any f : R → R bounded and continuous.

(Proposition 7). Let us denote by UA the distribution

∑[A]
i=1 δ i

A
[A]

. Then
∫

f dUA =
∑[A]

i=1 f ( i
A )

[A]
. It is easy

to see that lim
A→∞

∫
f dUA =

∫ 1
0 f (x)dx for any bounded continuous f (even more general, for every

Riemann integrable f on [0, 1]).
Let now k ≥ 1, j < [Ak+1] and n = σ(k) + j.

Then, f (a1)+ f (a2)+...+ f (an)
n =

[A1]
∫

f dUA1+[A2]
∫

f dUA2+...+[Ak]
∫

f dUAk
+ f (aσ(k)+1)+...+ f (aσ(k)+ j)

n . Suppose
that f ≥ 0. Then, as σ(k) ≤ n ≤ σ(k + 1), we have the evaluation∑k

i=1[Ai]
∫

f dUAi

σ(k + 1)
≤

∑n
j=1 f (a j)

n
≤

∑k+1
i=1 [Ai]

∫
f dUAi

σ(k)

Apply Stolz-Cesaro lemma: as k→∞ , the right-hand term has the same limit as
[Ak+2]

∫
f dUAk+2

[Ak+1]
,

and the left hand one has the same limit as
[Ak+1]

∫
f dUAk+1

[Ak+2]
. But both limits are the same,

namely,
∫ 1

0 f (x)dx. This ends the proof if f ≥ 0. If not, write f = f+ − f− and that is all.

Thus, Fn(a)⇒ U(0, 1)⇔ Λn(p)→
p2

2 . To prove the last assertion, we have to check that the
expectations e(Fn(a)) converge to the expectation of U(0, 1), i.e., converge to 1

2 . The reasoning

is the same as before. The expectation of UA is eA := [A+1]
2A hence

∑k
i=1[Ai]eAi
σ(k+1) ≤

∑n
j=1 a j

n ≤

∑k+1
i=1 [Ai]eAi
σ(k)

converges to 1
2 by the same argument of Stolz-Cesaro. �

4. The Empirical Lorenz and Pre-Lorenz Curves in the Broken Stick Models

Here, we suppose that the stick is not broken at random but using a deterministic sequence of
points. What happens when n is great? These sticks are called spacings or lags. We shall be interested
in the existence of limit for spacings of a.

Definition 2. Let a = (an)n be a sequence of reals. For any n ≥ 2 we sort the first n terms of a as
a1:n ≤ a2:n ≤ · · · ≤ an,n. For 1 ≤ j ≤ n− 1 let b j,n = a( j+1):n − a j:n. These are the spacings of a at level n.

The vector Dn(a) = (b1,n, . . . , bn−1,n)1≤ j≤n−1 is the vector of spacings after n trials.

The probability measure Gn = Gn(a) =
∑n−1

j=1

δbj,n
n−1 is the empirical distribution of spacings after

n trials.

Remark 6. Let mn(a) = a1:n = min(a1, . . . , an) and Mn(a) = an:n = max(a1, . . . , an). We may think that
the interval (mn(a), Mn(a)) is a stick which is broken by points a j:n, 2 ≤ j ≤ n − 1. The n − 1 segments
obtained after this operation are the spacings. If two points coincide, the segment will be a degenerated one.
From the definition, we see that the Lorenz curve of spacings is invariant with respect to scalings.

Proposition 15. LGn(a) = LGn(αa+β) for any α > 0, β ∈ R.
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Proof. The spacings which correspond to (α, an + β)n are αb j,n = α(a j+1:n − a j:n). �

Proposition 16. If the sequence a is bounded, then Gn ⇒ δ0 and e(Gn)→ 0 as n→∞ .

Proof. The second assertion is obvious: e(Gn) =
∑n−1

j=1
b j,n
n−1 = Mn−mn

n−1 → 0 as n→∞ . To check the first

one, let f ∈ Cb(R). Then
∫

f dGn+1(a) =
f (b1)+ f (b2)+... f (bn)

n with b j = a( j+1)(n+1) − a j:(n+1). Suppose

that m ≤ an ≤ M for some m < M and for every n. Then b1+b2+...bn
n ≤

M−m
n → 0 as n→∞ . Let ε > 0

be fixed and let δ = δ(ε) such that |x| < δ⇒
∣∣∣ f (x) − f (0)

∣∣∣ < ε . Notice that kn

∣∣∣∣{ j ≤ n : b j ≥ δ
}∣∣∣∣ is always

smaller that (M−m)
δ hence kn

n → 0 .

Let A = inf f , B = sup f . Then f (b1)+ f (b2)+... f (bn)
n =

∑
j:bj<δ

f (b j)+
∑

j:bj≥δ
f (b j)

n ≤
(n−kn)( f (0)+ε)+Bkn

n .

And, similarly, f (b1)+ f (b2)+... f (bn)
n ≥

(n−kn)( f (0)−ε)−Akn
n . Thus, (n−kn)( f (0)−ε)−Akn

n ≤

∫
f dGn+1(a) ≤

(n−kn)( f (0)+ε)−Bkn
n . Passing to limit as n→∞ we get f (0) − ε ≤ limin f

n→∞

∫
f dGn+1(a) ≤

limsup
n→∞

∫
f dGn+1(a) ≤ f (0) + ε. It means that Gn ⇒ δ0 as claimed. �

Remark 7. That is why the distributions Gn are not very informative if we want to study the asymptotic
behavior of the broken stick. We normalize them in such a way that their expectation be equal to 1, replacing
them with G∗n = 1

n−1
∑n−1

j=1 δ (n−1)bj,n ,

Mn−mn

. Now, e(G∗n) = 1 for any n. The Lorenz curve remains the same, but we

may hope that the weak limit of G∗n does exist and it is not trivial. Moreover, ΛG∗n = LGn .

Definition 3. G∗n(a)) is called the normalized empirical distribution of the spacings generated by a.

Example 9. a = (1, 0, 1, 0, 1, 0, . . . .); as On(a) = (0, . . . , 0, 1, . . . , 1) the spacings are (0, . . . , 0, 1, 0, . . . 0)

(n− 2 times 0 and once a 1). Thus, ΛGn → 0 as n→∞ . As G∗n = (
0 n− 1

n−2
n−1

1
n−1

)⇒ δ0 , ΛGn∗ = LGn → 0

too as n→∞ . Recall that Fn(a)⇒ (
0 1
1
2

1
2
) .

Example 10. a is a periodic sequence: a = (x1, . . . , xk, x1, . . . , xk, . . . ) with x1 ≤ x2 ≤ · · · ≤ xk;
As On(a) = (x1, . . . , x1, x2, . . . , x2, . . . , xr, . . . , xr, xr+1, . . . , xr+1, . . . , xk, . . . , xk) we see that the spacings are
(0, . . . , 0, x2 − x1, 0, . . . , 0, x3 − x2, 0, . . . , 0, . . . , xk − xk+1, 0, . . . 0) (n− k times 0 and once the differences x j+1 −

x j. If n = km, then:

G∗n = (
0 (n− 1) x2−x1

xk−x1
(n− 1) x3−x2

xk−x1
· · · (n− 1) xk−xk−1

xk−x1
n−k
n−1

1
n−1

1
n−1 · · ·

1
n−1

). Thus, ΛGn∗ = LGn → 0 .

Example 11. an = nα. If α > 1, the spacings are (2α − 1, 3α − 2α, . . . , nα − (n− 1)α) hence,

G∗n = (
(n− 1) 2α−1

nα−1 (n− 1) 3α−2α
nα−1 (n− 1) 4α−3α

nα−1 · · · (n− 1) nα−(n−1)α

nα−1
1

n−1
1

n−1
1

n−1 · · ·
1

n−1
). Then, ΛGn∗ is the

polygonal line given by the points ( k
n−1 , kα−1

nα−1 )k. If kn = [np], these points converge to (p, pα). According to
Lemma 1, ΛGn∗(p) = LGn(p)→ pα as p→∞ .
If α = 1, the spacings are (1, 1, . . . , 1). Gn = δ1, ΛGn(p) = LGn(p) = p.
If α ∈ (0, 1), the spacings (2α − 1, 3α − 2α, . . . , nα − (n− 1)α). As they are decreasing:

G∗n = (
(n− 1) nα−(n−1)α

nα−1 (n− 1) (n−1)α−(n−2)α

nα−1 (n− 1) (n−2)α−(n−3)α

nα−1 · · · (n− 1) 2α−1
nα−1

1
n−1

1
n−1

1
n−1 · · ·

1
n−1

).

