Article

Bohr Radius Problems for Some Classes of Analytic Functions Using Quantum Calculus Approach

Om Ahuja ${ }^{1, *}$, Swati Anand ${ }^{2}$ and Naveen Kumar Jain ${ }^{3}$ (D)
1 Department of Mathematics, Kent State University, Kent, OH 44021-9500, USA
2 Department of Mathematics, University of Delhi, Delhi 110007, India; swati_anand01@yahoo.com
3 Department of Mathematics, Aryabhatta College, Delhi 110021, India; naveenjain05@gmail.com
* Correspondence: oahuja@kent.edu

Received: 27 January 2020; Accepted: 11 April 2020; Published: 18 April 2020
Abstract: The main purpose of this investigation is to use quantum calculus approach and obtain the Bohr radius for the class of q-starlike (q-convex) functions of order α. The Bohr radius is also determined for a generalized class of q-Janowski starlike and q-Janowski convex functions with negative coefficients.

Keywords: q-Bohr radius; q-Janowski starlike functions; q-Janowski convex functions; q-starlike functions of order $\alpha ; q$-convex functions of order $\alpha ; q$-derivative (or q-difference) operator; quantum calculus approach

MSC: 30C45; 30C50; 30C80

1. Introduction

Let $\mathbb{D}:=\{z: \in \mathbb{C}:|z|<1\}$ be the open unit disc in \mathbb{C}. Suppose \mathcal{A} denote the class of analytic functions in \mathbb{D} normalized by $f(0)=0=f^{\prime}(0)-1$. Also, let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions in \mathbb{D}.

Suppose $\mathcal{H}(\mathbb{D}, \Omega)$ is the class of analytic functions mapping open unit disc \mathbb{D} into a domain Ω. Harald Bohr [1] in 1914 proved that if a function f of the form $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ belong to $\mathcal{H}(\mathbb{D}, \mathbb{D})$, then $\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right| \leq 1$ in the disc $|z| \leq k$, where $k \geq 1 / 6$. As reported by Bohr in [1], Riesz, Schur and Wiener discovered that $|z| \leq k$ is actually true for $0 \leq k \leq 1 / 3$ and that $1 / 3$ is the best possible. The number $1 / 3$ is commonly called the "Bohr radius" for the class of analytic self-maps f in \mathbb{D}, while the inequality $\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right| \leq 1$ is known as the "Bohr inequality". Later on, extensions of Bohr inequality and their proofs were given in [2-4]. Note that Bohr Radius is somewhat whimsical, for physicists consider the Bohr Radius a_{0} of the hydrogen atom to be a fundamental constant, that is, $4 \pi \epsilon h^{2} / m_{e} e^{2}$, or about 0.529 A . The physicists Bohr Radius is named for Niels Bohr, a founder of the Quantum Theory and 1922 recipient of the Nobel Prize for physics.

The Bohr inequality has emerged as an active area of research after Dixon [5] used it to disprove a conjecture in Banach algebra. Using the Euclidean distance, denoted by d, the Bohr inequality $\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right| \leq 1$ for a function f of the form $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ can be written as

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right| \leq 1 & \Leftrightarrow \sum_{n=1}^{\infty}\left|a_{n} z^{n}\right| \leq 1-\left|a_{0}\right| \\
& \Leftrightarrow d\left(\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|,\left|a_{0}\right|\right)=\sum_{n=1}^{\infty}\left|a_{n} z^{n}\right| \leq 1-\left|a_{0}\right|=1-|f(0)| \\
& \Leftrightarrow d\left(\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|,\left|a_{0}\right|\right) \leq d(f(0), \partial \mathbb{D})
\end{aligned}
$$

where $\partial \mathbb{D}$ is the boundary of the disc \mathbb{D}. Thus, the concept of the Bohr inequality for a function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, defined in \mathbb{D}, can be generalized by

$$
\begin{equation*}
d\left(\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|,|f(0)|\right)=\sum_{n=1}^{\infty}\left|a_{n} z^{n}\right| \leq d(f(0), \partial f(\mathbb{D})) \tag{1}
\end{equation*}
$$

Accordingly, the Bohr radius for a class \mathcal{M} consisting of analytic functions f of the form $f(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$ in the disc \mathbb{D} is the largest $r^{*}>0$ such that every function $f \in \mathcal{M}$ satisfies the inequality (1) for all $|z|=r \leq r^{*}$. In this case, the class \mathcal{M} is said to satisfy a Bohr phenomenon.