Then, ΛGn∗ is the polygonal line given by the points ( k
n−1 , nα−(n−k)α

nα−1 )k. If kn = [np], these points
converge to (p, 1− (1− p)α). According to Lemma 1, ΛGn∗(p) = LGn(p)→ 1− (1− p)α as p→∞ .
If α = 0, The spacings are (0, 0, . . . , 0) and Gn = δ0. The Lorenz curve makes no sense.
If α < 0 the sequence a is convergent, then LGn → 0 according to Proposition 17 below.
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a = (1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, . . . (24 times), 0, 0, . . . (25 times), . . . .). The spacings are the same as
in Example 1. ΛGn∗ = LGn → 0 but Fn(a) has no limit.

A first question is: if we know that the sequence (F∗n(a))n has a limit, does it result that the
sequence G∗n(a) has a limit? First, we should notice that there is no connection between the limit of F∗n
and the limit of G∗n.

Here is an extension of Proposition 16: sometimes not only Gn(a)⇒ δ0 , but G∗n(a)⇒ δ0 , too.
In addition, it is also possible that Fn(a) has no limit even if Gn(a) has one.

Proposition 17. Let a = (an)n be bounded. Suppose that it has only a discrete set of limit points.
Then G∗n(a)⇒ δ0 , LGn(a)→ 0 . It is possible that LFn(a) and ΛFn(a) have no limit.

Proof. A discrete set is at most countable. Let A = {an : n ≥ 1}. By hypothesis, the set of limit points
B = Closure(A)\A is at most countable hence Closure (A) is at most countable, too. Let a = inf(a)
and b = sup(a).

The set D = (a, b)\Closure(A) is open, hence it can be written as D =
⋃

j∈J Ij, where Ij = (αj,βj)

are open intervals with endpoints in the set A. Let µj = βj −αj and µ = (µn)n. As A, B are null sets,∑
j∈J µj = b − a, hence the series is convergent. According to Proposition 8, Ln(µ)→ 0 as n→∞ .

If we relabel the sequence a in such a way that the sequence (µn)n is non-increasing, we see that
LGn(a) = Ln(µ)→ 0 . Otherwise written, lim

n→∞
LGn∗(a)(p) = 0. �

It is easy to find cases when LGn has a limit but LFn does not have one, it is enough to consider
Example 11 from above: it has the same spacings as the one from Example 9, thus LGn → 0 but LFn

has no limit.

Remark 8. A consequence of Proposition 17 is that if the sequence a is bounded, a condition in order that G∗n
have a limit different than δ0, is that λ(Closure{an : n ≥ 1}) > 0. The sequence should be dense in a set of positive
Lebesgue measure. Here λ is the Lebesgue measure. For instance, if an = sin n, then (Cl{an : n ≥ 1}) = [−1, 1].
(For this very sequence we are not able to decide if G∗n(a) has a limit. The computer says it does not—if you can
believe it).
The converse holds too: it is possible that F∗n(a) has a limit but G∗n(a) does not.

Proposition 18. Let ε = (εn)n ∈ [0, 1] and a = (1, 1 + ε1, 2, 2 + ε2, 3, 3 + ε3, . . .).
Then F∗n ⇒ Uniform(0, 2), but it is possible that G∗n(a) has no limit.

Proof. Let = (1, 2, 3, . . .), c = (ε1, ε2, ε3, . . .).
Then ΛF∗n(b)(p) = LFn(b)(p)→ p2 = ΛUniform(0,2)(p) .
According to proposition 10, the fact that ΛFn∗(a)→ ΛUniform(0,2) implies that F∗n ⇒ Uniform(0, 2) .

The sequence c = b + ε has the same property: F∗n(c) converges to Uniform (0,2), too: this is a
consequence of Proposition 10. Notice that a = b&c c. As a is non-decreasing too, Proposition 11 says
that F∗n(a)⇒ Uniform(0, 2) .

The spacings are easy to compute:
If n = 2m is even then Dn(a) = (ε1, 1− ε1, ε2, 1− ε2, . . . , εm−1, 1− εm−1, εm) and
If n = 2m + 1, Dn(a) = (ε1, 1− ε1, ε2, 1− ε2, . . . , εm, 1− εm).
Their sum Sn is equally to

[
n
2

]
if n is odd or to n

2 − 1 + ε n
2

if n is even.

If, for example, n = 2m then G∗n(a) =
∑2m

k=1 (δ2εk+δ2−2εk )

2m and the limit of this sequence has no reasons
to exist. �
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Remark 9. Sometimes it is not very difficult to compute G∗n(a). If εn ∈
{
α, β

}
, where 0 < α < β <

1 − β < 1 − α < 1 and n = 2m + 1, then Gn
∗ = (

2α 2β 2(1− β) 2(1− α)
im
m

jm
m

jm
m

im
m

) (if n = 2m is slightly

different). Here, we denoted im =
∣∣∣∣{ j ≤ m : ε j = α

}∣∣∣∣ and jn = m−N(α). Thus, G∗n is a distribution of the form

Gn
∗ = (

2α 2β 2(1− β) 2(1− α)
pn qn qn pn

), where pn + qn = 1
2 . If the frequencies (pn)n have a limit as n→∞ ,

then G∗n has a limit, too, therefore LG∗n has a limit too. But that is by no means the rule.

Remark 10. If G = (
2α 2β 2(1− β) 2(1− α)
p q q p

) with a < b < 1
2 and p + q = 1

2 , then LG is the

polygonal line given by the points (0, 0), (p, 2ap), ( 1
2 , 2ap + 2bq), (1 − p , 2(ap + q), (1,1). Its Gini coefficient

(i.e., Gini(G) = 1− 2
∫ 1

0 LG(x)dx) is equal to 1
2 − b − 4p(b − a) − 4p2(b− a) lies between 1

2 − b and 1
2 − a.

We think that the distributions Gn given by Remark 9 have always the property that Gini(G∗n) ≤
1
2 . For instance,

if εn = α < 1
2 is constant, then Gini(G∗n) =

1−2α
2 .

Combining

Proposition 19. Suppose that the sequence a has the property that limGn
∗(a) = G and limLn(a) = L.

Then, limGn
∗(a&a) = 1

2 (δ0 + G) and limLn(a&a)(p) = L((2p− 1)+).

Proof. Let n = 2m + 1.
Then On(a&a) = (a1:m+1, a1:m+1, a2:m+1, a2:m+1, . . . , am+1:m+1, am:m, am:m+1) and the spacings

are Dn(a&a) = (0, d1, 0, d2, . . . , 0, dm), where d j = a j+1, m+1 − a j.m+1. Then G∗n(a) =

mδ0+
∑m

j=1 δ 2mdj
∆m

2m
where ∆m = am+1, m+1 − a1, m+1. �

Mixture. We can say something about a special case of mixture.

Proposition 20. Let T0 < T1 < · · · < Tk and I j =
[
T j−1, T j) . Let a be a sequence valued into [T0, Tk) = ∪k

j=1I j

having the property that inf a = T0 and supa = Tk. For n ≥ 2 let n j =
∣∣∣∣{i ≤ n : ai ∈ I j

}∣∣∣∣. Suppose that the

limits p j = lim
n→∞

n j
n do exist and p j > 0 for all 1 ≤ j ≤ k.

Let A j =
{
n : an ∈ I j

}
=

{
i j,1 < i j,2 . . .

}
and let the sequences b j be defined by b j,n = ai j,n . Suppose that

G∗n(b j)⇒ H j , where H j are some probability distributions on [0, ∞) [0,∞) and e(H j) = 1.
For any fixed n ≥ 2, let di,n = ai+1:n+1 − ai:n+1 be the n spacings corresponding to (a1, . . . , an+1).
Suppose, finally, that there are no gaps: in f

{
an : n ∈ A j

}
= T j−1 and sup

{
an : n ∈ A j

}
= T j−1. Then

(i) G∗n(a)⇒
∑n

j=1 p jH j ◦ (hπ j/p j)
−1 with π j =

T j−T j−1
Tk−T0

.

(ii) The Lorenz curves Ln(a) converge to the Lorenz curve of
∑n

j=1 p jH j ◦ (hπ j/p j)
−1.

(iii) If all the probability distributions H j coincide with the same H then the Lorenz curves Ln(a) converge to the
Lorenz curve of

∑n
j=1 p jH ◦ (hπ j/p j)

−1 which is always below LH. In words, the mixture of sequences of the
same type always exhibits more inequality.