Quantum calculus (or q-calculus) is an approach or a methodology that is centered on the idea of obtaining q-analogues without the use of limits. This approach has a great interest due to its applications in various branches of mathematics and physics, such as, the areas of ordinary fractional calculus, optimal control problems, q-difference, q-integral equations and q-transform analysis. Jackson [6] intoduced the q-derivative (or q-difference, or Jackson derivative) denoted by D_{q}, $q \in(0,1)$, which is defined in a given subset of \mathbb{C} by

$$
\left(D_{q} f\right)(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z}, & \text { if } z \neq 0 \tag{2}\\ f^{\prime}(0), & \text { if } z=0\end{cases}
$$

provided $f^{\prime}(0)$ exists. If f is a function defined in a subset of the complex plane \mathbb{C}, then (2) yields

$$
\lim _{q \rightarrow 1^{-}}\left(D_{q} f\right)(z)=\lim _{q \rightarrow 1^{-}} \frac{f(z)-f(q z)}{(1-q) z}=f^{\prime}(z)
$$

It is easy to see that if $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, then by using (2) we have

$$
\begin{gathered}
\left(D_{q} f\right)(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}, \\
D_{q}\left(z D_{q} f(z)\right)=1+\sum_{n=2}^{\infty}[n]_{q}^{2} a_{n} z^{n-1} \\
D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)=\sum_{n=2}^{\infty}[n]_{q}^{2} a_{n} z^{n-2},
\end{gathered}
$$

where $[n]_{q}$ is given by

$$
[n]_{q}=\frac{1-q^{n}}{1-q}, q \in(0,1)
$$

It is a routine to check that

$$
D_{q}\left(z D_{q} f(z)\right)=D_{q} f(z)+z D_{q}^{2} f(z)
$$

In 1869, Thomae introduced the particular q-integral [7] which is defined as

$$
\int_{0}^{1} f(t) d_{q} t=(1-q) \sum_{n=0}^{\infty} q^{n} f\left(q^{n}\right)
$$

provided the q-series converges. Later on, Jackson [8] defined the general q-integral as follows:

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

where

$$
\int_{0}^{a} f(t) d_{q} t=a(1-q) \sum_{n=0}^{\infty} q^{n} f\left(a q^{n}\right)
$$

provided the q-series converges. Also note that

$$
D_{q} \int_{0}^{x} f(t) d_{q} t=f(x) \text { and } \int_{0}^{x} D_{q} f(t) d_{q} t=f(x)-f(0)
$$

where the second equality holds if f is continuous at $x=0$.
The q-calculus plays an important role in the investigation of several subclasses of \mathcal{A}. A firm footing of the q-calculus in the context of geometric function theory and its usages involving the basic (or q-) hypergeometric functions in geometric function theory was actually made in a book chapter by Srivastava (see, for details [9]; see also [10]). In 1990, Ismail et al. [11] introduced a connection between starlike (convex) functions and the q-calculus by introducing a q-analog of starlike (convex) functions. They generalized a well-known class of starlike functions, called the class of q-starlike functions denoted by \mathcal{S}_{q}^{*}, consisting of functions $f \in \mathcal{A}$ satisfying the inequality

$$
\left|\frac{z\left(D_{q} f\right)(z)}{f(z)}-\frac{1}{1-q}\right| \leq \frac{1}{1-q}, z \in \mathbb{D}
$$

Baricz and Swaminathan [12] introduced a q-analog of convex functions, denoted by \mathcal{C}_{q}, satisfying the relation

$$
f \in \mathcal{C}_{q} \quad \text { if and only if } \quad z\left(D_{q} f\right) \in \mathcal{S}_{q}^{*} .
$$

Recently Srivastava et al. [13] (see also [14]) successfully combined the concept of Janowski [15] and the above mentioned q-calculus and introduced the class $\mathcal{S}_{q}^{*}[A, B]$ and $\mathcal{C}_{q}[A, B],-1 \leq B<A \leq 1$, $q \in(0,1)$, given by

$$
\mathcal{S}_{q}^{*}[A, B]:=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{(A+1) z+2+(A-1) q z}{(B+1) z+2+(B-1) q z}\right\}
$$

and

$$
\mathcal{C}_{q}[A, B]:=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{(A+1) z+2+(A-1) q z}{(B+1) z+2+(B-1) q z}\right\}
$$

respectively, where \prec denotes subordination. As $q \rightarrow 1^{-}, \mathcal{S}_{q}^{*}[A, B]$ and $\mathcal{C}_{q}[A, B]$ yield respectively the classes $\mathcal{S}^{*}[A, B]$ and $\mathcal{C}[A, B]$ defined by Janowski [15]. For various choices of A and B, these classes reduce to well-known subclasses of q-starlike and q-convex functions. For instance, with $0 \leq \alpha<1$, $\mathcal{S}_{q}^{*}(\alpha):=\mathcal{S}_{q}^{*}[1-2 \alpha,-1]$ is the class of q-starlike functions of order α, introduced by Agrawal and

Sahoo [16]. Motivated by the authors in [16], Agrawal [17] defined a q-analog of convex functions of order $\alpha, 0 \leq \alpha<1, \mathcal{C}_{q}(\alpha):=\mathcal{C}_{q}[1-2 \alpha,-1]$, satisfying

$$
\begin{equation*}
f \in \mathcal{C}_{q}(\alpha) \quad \text { if and only if } \quad z\left(D_{q} f\right) \in \mathcal{S}_{q}^{*}(\alpha) \tag{3}
\end{equation*}
$$

Note that $\mathcal{S}_{q}^{*}[1,-1] \equiv \mathcal{S}_{q}^{*}$ and $\mathcal{C}_{q}[1,-1] \equiv \mathcal{C}_{q}$.
In recent years, there is a great development of geometric function theory because of using quantum calculus approach. In particular, Srivastava et al. [18] found distortion and radius of univalence and starlikenss for several subclasses of q-starlike functions with negative coefficients. They [19] also determined sufficient conditions and containment results for the different types of k-uniformly q-starlike functions. Naeem et al. [20] investigated subfamilies of q-convex functions and q-close to convex functions with respect to the Janowski functions connected with q-conic domain which explored some important geometric properties such as coefficient estimates, sufficiency criteria and convolution properties of these classes. For a survey on the use of quantum calculus approach in mathematical sciences and its role in geometric function theory, one may refer to [21]. In addition, one may refer to a survey-cum-expository article written by Srivastava [22] where he explored the mathematical application of q-calculus, fractional q- calculus and fractional q-differential operators in geometric function theory.

In this paper, we investigate Bohr radius problems for the classes $\mathcal{S}_{q}^{*}(\alpha)$ and $\mathcal{C}_{q}(\alpha)$, respectively, in Sections 2 and 3. In Section 4, we define and investigate the Bohr radius problem for a generalized class, $\mathcal{T} \mathcal{P}_{q}(\lambda, A, B)$, of functions with negative coefficients, where $q \in(0,1), \lambda \in[0,1]$ and $-1 \leq B<$ $A \leq 1$. In particular, we also define and obtain sharp Bohr radius for the class of the q-Janowski functions with negative coefficients in Section 4.

2. The Bohr Radius for the Class $S_{q}^{*}(\alpha)$

To find the Bohr radius for the class $S_{q}^{*}(\alpha)$, we first need the following four lemmas.
Lemma 1 ([23] (Theorem 2.5, p. 1511)). For $q \in(0,1)$, suppose a, b, c are non-negative real numbers satisfying $0 \leq 1-a q \leq 1-c q$ and $0<1-b \leq 1-c$. Then there exists a non-decreasing function $\mu:[0,1] \rightarrow[0,1]$ with $\mu(1)-\mu(0)=1$ such that

$$
\frac{w \phi\left(q, q, q^{2}, q, w\right)}{\phi\left(q^{0}, q, q^{2}, q, w\right)}=\int_{0}^{1} \frac{w}{1-t w} d \mu(t)
$$

where $\phi(a, b ; c ; q, z)$ is a hypergeometric function (see $[24,25]$) given by

$$
\phi(a, b ; c ; q, z)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}(b ; q)_{n}}{(c ; q)_{n}(q ; q)_{n}} z^{n}
$$

and $(a ; q)_{0}=1,(a ; q)_{n}=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{n-1}\right)$, which is analytic in the cut-plane $\mathbb{C} \backslash[1, \infty]$ and maps both the unit disc and the half-plane $\{z \in \mathbb{C}: \operatorname{Re} z<1\}$ univalently onto domains convex in the direction of the imaginary axis.

Lemma 2 ([16] (Theorem 1.1, p. 17)). If $f \in \mathcal{A}$, then $f \in \mathcal{S}_{q}^{*}(\alpha)$ if and only if there exists a probability measure μ supported on the circle such that

$$
\frac{z f^{\prime}(z)}{f(z)}=1+\int_{|\sigma|=1} \sigma z F_{q, \alpha}^{\prime}(\sigma z) d \mu(\sigma)
$$

where

$$
F_{q, \alpha}(z)=\sum_{n=1}^{\infty} \frac{-2}{1-q^{n}} \ln \left(\frac{q}{1-\alpha(1-q)}\right) z^{n}, \quad z \in \mathbb{D}
$$

Lemma 3 (Distortion theorem). Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}=z h(z) \in \mathcal{S}_{q}^{*}(\alpha)$. Then

$$
\exp \left(F_{q, \alpha}(-r)\right) \leq|h(z)| \leq \exp \left(F_{q, \alpha}(r)\right)
$$