Proof. (i) Let f : [0,∞) → R be continuous and with compact support. We have to compute the limit

of
∑n

i=1 f (
ndi,n

an+1:n+1−a1:n+1
)

n . As infa = T0, supa = Tk, this limit is the same with the limit of
∑n

i=1 f (
ndi,n

T )
n for

T = Tk − T0– if it exists.
There are two kinds of spacings: spacings di,n for which both ai+1,n+1 and ai,n+1 are in the same

interval I j. Call them spacings of type j and denote by B j,n their set. If n is great enough,
∣∣∣B j,n

∣∣∣ = n j − 1.
The other kind of spacings are those di,n for which ai,n+1 ∈ I j but ai+1,n+1 ∈ I j+1 for some

1 ≤ j ≤ k − 1. The number of spacings of the second kind is finite—actually, if n is great enough,
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it must be equal to k− 1, due to the fact of our hypothesis that all p j are positive. That is why we can
neglect them in computing the limit. Then:

lim
n→∞

∑n
i=1 f (

ndi,n
T )

n = lim
n→∞

∑k
j=1

∑
i∈Bj,n

f (
ndi,n

T )

n =
k∑

j=1
lim

n→∞

n j
n

∑
i∈Bj,n

f (
n(Tj−Tj−1)

njT
·

njdi,n
Tj−Tj−1

)

n j
. Notice that

n j
n → p j ,

n(T j−T j−1)

n jT
→

π j
p j

and

∑
i∈Bj,n

f (
njdi,n

Tj−Tj−1
)

n j
→

∫
f dH j

As f is uniformly continuous:

∑
i∈B j,n

f (
n(T j−T j−1)

n jT
·

n jdi,n
T j−T j−1

)

n j
→

∫
f (
π j

p j
x)dH j(x).

.

Therefore, lim
n→∞

∑n
i=1 (

ndt,n
T )

n =
k∑

j=1

∫
p j f (

π j
p j

x)dH j(x) as claimed.

(ii) Notice that e(
n∑

j=1
p jH j ◦ (hπ j/p j)

−1) = 1 (since e(H j) = 1 for all j), but in that case Λ = L and

apply Proposition 3.
(iii) If f is convex, then:

∫
f d(

k∑
j=1

p jH ◦ hπ j/p j)

−1

=

∫ k∑
j=1

p j f (
π j

p j
x)dH(x) ≥

∫
f (

k∑
j=1

p j
π j

p j
x)dH(x) =

∫
f dH.

�

Remark 11. Here we supposed that there are no gaps: the spacings tend to 0. What happens if we accept
some gaps?

Proposition 21. Finite number of gaps. Let a be a bounded sequence, α = in f a, β = supa. Suppose that
Cl{an : n ≥ 1} = I1 ∪ I2 ∪ . . .∪ Ik where I j =

[
α jβ j

]
with α = α1 < β1 < α2 < β2 < · · · < αk < βk = β.

Let n j =
∣∣∣i ≤ n : ai ∈ I j

∣∣∣. Suppose that the limits p j = lim
n→∞

n j
n do exist and p j > 0 for all 1 ≤ j ≤ k. Let A j ={

n : an ∈ I j
}
=

{
i j,1 < i j,2 < · · ·

}
and let the sequences b j be defined by b j,n = ai j,n . Suppose that G∗n(b j)⇒ H j ,

where H j are some probability distributions on [0, ∞) . For any fixed n ≥ 2, let di,n = ai+1:n+1 − ai:n+1 be the
n spacings corresponding to (a1, . . . , an+1).

Let π j =
β j−α j
β−α Then G∗n(a)⇒

∑n
j=1 p jH j ◦ (hπ j/p j)

−1 .

The Lorenz curves Ln(a) converge to k L∑k
j=1 p jH j◦(hπ j/pj

)−1 where k =
∑k

j=1
β j−α j
β−α < 1. The limit is a degenerate

Lorenz curve.

Proof. The same proof, the difference is that now
∑k

j=1 π j < 1. Notice that e(
∑n

j=1 p jH j ◦ (hπ j/p j)
−1) =∑k

j=1 π j. Apply Proposition 5. �

Conclusion: Gaps or no gaps, the Lorenz curve of a mixture of sequences of the same type is
below the mother Lorenz curve.

5. The Empirical Lorenz Curves in the Stochastic Broken Stick Models

Now suppose that a stick of length 1 is broken at random into n smaller sticks by some i.i.d.
random variables X1, . . . , Xn+1. Empirical evidence shows that the empiric distribution function of
normed spacings always has a limit.

We shall prove that in some situations.
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Precisely, let X = (Xn)n ≥ 0 be i.i.d. random variables having a common distribution F. Suppose
that they are integrable and 0 < µ = EX j < ∞. Let a = essinf X j, b = esssup X j, and D1,n = X1:n − a,
D2,n = X2:n −X1:n, . . . , Dn,n = Xn:n −Xn−1:n. If b < ∞, we could also add the (n + 1)-th spacing, namely,
Dn+1,n = b−Xn:n.

The Glivenko theorem says that the empirical distribution Fn(X) =
∑n

j=1

δXj
n converges weakly to

F almost surely. More than that, the distribution functions Fnx(x) =

∣∣∣∣{ j≤n:X j≤x
}∣∣∣∣

n converge almost surely
uniformly to F(x).

We prove that even the normed empirical functions defined by F∗n(X) =

∑n
k=1 δ n

Sn
Xk

n converge
almost surely to the distribution of Xk

µ :

Lemma 2. Let Fn and F be distribution functions and (αn)n be a sequence of non-negative numbers. Suppose
that Fn ⇒ F and αn → α . Then Fn(αnx)→ F(αx) at all continuity points of F.

Proof. Let ε > 0 and nε such that n > nε ⇒ α− ε < αn < α+ ε . Then Fn((α− ε)x) ≤ Fn(αnx) ≤
Fn((α+ ε)x). Suppose that F is continuous at αx, (α− ε)x and (α+ ε)x (this is no problem,
the discontinuity set of points for F is at most countable). Then F((α− ε)x) ≤ liminfn Fn(αnx) ≤
liminfn Fn(αnx) ≤ Fn((α+ ε)x). As ε is arbitrary small, the result immediately follows. �

Remark 12. Another version of Glivenko’s theorem is in terms of order statistics. Note that Fn(x) = k
n if

and only if Xk:n ≤ x < Xk+1:n. Let p ∈ (0, 1) and let(kn)n be a sequence of positive integers with the property
that kn

n → p (for instance kn = [np]). Then Fn(Xkn:n) =
kn
n → p⇒ Xkn:n → F−1(p) almost surely for all p

for which F−1(x) is unique. As a special case, X[np] → F−1(p) a.s. for all p ∈ (0, 1) if F is bijective.

Proposition 22. Let X = (Xn)n be i.i.d. non-negative F-distributed random variables.

Let F∗n(X) =

∑n
k=1 δ n

Sn
Xk

n . Then F∗n(X)⇒ F ◦ (h 1
µ
)−1 almost surely, where µ = EX j > 0. In other words, they

converge to the distribution of
X j
µ . Moreover, the empirical Lorenz curves Ln(X) converge almost surely to the

Lorenz curve of F, denoted by LF.

Proof. According to the strong law of large numbers, the sequence αn = Sn
n converges almost surely

to µ. Let Fn(x) be the empirical distribution function of X. The distribution function of

∑n
k=1 δ n

Sn
Xk

n is
Fn(αnx). We know that Fn(x)→ F(x) almost surely at all continuity points of F and αn → µ almost
surely. Then, by Lemma 2 we see that Fn(αnx)→ F(µx) almost surely at all discontinuity points
of G(x) = F(µx). The distributions F∗n(X) were constructed in such a way that e(F∗n(X)) = 1. By
Proposition 4, their Lorenz curves converge to the Lorenz curve of F, denoted by LF. �

The problem of convergence of G∗n to some limit distribution is more delicate. We believe that the
almost sure weak limit does always exist, but we are not able to prove it. Besides, we can prove some
weaker convergence results.

Definition 4. Let F be a distribution on real line. We say that F has the property (D) if the weak limit

of G∗n(X) =

∑n
k=2 δ n

X∗n−X∗,n
Dk,n

n−1 does exist in probability for any sequence X of i.i.d. F-distributed random

variables. It means that the empirical distribution function G∗n(X)(x) =

∣∣∣∣∣{k≤n: n
X∗n−X∗,n

Dk,n≤x
}∣∣∣∣∣

n−1 —which are random
variables—converge in probability to some distribution function G(x) al all continuity points of G. In that case
we say that F is the mother distribution and that G is the born distribution. Call the quantities

Dk,n
X∗n−X∗,n the

normed spacings.
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Proposition 23. If F has the property (D) and h(x) = ax + b, then F ◦ h−1 has the same property. Moreover, F
and F ◦ h−1 bear the same G.

Proof. Obvious. If Υ j = αX j + β, then the normed spacings are the same for X and Υ. �

The first positive result is that all discrete probability distributions have the property (D). All of
them bear δ0.

Proposition 24. Suppose F =
∑
∞

k=1 pkδak is discrete. Then G∗n(X)⇒ δ0 in probability.
Thus, any discrete distribution on the real line has property (D): it gives birth to the Dirac distribution δ0.

Proof. Let X = (Xn)n≥1 be a sequence of F-distributed i.i.d. random variables, let ε > 0 be arbitrary

small, and let k such that p1 + · · ·+ pk > 1 − ε. For any n ≥ 1 let n j =
∣∣∣∣{ j ≤ n : Xn = a j

}∣∣∣∣. By the

law of large numbers,
n j
n → p j . At least n1 − 1 + n2 − 1 + · · ·+ nk − 1 spacings will be equal to 0.

Thus, G∗n({0}) ≥
∑k

j=1 n j−k
n →

∑k
j=1 p j > 1− ε . It means that lim

n→∞
G∗n({0}) = 1 limn→∞ Gn

*({0}) = 1. That

obviously implies G∗n(X)⇒ δ0 in probability. �

Remark 13. All the random variables produced by computer using pseudo random numbers are discrete. Using
the computer to guess a limit can be misleading many times.
The second positive result is that F = Uniform (0,1) has the property (D)—it gives birth to the standard
exponential distribution, denoted by Exp (1). According to Proposition 25 below this will hold for any F =

Uniform(a, b). We shall use the following result:

Lemma 3. Let X = (Xn)n and Υ = (Υn)n be two sequences of random variables. Suppose that Xn and Υn

have the same distributions. If Xn → c (a.s.) for some constant c ∈ R, then Υn → c (in probability).

Proof. P(|Υn − c| > ε) = P(|Xn − c| > ε) → 0 . �

Remark 14. Unfortunately, it is not true that if we know that Xn → 0 (a.s.) and Υn ∼ Xn ⇒ Υn → 0 a.s.
A simple counterexample on (0, 1) is if:
Υ = (1(0, 1

2 )
, 1( 1

2 ,1), 1(0, 1
3 )

, 1( 1
3 , 2

3 )
, 1( 2

3 ,1), 1(0, 1
4 )

, 1( 1
4 , 2

4 )
, 1( 2

4 , 3
4 )

, 1( 3
4 ,1), 1(0, 1

5 )
, . . .) and

X = (1(0, 1
2 )

, 1(0, 1
2 )

, 1(0, 1
3 )

, 1(0, 1
3 )

, 1(0, 1
3 )

, 1(0, 1
4 )

, 1(0, 1
4 )

, 1(0, 1
4 )

, 1(0, 1
4 )

, 1(0, 1
5 )

, . . .).
And it is not true if the limit is not a constant.

Proposition 25. If F = Uniform(a, b), then F has the property (D). It gives birth to the standard exponential
distribution Exp (1).
As a consequence, the sequence of Lorenz Curves Ln(X) converge in probability to L(t) = t + (1 − t) ln (1− t).

Proof. Let (Ω, K, P) be a probability space. According to Proposition 23, we can put a = 0,
b = 1. Let X = (Xn)n≥1 be a sequence of i.i.d. random variables uniformly distributed, let On(X) =
(X1:n, X2:n, . . . , Xn:n), and Dn+1(X) = (D j,n+1)0≤ j≤n be the n + 1 spacings D j,n+1 = X j+1,n − X j,n,
with the convention that Xn+1,n = 1.

It is well known that Dn(X) ∼Uniform (Pn+1), where Pn =
{
x ∈ Rn

+ : x1 + · · ·+ xn = 1
}

is the
unitary simplex—see any book of order statistics, for instance, References [10–12,17].

Let, on the other hand, ξ = (ξn)n≥1 be a sequence of i.i.d. random variable distributed as
Exp (1). Let Sn = ξ1 + · · ·+ ξn.. It is also known (see References [10–12,17]) that ( ξ1

Sn
, ξ2

Sn
, . . . , ξn

Sn
) is also

uniformly distributed on Pn. Thus, Dn(X) =D ( ξ1
Sn

, ξ2
Sn

, . . . , ξn
Sn
) for any n ≥ 2. Therefore, nDn(X) has

the same distribution as ( nξ1
Sn

, nξ2
Sn

, . . . , nξn
Sn

). Consequently, the Lorenz curves of G∗n(X) =
∑n

j=1 δnDj ,n

n and
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F∗n(ξ)

∑n
j=1 δ nξ j

Sn
n have the same distribution. According to Glivenko’s theorem, the empirical distribution

functions Fn+1(ξ)(x) =

∑n+1
j=1 1{ξ j≤x}

n+1 converge almost surely uniformly to the distribution function
of the Exp distribution, namely, to (x) = 1 − e−x. Otherwise written, the empirical distributions

Fn =

∑n
j=1 δξ j
n+1 converge almost surely to FExp (1) Let Ω1 =

{
ω ∈ Ω :

∑n
j=1 δξ j(ω)

n ⇒ F
}

and Ω2 ={
ω ∈ Ω :

∑n
j=1 ξ j(ω)

n → 1
}

. According to Glivenko’s theorem and to the strong law of large numbers,

P(Ω1) = P(Ω2) = 1. Thus, if ω ∈ Ω1 ∩ Ω2 the sequence of empirical distributions F∗n(ξ(ω)) =∑n
j=1 δ nξ j(ω)

ξ1(ω)+ξ2(ω)+...+ξn(ω)
n weakly converge to Exp (1). All these distribution have the same expectation,

namely, 1, hence for almost all ω ∈ Ω, the limit of the Lorenz curves LF∗n(ξ(ω))(t) is the same, namely,
the Lorenz curve of Exp (1) which is L(t) = t + (1 − t) ln (1− t). The curves LG∗n(X)(t) have the same
distribution with LF∗n(ξ(ω))(t); therefore, they have the same limit in probability—namely, L(t). �

Remark 15. The result has been known for some time and can be proved in several ways. For instance,
Stephens [14,15] gives an alternate proof of the fact that the limit of the Lorenz curves in the broken stick model
is L(t) = t + (1 − t) ln (1− t).

Proposition 26. The exponential distribution has the property (D), too: it gives birth to δ0.

Proof. Let X = (Xn)n≥1 be iid standard exponentially distributed random variables. The density
is π(x) = e−x1(0,∞)(x). The reader can check that the density of the order statistics On(X)
is p(x1, . . . , xn) = n!e−(x1+x2+...+xn)1{x1<x2<...<xn} and the density of Dn(X) is q(x1, . . . , xn) =

n!e−(nx1+(n−1)x2+...+xn)1[0,∞)n(x).
Thus, the distribution of Dn(X) is

∏n
j=1 Exp(n+ 1− j), otherwise written Dn(X) =D

(ξ1
n , ξ2

n−1 , . . . , ξn
1 ), where (ξj)1≤j≤n are standard independent exponentially distributed.

The normalized empirical distribution is G∗n(X) =

∑n
j=1 δ nDj,n

X∗n
n , (since

∑n
j=1 D j,n = X∗n =

max(X1, . . . , Xn)) and its empirical tail is Gn(x) =

∑n
j=1 1

{

nDj,n
X∗n

>x}

n . We shall prove that Gn(x)→ 0
in probability for any x > 0 and that will mean that G∗n(X)⇒ δ0 .

The idea is to prove that Gn(x)→ 0 in L1. As these random variables are positive, the only thing

we have to do is to check that EGn(x)→ 0 . But EGn(x) = 1
n
∑n

j=1 P(
nD j,n

X∗n
> x) = 1

n
∑n

j=1 P(
nξ j
jX∗n

> x) =
1
n
∑n

j=1 P(ξ j >
jx
n X∗n).

As the random variables ξ j are i.i.d. and the function ϕ(x) = max(x1, . . . , xn) is symmetrical,

the probabilities P(ξ j >
jx
n X∗n) coincide with P(ξ1 >

jx
n X∗n).

Let ψ(t) = P(ξ1 > tX∗n). Then we have EGn(x) = 1
n
∑n

j=1 P(ξ1 >
jx
n X∗n) =

1
n
∑n

j=1 ψ(
jx
n ).

Notice that ψ is decreasing therefore the sum 1
n
∑n

j=1 ψ(
jx
n ) is smaller than

∫ 1
0 ψ(tx)dt. It follows

that x > 0 ⇒ EGn(x) ≤
∫ 1

0 P(ξ1 > txX∗n)dt. But the sequence (X∗n)n is non-decreasing and tends to

infinity almost surely. It follows that P(ξ1 > txX∗n) ↓ 0⇒ EGn(x)→ 0 as n→∞⇒ Gn(x)→ 0 in
L1
⇒ Gn(x)→ 0 in probability. �

Mixtures. The stochastic equivalents of Propositions 20 and 21.

Proposition 27. f : [a, b) → (0,∞) be a positive density and let F be its corresponding distribution. Next, let
a = T0 < T1 < · · · < Tk = b be a division of [a, b) and I j =

[
T j−1, T j

]
, 1 ≤ j ≤ k. Let F j be the probability
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distributions on Ij given by the densities f j =
f 1[Tj−1,Tj)

F(T j)−F(T j−1)
. Suppose that all the probability distributions F j

have the property (D) and that F j bears H j. Then F has the property (D).

(i) G∗n(X) converges weakly in probability to
∑n

j=1 p jH j ◦ (hπ j/p j)
−1 with π j =

λ j
b−a , λ j = T j − T j−1 and

pi = F(T j) − F(T j−1).

(ii) The Lorenz curves Ln(X) converge to the Lorenz curve of
∑n

j=1 p jH j ◦ (hπ j/p j)
−1. If all the probability

distributions H j coincide with the same H, then the Lorenz curves Ln(a) converge to the Lorenz curve of∑n
j=1 p jH ◦ (hπ j/p j)

−1which is always below LH. In other words, the mixture of sequences of the same
type always exhibits more inequality.

Proof. Let X = (Xn)n be a sequence of i.i.d F-distributed random variables. Let A j ={
n : Xn ∈ I j

}
=

{
i j,1 < i j,2 < i j,3; . . .

}
and n j =

∣∣∣A j ∩ {1, 2, . . . , n}
∣∣∣. From the law of large numbers,

n j
n → p jF(T j) − F(T j−1) > 0 almost surely. Define Υ j,m = Xn if Xn ∈ I j and n = i j,m.

The sequences Υ j = (Υ j,m)m are again i.i.d but their distribution is F j. We know that F j bears

H j. Meaning that

∑nj
i=1 g(

nj
λ j

∆i,nj ( j))

n j

P
→

∫
gdH j for any g continuous with compact support. Here ∆i,n( j)

are the spacings of Υ j and n j →∞ . We want to find the limit in probability for
∑n

i=1 g( n
b−a Di,n)

n , where
Di,n = Xi+1:n −Xi:n, 1 ≤ i ≤ n− 1 are the n− 1 spacings of X.

Let B j,n =
{
i ≤ n : i, i + 1 ∈ A j,n

}
. Then

∣∣∣B j,n
∣∣∣ = n j − 1 and i ∈ B j,n ⇒ Di,n = ∆m,n j( j) for some

m < n j. All but k spacings are of one of these k types. Then, as 1
b−a =

π j
λ j

, we can write lim
∑n

i=1 g( n
b−a Di,n)

n =

lim
∑k

j=1
n j
n

∑nj−1

i=1 g(
nπ j
nj

nj∆i,nj
( j)

λ j
)

n j
.

When n→∞ , n j →∞ almost surely and
nπ j
n j
→

π j
p j

almost surely. Then, as g is uniformly

continuous and has a compact support,

∑nj−1

i=1 g(
nπ j
nj

nj∆i,nj
( j)

λ j
)

n j

P
→

∫
g(
π j
p j

x)dH j(x). The remaining claims
have the same proof as in Proposition 21. �

Corollary 2. Let a = T0 < T1 < · · · < Tk = b, If F has the density f =
∑k

j=1 αj1[Tj,Tj+1)
then F has the property

(D). It bears the distribution H =
∑k

j=1 αjλjexp((b− a)αj) which dominate always Exp (1) in Lorenz order. Here,
λj = Tj −Tj−1. Therefore, the Lorenz curves Ln(X) converge in probability to the Lorenz curve of H.

Proof. Let λ j = T j − T j−1. If f is a density, then
∑k

j=0 α jλ j must be equal to 1. Suppose that α j > 0 for

all 1 ≤ j ≤ n. Apply Proposition 27. The densities are f1 =
∑k

j=0
1
λ j

1[T j,T j+1)
and p j = α jλ j. All H j are

the same, by Proposition 25, namely, H = exp (1). �
Next,

π j
p j

= 1
(b−a)α j

hence
∑n

j=1 p jH ◦ (hπ j/p j)
−1 =

∑n
j=1 α jλ j exp ((b− a)α j).

Remark 16. What happens if we have gaps? Then we apply Proposition 21. The weak limit remains the same,
but the Lorenz curves converge to a defective one. Precisely:

Corollary 3. Suppose the mother distribution has the density F =
∑k

j=1 α j1[s j,t j)
, where s1 < t1 ≤ s2 < t2 ≤

· · · ≤ sk < tk. Let λ j = t j − s j, L = tk − s1, q =
λ1+...+λk

L . Then, F has the property (D)and bears the same

H =
k∑

j=1
α jλ jexp((b− a)α j), but the Lorenz curves Ln(X) converge in probability to qLH which can be defective

if t j < s j−1 for some j.

Remark 17. One may see that the order of the intervals I j and of the possible gaps
[
t j, s j−1) is not important.

What matters is their lengths. For instance the probability distributions F1, F2 having the densities f1 =
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α1[1,3) + β1[4,5) and f2 = β1[0,1) + α1[2,4) with α, β > 0 and 2α+ β > 0 bear the same probability distribution
H = 2αexp(4α) + βexp(4β). However, the empirical Lorenz curves Ln(X) converge to the defective curve
L∗ = 3

4 LH. Here λ1 = 2, λ2 = 1, π1 = 1
2 , π2 = 1

4 .

The Broken Rectangle. Suppose that the rectangle R = [a, a + L) × [b, b + l) is broken by a sequence of
points z = (xn, yn)n≥1 which belong to R as follows: for any n ≥ 1 we sort increasingly the components
(x j)1≤ j≤n and (y j)1≤ j≤n obtaining (x j:n)1≤ j≤n and (y j:n)1≤ j≤n. Then add the endpoints x0:n = a, xn+1:n = a+ L,

y0:n = b, yn+1:n = b + l and construct the rectangle Di. j = [xi:n, xi+1:n) ×
[
y j:n, y j+1:n) for 0 ≤ i, j ≤ n.

Its area is σi, j = (xi+1:n − xi:n)(yi+1:n − yi:n). Then consider the normalized empirical distributions G∗n(z) =∑
0≤i, j≤n δ (n+1)2

Ll σi, j

(n+1)2 (all of them have the expectation equal to 1).

Do they have a weak limit?

Proposition 28. Let X = (Xn)n≥1 and Y = (Yn)n≥1 be two independent sequences of i.i.d random variables. Let
FX be the distribution of Xn and FΥ be the distribution of Υn. andZ = (Xn, Υn)n≥1 1. Suppose bothFX and FΥ have
the property (D), namely FX gives birth to HX and FΥ gives birth to HΥ. Let ξX andξΥ be two random variables
distributed as HX and HΥ and H be the distribution of ξXξΥ. LetDn(X) = (Xi+1:n+1 −Xi:n+1)1≤i≤n(U1, . . .Un),
Dn(Υ) = (Υ j+1:n+1 −Υ j:n+1)1≤j≤n(V1, . . .Vn). Thus, the assumption is that G∗n(X)⇒ HX X and G∗n(Υ)⇒ HΥ

in probability. Finally, let G∗n(Z) =

∑
1≤i,j≤n δ n2UiVj

(Mn+1(X)−mn+1(X))(Mn+1(Y)−mn+1(Y))

n2 be the empirical distribution of the
normalized spacings produced by Z. Here Mn(X) = max(X1, . . . , Xn), mn(X) = min(X1, . . . , Xn) a.s.o. Then

(i) Gn(Z)⇒ H in probability and the Lorenz curves of (UiV j)1≤i, j≤n tend to L(p) = EξXEξYLξXξY(p).

(ii) If EξX = EξΥ = 1, the limit is the Lorenz curve L(p) = LξXξY(p).
(iii) As a particular case, if FX = FΥ = Uniform(0, 1), then ξX and ξΥ are exponentially distributed hence H

has the tail H(x) =
∫
∞

0 e−(y+ x
y )dy. The empirical Lorenz curves converge in probability to the Lorenz

curve of H.
(iv) LξXξY ≤ min(LHX , LHY) hence always L ≤ min(LHX , LHY).

In the particular case (iii), L(p) ≤ p + (1− p) ln (1− p).

Proof. (i) We know that G∗n(X)⇒ HX and G∗n(Y)⇒ HY in probability. It means that∫
gdG∗n(X)

P
→

∫
gdHX and

∫
gdG∗n(Y)

P
→

∫
gdHY for any bounded continuous g. We claim that

G∗n(X) ⊗G∗n(Y)⇒ HX ⊗HY in probability. The easy way is to use the equivalence “Xn
P
→ X if and only

if from any subsequence (Xkn)n one may extract a sub-sub-sequence (Xkσ(n))n
such that Xkσ(n)

a.s.
→ X”.

In our case, from any subsequence (k1 < k2 < · · ·) we can extract a sub-sub-sequence
G∗kσ(n)

(X)⇒ HX, G∗kσ(n)
(Y)⇒ HY almost surely. In that case, G∗kσ(n)

(X) ⊗G∗kσ(n)
(Y)⇒ HX ⊗HY almost

surely, because one knows that if Fn, Gn, F, G are probability distributions, then Fn ⇒ F , Gn ⇒ G
implies Fn ⊗Gn ⇒ F⊗G (prove follows immediately using characteristic functions).

In our case:

Gn(X) =

∑
1≤i≤n δ nUi

(Mn+1(X)−mn+1(X))

n ,

Gn(Y)

∑
1≤ j≤n δ nVi

(Mn+1(Y)−mn+1(Y))

n , Gn(X)⊗Gn(Y)=

∑
1≤i, j≤n δ

(
nUi

Mn+1(X)−mn+1(X)
,

nVj
Mn+1(Y)−mn+1(Y)

)

n2 . It follows that∑
1≤i, j≤n g(

nUi
Mn+1(X)−mn+1(X)

,
nVj

Mn+1(Y)−mn+1(Y)
)

n2
P
→

∫
gdHX ⊗HY for any g : R2

→ R bounded continuous.
As a particular case, we set g(x, y) = h(xy) with h : R → R bounded continuous and the result

is that
∑

1≤i, j≤n h(
n2UiVj

(Mn+1(X)−mn+1(X))(Mn+1(Y)−mn+1(Y))
)

n2
P
→

∫
h(xy)dHX ⊗HY(x, y) = Eh(ξXξY).

The remaining (i) is a consequence of Proposition 5.
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(iii) If FX = FΥ = Uniform (0,1), then HX = HΥ = Exp (1). If ξX, ξΥ are independent and

exponentially distributed, then P(ξXξΥ > x) = E(P(ξΥ > x / ξX|ξX )) = E(e−
x
ξX ) =

∫
∞

0 e−(y+ x
y )dy.

(iv) If X, Y are two non-negative independent random variables, EX = a > 0, EΥ = b > 0, then
LXΥ ≤ min(LX, LΥ). Indeed, it is enough to consider a = b = 1. If u : [0, ∞) → R is convex, then
Eu(XΥ) = E(Eu(XΥ)

∣∣∣Υ) ≥ Eu(E(XΥ)
∣∣∣Υ) (Jensen’s inequality) = Eu(ΥE(X|Υ)) = Eu(ΥEX) = Eu(Υ).

Also, in the same way, Eu(XΥ) ≥ Eu(X). �

Remark 18. Otherwise written, the stick broken at random exhibits always smaller inequality than the rectangle
broken at random.
Generalization is easy. If, instead of a square we have the hypercube [0, 1]k, then the empirical Lorenz curves
tend, in the uniform case, to the Lorenz curve of ξ1, . . . , ξk where (ξ j)1≤ j≤k are i.i.d. standard exponentially
distributed random variables.

Remark 19. Gini index. It is interesting that we can compute the Gini index for the broken rectangle, even if
we do not know its distribution analytically. It is known (see [3,27,28]) that the Gini index can be computed as
Gini(LX) = 1− Emin(X,Y)

EX , where Υ is an independent copy of X.
If X ∼Exp (1), then min(X, Υ) ∼ Exp (2), hence it is obvious that in the uniform broken stick model the limit of
empirical Gini is 1

2 .

In the broken square model, the limit distribution of spacings has the tail H(x) =
∫
∞

0 e−(y+ x
y )dy.

If X has the distribution H and Υ is an independent copy of X, then the tail of min(X, Υ) is

H
2
(x). As Eξ = 1, we get Gini(LX) = 1 − Emin(X, Υ) = 1 −

∫
∞

0 (
∫
∞

0 e−(y+ x
y )dy)

2
dx = 1 −∫

∞

0

∫
∞

0

∫
∞

0 e−(y+ x
y )e−(z+

x
z )dzdydx= 1−

∫
∞

0

∫
∞

0

∫
∞

0 e−(y+z+x( 1
y+

1
z ))dxdzdy = 1−

∫
∞

0

∫
∞

0
yze−(y+z)

y+z dzdy = 1−∫
∞

0 y
∫
∞

y
(u−y)e−u

u dudy= 1−
∫
∞

0 (y(e−y
− y

∫
∞

y
e−u

u du))dy =
∫
∞

0

∫
∞

y y2 e−u

u dudy =
∫
∞

0 (
∫ u

0 y2 e−u

u dy)du =
∫
∞

0
e−u

u (
∫ u

0 y2dy)du =
∫
∞

0
u2e−u

3 du = 2
3 .

Therefore, in the broken square model the limit for the Gini index is 2
3 . It is empirically confirmed by the

computer.

6. Conclusions and Open Problems

We have proved that in many cases, the empirical distributions of the normed spacings generated
in the process of breaking the stick, denoted by G∗n(X), have a limit and that the limit of their associated
Lorenz curves Ln(X) lies below the Lorenz curve of the exponential distribution. Thus, they are more
inegalitarian that the exponential distribution. As a byproduct, the limit of their Gini coefficient is
always greater than 1

2 . As a principle, no random division of a whole to many individuals according to
the principle of broken stick—be it land, wealth or income—can produce a Gini index less than 0.5.

We were not able to fix some problems such as:

1. Prove or disprove that if X = (Xn) are i.i.d., then G∗n(X) always has a weak limit ALMOST SURELY;
2. Prove or disprove that if essinf Xn = −∞ or ess sup Xn = ∞, then G∗n(X)⇒ δ0 ALMOST SURELY.
3. Let an = {nα}, where α < Q. Is it possible to find a formula for weak lim

n→∞
G∗n((an)n)?

4. Let a = (0, 1, 0, 1
2 , 1, 0, 1

3 , 2
3 , 1, 0, 1

4 , 2
4 , 3

4 , 1, 0, 1
5 , 2

5 , 3
5 , 4

5 , 1, 0, 1
6 , 2

6 , . . . . . .). Find lim
n

F∗n(a), lim
n

G∗n(a);

5. The same question for a = (0, 1, 1
2 , 1

3 , 2
3 , 1

4 , 3
4 , 1

5 , 2
5 , 3

5 , 4
5 , 1

6 , 5
6 , 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 , 1

8 , 3
8 , 5

8 , 7
8 , 1

9 , 2
9 , . . .);

6. Rearrangement. Empirical evidence suggests that if a mother distribution F has density f and
g is another density having the property that λ(

{
f > t

}
) = λ(

{
g > t

}
)) for every t > 0, then

G is also a mother distribution and bears the same H as F. For instance, f1(x) = 2x1(0,1)(x),
f2(x) = 2(1− x)1(0,1)(x) and f3(x) = 4min(x, 1− x), bear the same H. Or, in terms of random
variables: Let U = (Un)n and V = (Vn)n be two independent sequences of i.i.d. uniform (0,1),
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distributed random variables. Then, W1 = max(U, V), W2 = min(U, V), W3 = 1
2 (U + V) have

the same limit distribution of the spacings. Prove or disprove that.

Funding: This research received no external funding.
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Appendix A

We prove some (maybe well-known) facts about convex functions, quantiles, and for other
technicalities for which we were not able to find appropriate references and also for the sake
of self-containment.
Convexity

Lemma A1. Let f : (a, b)→ R be convex. Then

(i) its right derivative f ′r (x) = lim
δ↓0

f (x+δ)− f (x)
δ is non-decreasing and right continuous.

(ii) its left derivative f ′l (x) = lim
δ↓0

f (x)− f (x−δ)
δ is non-decreasing and left continuous.

(iii) moreover, f ′r (x) = f ′l (x + 0) for anyx ∈ (a, b).

(iv) the two derivatives coincide with the possible exception of a (at most) countable set.

Proof. The convexity of f is equivalent with the chord inequality. For any a < x1 < x2 < x3 < b one has
f (x2)− f (x1)

x2−x1
≤

f (x3)− f (x1)
x3−x1

≤
f (x3)− f (x2)

x3−x2
with the obvious consequence:

a < x1 < x2 < b⇒ f ′r(x1) ≤
f (x2) − f (x1)

x2 − x1
≤ f ′l(x2) (A1)

These two derivatives are non-decreasing, therefore all the lateral limits f ′r (x + 0), f ′r (x− 0),
f ′l (x + 0) and f ′l (x− 0) do exist. Keeping x1 fixed in (A1) and letting x2 ↓ x1 one gets f ′r (x1) ≤ f ′l (x + 0);
if one keeps x2 fixed and lets x1 ↑ x2 , one gets f ′r (x2 − 0) ≤ f ′l (x2). Thus,

f ′r (x− 0) ≤ f ′l (x) ≤ f ′t (x) ≤ f ′l (x + 0) for any a < x < b (A2)

In order to prove the continuities, we remark that for any a < x1 < x2 < b, there exist y1, y2

such that:

a < x1 < y1 < y2 < x2 < b and
f (y1) − f (x1)

y1 − x1
≤

f (y2) − f (y1)

y2 − y1
≤

f (x2) − f (x1)

x2 − x1
(A3)

Indeed, if f (y)− f (x1)
y−x1

=
f (x2)− f (x1)

x2−x1
for some ∈ (x1, x2), then f is affine on (x1, x2), hence any y1, y2

satisfy (A3). If not, choose y2 ∈ (x1, x2) arbitrarily such that f (y2)− f (x1)
y2−x1

<
f (x2)− f (x1)

x2−x1
. As f is continuous,

there must exist y1 ∈ (x1, y2) such that f (y2)− f (y1)
y2−y1

<
f (x2)− f (x1)

x2−x1
. Then, by chord inequality:

f ′r (x1) ≤
f (y1) − f (x1)

y1 − x1
≤

f (y2) − f (y1)

y2 − y1
≤

f (x2) − f (x1)

x2 − x1
≤ f ′l (x2) (A4)

If in (A4) we let y2 ↓ x1 , then y1 ↓ x1 1 too, and we get f ′r (x1) ≤ f ′r (x1 + 0) ≤ f (x2)− f (x1)
x2−x1

≤ f ′l (x2).
If we let now x2↓x1, we find that f ′r (x1 + 0) ≤ f ′r (x1) ≤ f ′l (x1 + 0).Thus, f ′r is right continuous and,
moreover, the inequality f ′r (x + 0) ≤ f ′l (x + 0) may occur only if f ′r (x) = f ′l (x + 0). This equality
obviously implies the fact that f ′r is right continuous: if we replace any function with its limits at right
(provided that they do exist) we get a right-continuous function. The fact that f ′l is left continuous can
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be proved in a similar way. Finally, both f ′l and f ′r are non- decreasing, hence they are continuous with
the possible exception of some at most countable set. The equality f ′r (x) = f ′l (x + 0) implies that f ′r
and f ′l coincide at continuity points. �

Lemma A2. Let f : [a, b) → R be convex and continuous at a. Let λ = f ′r be the right derivative. Then λ is
Riemann integrable on any interval [a.x] with a < x < b and, moreover:

f (x) = f (a) +
∫ x

a
λ(t)dt (A5)

Proof. Let a < x1 < x2 < · · · < xn = x be a division of [a, x]. As f (x)− f (a) =
∑n

k=1
f (xk)− f (xk−1)

xk−xk−1
(xk − xk−1)

we have, according to (A1) the evaluation:

n∑
k=1

f ′r (xk−1)(xk − xk−1) ≤ f (x) − f (a) ≤
n∑

k=1

f ′l (xk)(xk − xk−1)

Both f ′r and f ′l are bounded on [a, x] and continuous with the possible exception of a countable set.
Therefore they are Riemann integrable and, passing to the limit when the norm of the division tends to 0
we get

∫ x
a f ′r(t)dt ≤ f (x)− f (a) ≤

∫ x
a f ′l(t)dt. The claimed equality results from the fact that f ′r ≥ f ′l . �

The convex functions have a property that it is not true in general: the convergence of functions
implies the almost everywhere convergence of the derivatives. Precisely

Lemma A3. Let fn, f : [a, b]→ R be convex and continuous. Suppose that fn → f . Then

(i) ( f ′n)r(x)→ f ′r (x) at any point x for which f ′l (x) = f ′r (x).

(ii) If, moreover, fn and f are non-decreasing, then the convergence of ( f ′n)r to f ′r holds in L1(a, b), too.

Proof.

(i) Let x ∈ (a, b). Let δ > 0 be such that a < x − δ < x + δ < b, then,

according to (A1) f (x)− f (x−δ)
δ ≤ f ′l(x) ≤ f ′r(x) ≤

f (x+δ)− f (x)
δ . It follows that:

fn(x)− fn(x−δ)
δ −

f (x+δ)− f (x)
δ ≤ ( fn)

′

r(x) − f ′r (x) ≤
fn(x+δ)− fn(x)

δ −
f (x)− f (x−δ)

δ . Letting n→∞ , we get:
f (x)− f (x−δ)

δ −
f (x+δ)− f (x)

δ ≤ limin f
n

(( f n)′r(x) − f ′r(x))≤ limsup
n

(
( f n)′r(x) − f ′r(x)

)
≤

f (x+δ)− f (x)
δ −

f (x)− f (x−δ)
δ which further implies:

limsup
n

∣∣∣( f n)′r(x) − f ′r(x)
∣∣∣ ≤ f (x + δ) − f (x)

δ
−

f (x) − f (x− δ)
δ

(A6)

Now let (A6) assume that δ ↓ 0 . It follows that

limsup
n

∣∣∣( f n)′r(x) − f ′r(x)
∣∣∣ ≤ f ′r(x) − f ′l(x) (A7)

(ii) If we take into account Lemma A1 (iv), it follows that ( f n)′r(x)→ f ′r (x) for x ∈ [a, b] with
the possible exception of a countable set. As any countable set is a null set for the Lebesgue
measure, we can write that ( f n)′r → f ′r almost everywhere (a.e.). From (A5) we have that
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∫ b
a ( fn′)r(x)dx = fn(b)− fn(a),

∫ b
a ( f ′)r(x)dx = f (b)− f (a). To prove the convergence in L1, notice

that |x| = x+ = x+|x|
2 ⇒ |x| = 2x+ − x . We write∫ b

a

∣∣∣( f ′)r(x) − ( fn′)r(x)
∣∣∣dx = 2

∫ b

a
(( f ′)r(x) − ( fn′)r(x))+dx−

∫ b

a
(( f ′)r(x) − ( fn′)r(x))dx

The second integral is equal to ( f (b) − fn(b)) − ( f (b) − fn(b)) tends to 0 as n→∞ as fn → f .
The second one tends to 0 too because of the domination (( f ′)r − ( fn′)r)+ ≤ ( f ′)r ∈ L1(a, b).
Thus, we prove the convergence in L1. �

Now we know that the right derivative of a convex function Λ : [0, 1) → R+ with the property
that Λ(0) = 0 is a mapping which is non-negative, right continuous, non-decreasing and, moreover, Λ
has the representation.

Λ(x) =
∫ x

0
λ(t)dt for all x ∈ (0, 1) (A8)

We claim that λ is the superior quantile of some distribution function F : [0,∞) → [0, 1] .
Quantiles.

Definition 5. Let F : R→ R be non-decreasing and not a constant. Let m = F(−∞) , M = F(∞) . A quantile
of F is any function Q : (m, M)→ R with the property that Q(p) = x⇒ F(x− 0) ≤ p ≤ F(x + 0) .
The mappings Q+(p) = supF−1( (−∞, p]), (Q−(p) = in f F−1([p,∞) )) are called the superior (inferior)
quantiles of F. Sometimes one denotes the superior quantile by F−1.

Lemma A4. (i). If F is one to one, then the quantile is unique. Moreover, if Q1 and Q2 are two quantiles of F,
then they coincide with the possible exception of a countable set.

(ii). Q(p− 0) < Q(p + 0) if and only if the level set IF(p) =
{
x : F(x) = p

}
is a non-degenerate interval.

Otherwise written, the continuity points of Q are those points for which either the level set IF(p) is void or it is a
singleton. As a consequence, the unique quantile of a one to one non-decreasing function F is continuous.

(iii). The superior quantile is always right—continuous. Moreover, the only quantile which is right
continuous is the superior one.

(iv). If λ : (m, M)→ R is non-decreasing and right continuous, then there exists F : R→ [m, M]

which is non-decreasing and right—continuous such that λ is the superior quantile of F. As a particular case,
if λ : (0, 1)→ R is non-decreasing and right continuous then there exists a distribution function F such that
λ = F−1.

Proof. (i) Suppose that Q1 and Q2 are two quantiles of F and that there exists some p such
that Q1(p) = x1 and Q2(p) = x2. Thus F(x1 − 0) ≤ p ≤ F(x1 + 0), F(x2 − 0) ≤ p ≤ F(x2 + 0).
Suppose x1 < x2. It follows that F(x1 − 0) ≤ p ≤ F(x1 + 0) ≤ F(x2 − 0) ≤ p ≤ F(x2 + 0) ⇒
F(x1 + 0) = F(x2 − 0) = p⇒ (x1, x2) ⊆ IF(p) . Thus Q1 = Q2. But the set

{
p ∈ (0, 1) : IF(p) contains

an open interval} is always at most countable.
(ii) Suppose that IF(p) contains the interval (x1, x2) and x1 < x2. We claim that Q(p− 0) ≤ x1 and

Q(p + 0) ≥ x2. Indeed, let ε, δ be small enough such that x1 < x1 + ε < x2 − δ < x2. Let p′ < p and
x′ = Q(p′). Then x′ ≤ x1 + ε. Indeed, we know that F(x′ − 0) ≤ p′ < F(x′ + 0). If x′ > x1 + ε, then
F(x′ − 0) ≥ F(x1 + ε− 0) and that is absurd p′ ≥ F(x′ − 0) ≥ p. Thus p′ < p⇒ Q(p′) ≤ x1 + ε for any
ε > 0. It means that Q(p′ − 0) ≤ x1. In the same way one proves chat p′ > p⇒ Q(p′) ≥ x2 − δ for any
δ > 0 hence (p + 0) ≥ x2.

On the other hand, let us suppose that p ∈ (m, M) has the property that I(p) has at most
one point. Then there exists x ∈ R such that x′ < x⇒ F(x′ + 0) < p and x′′ > x⇒ F(x′′ − 0) > p .
We claim that Q(p− 0) = Q(p + 0) = x. Indeed, suppose that Q(p− 0) = x′ < x or that Q(p + 0) =
x′′ > x. Suppose that we are in the first situation. Let pn < p be a sequence such that pn → p .
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Let xn = Q(pn)⇒ F(xn − 0) ≤ pn ≤ F(xn + 0) . As xn ≤ x′ we see that F(xn − 0) ≤ pn ≤ F(x′ − 0) < p
for all n. This is absurd, since pn → p . We are forced to accept that x′ = x. In the same way one checks
that x′′ = x.

(iii) The superior quantile is Q(p) = sup
{
x : F(x) ≤ p

}
. If

{
x : F(x) = p

}
is at most a singleton,

Q is continuous at p and we have nothing to prove. If not, then Q(p) = sup
{
x : F(x) = p

}
hence

Q(p) = x⇒ F(x− 0) = F(x) = p . Let pn > p be a sequence such that pn → p and let (pn) = xn. Let
x′ = limxn.

If x′ > x, then F(x) < F(x′ − 0) therefore p = F(x− 0) < F(x′ − 0) ≤ F(xn − 0) ≤ pn. Passing to the
limit we find the absurdity p = F(x) < F(x′ − 0) ≤ p.

Now suppose that Q is a quantile for F and it is right continuous. The discontinuities of Q are in
those points p where the level set IF(p) contains non-degenerate intervals. This set is at most countable.
For those points, let α(p) = infIF(p) < β(p) = supIF(p). Then we claim that Q(p + 0) = β(p). Indeed,
it is clear that Q(p + 0) ≥ β(p). If, ad absurdum, Q(p + 0) > β(p), then there exists x∗ > β(p) such that
Q(p′) ≥ x∗ for any p′ > p. Then p = F(β(p)) < F(x∗ − 0) ≤ F(Q(p′) − 0) ≤ p for all p′ > p. This is an
absurdity: if p < p′ < F(x∗ − 0) then p′ cannot be greater than F(x∗ − 0). It follows that Q(p + 0) = β(p).
If Q is right continuous, then Q(p) = Q(p + 0) = β(p). But this is precisely the superior quantile, F−1.

(iv) Define F(x) =


m i f x ≤ λ(m + 0)

sup
{
p : λ(p) ≤ x

}
i f m > λ(p)

M i f λ(M− 0) ≤ x

. Then F is right continuous. It will be

enough to prove that λ is a quantile for F, since the only quantile which is right continuous is the
superior one. We have to check that λ(p) = x⇒ F(x− 0) ≤ p ≤ F(x) . The level set

{
q : λ(q) = x

}
is an

interval with endpoints p1 and p2. Then F(x) = p2 ≥ p, F(x− 0) = p1 ≤ p hence F(x− 0) ≤ p ≤ F(x).
It follows that λ is the superior quantile for F. �

The connection between the weak convergence of the probability measures on the real line and
quantiles is given by following result.

Lemma A5. Let Fn, F : R → [0, 1] be distribution functions. Then Fn(x)→ F(x) for all x which are continuity
points of F if and only if F−1

n (p)→ F−1(p) for p ∈ (0, 1) with the possible exception of a countable set.

Proof. Let Γ =
{
x : Fn(x)→ F(x)

}
. The complement of Γ is at most countable hence, Γ is a dense subset

of R. For x in Γ we have the equivalences

F(x) ≤ p⇔ ∀k∃ m = m(k) such that Fm+n(x) ≤ p +
1
k
∀n

F(x) ≥ p⇔ ∀k∃ m = m(k) such that Fm+n(x) ≥ p−
1
k
∀n

Here, m, n, k are positive integers
Or

∩
∞

k=1 ∪
∞

m=1 ∩
∞

n=1

{
Fm+n ≤ p +

1
k

}
∩ Γ= ∩∞k=1limin f

k

{
Fn ≤ p +

1
k

}
∩ Γ (A9)

{
F ≥ p

}
∩ Γ =∪∞k=1 ∩

∞

m=1 ∩
∞

n=1

{
Fm+n ≥ p−

1
k

}
∩ Γ= ∩∞k=1limin f

k

{
Fn ≥ p−

1
k

}
∩ Γ (A10)

As Γ is dense, sup(
{
F ≤ p

}
∩ Γ) = sup(

{
F ≤ p

}
) and in f (

{
F ≤ p

}
∩ Γ) = in f (

{
F ≤ p

}
).
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Let Q+ = sup
{
F ≤ p

}
, Q+

n = sup
{
Fn ≤ p

}
, Q− = inf

{
F ≥ p

}
, and Q−n = inf

{
Fn ≥ p

}
, be the superior

(inferior) quantiles of F and Fn. Taking the supremum in (A9) and infimum in (A10) we get
Q+(p) = lim

k→∞
(limin f

n
Qn

+)(p + 1
k ) ≤ (limin f

n
Qn

+)(p + 0).

Q−(p) = lim
k→∞

(limsup
n

Qn
−)(p−

1
k
) ≥ (limsup

n
Qn
−)(p− 0) (A11)

Since all the four functions from (A11)—namely, Q+, Q−, (limin f
n

Qn
+), (limsup

n
Qn
−), are

nondecreasing, they are all continuous with the possible exception of a set which is at most countable.
Moreover, excepting another at most countable set, Q+(p) = Q−(p) and Q+

n (p) = Q−n (p). Put all
these exception sets in a set N which is at most countable. It follows that if p < N we have the inequalities:

(limin f
n

Qn
+)(p) = (limin f

n
Qn

+)(p + 0) ≥ Q+(p), (limsup
n

Qn
−)(p) = (limsup

n
Qn
−)(p− 0) ≤ Q−(p)

which further implies (limin f
n

Qn
+)(p) ≥ Q+(p) = Q−(p) ≥ (limsup

n
Qn
−)(p) otherwise written

Fn
−1(p) → F−1 (p) for all p ∈ (0, 1)/ (M∪ N).

Conversely, suppose that Fn
−1(p) → F−1 (p) for p ∈ Γ with Γ ⊆ (0, 1) dense. According to

Lemma A4(iv) Fn is the superior quantile of Fn
−1 and F is the superior quantile of F−1. The proof goes

in the same way as before. �

Remark A1. Actually, one can be more precise:Fn
−1(p) → F−1 (p) for all p which are continuity points for

F−1 (see Proposition 5 [30] (p. 250) or, for more general cases, [7,21,31]).
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