Proof. Let $f \in \mathcal{S}_{q}^{*}(\alpha)$. By Lemma 2, there exists a probability measure μ supported on the unit circle such that

$$
\frac{z f^{\prime}(z)}{f(z)}=1+\int_{|\sigma|=1} \sigma z F_{q, \alpha}^{\prime}(\sigma z) d \mu(\sigma)
$$

where

$$
F_{q, \alpha}(z)=\sum_{n=1}^{\infty} \frac{-2 \ln \left(\frac{q}{1-\alpha(1-q)}\right)}{1-q^{n}} z^{n}, \quad z \in \mathbb{D} .
$$

Integrating and then taking exponential on both sides, we have

$$
f(z)=z \exp \left(\int_{|\sigma|=1} F_{q, \alpha}(\sigma z) d \mu(\sigma)\right)
$$

Since $f(z)=z h(z) \in S_{q}^{*}(\alpha)$, it follows that

$$
|h(z)|=\exp \left(\operatorname{Re} \int_{|\sigma|=1} F_{q, \alpha}(\sigma z) d \mu(\sigma)\right)
$$

Thus

$$
\begin{align*}
\ln |h(z)| & =\operatorname{Re} \int_{|\sigma|=1} F_{q, \alpha}(\sigma z) d \mu(\sigma) \\
& =-2 \ln \left(\frac{q}{1-\alpha(1-q)}\right) \operatorname{Re} \int_{|\sigma|=1} \sum_{n=1}^{\infty} \frac{(\sigma z)^{n}}{1-q^{n}} d \mu(\sigma) \\
& =\frac{-2}{1-q} \ln \left(\frac{q}{1-\alpha(1-q)}\right) \operatorname{Re} \int_{|\sigma|=1}\left(\sigma z \phi\left(q, q, q^{2}, q, \sigma z\right)\right) d \mu(\sigma) \\
& =\frac{-2}{1-q} \ln \left(\frac{q}{1-\alpha(1-q)}\right) \operatorname{Re} \int_{0}^{2 \pi}\left(\left(e^{i \theta} z\right) \phi\left(q, q, q^{2}, q, e^{i \theta} z\right)\right) d \mu(\theta) \\
& =\frac{-2}{1-q} \ln \left(\frac{q}{1-\alpha(1-q)}\right) \operatorname{Re} \int_{0}^{2 \pi}\left(w \phi\left(q, q, q^{2}, q, w\right)\right) d \mu(\theta), \quad w=e^{i \theta} z \in \mathbb{D} \\
& =\frac{-2}{1-q} \ln \left(\frac{q}{1-\alpha(1-q)}\right) \operatorname{Re} \int_{0}^{2 \pi} \frac{w \phi\left(q, q, q^{2}, q, w\right)}{\phi\left(q^{0}, q, q^{2}, q, w\right)} d \mu(\theta) \tag{4}
\end{align*}
$$

where $\phi(a, b ; c ; q, z)$ is the hypergeometric function defined in Lemma 1. By Lemma 1, we have

$$
\begin{equation*}
\frac{w \phi\left(q, q, q^{2}, q, w\right)}{\phi\left(q^{0}, q, q^{2}, q, w\right)}=\int_{0}^{1} \frac{w}{1-t w} d \mu(t) \tag{5}
\end{equation*}
$$

Let

$$
\begin{aligned}
g\left(r e^{i \psi}\right) & =\operatorname{Re} \frac{w}{1-t w}, w=r e^{i \psi} \\
& =\operatorname{Re} \frac{r(\cos \psi+i \sin \psi)}{1-t r(\cos \psi+i \sin \psi)} \\
& =\frac{r \cos \psi(1-t r \cos \psi)-t r^{2} \sin ^{2} \psi}{1+r^{2} t^{2}-2 t r \cos \psi}
\end{aligned}
$$

A routine calculation shows that

$$
\min _{\psi} g\left(r e^{i \psi}\right)=g(-r) \quad \text { and } \quad \max _{\psi} g\left(r e^{i \psi}\right)=g(r)
$$

Thus

$$
\begin{equation*}
\min _{|w| \leq r} \operatorname{Re} \frac{w}{1-t w}=\frac{-r}{1+r t} \quad \text { and } \quad \max _{|w| \leq r} \operatorname{Re} \frac{w}{1-t w}=\frac{r}{1-r t} . \tag{6}
\end{equation*}
$$

By (4)-(6), it follows that

$$
\begin{aligned}
\ln |h(z)| & \geq \frac{-2}{1-q} \ln \left(\frac{q}{1-\alpha(1-q)}\right) \int_{|\sigma|=1}\left(-r \phi\left(q, q, q^{2}, q,-r\right)\right) d \mu(\sigma) \\
& \geq \frac{-2}{1-q} \ln \left(\frac{q}{1-\alpha(1-q)}\right)\left(-r \phi\left(q, q, q^{2}, q,-r\right)\right) \\
& =F_{q, \alpha}(-r)
\end{aligned}
$$

and

$$
\begin{align*}
\ln |h(z)| & \leq \int_{|\sigma|=1} F_{q, \alpha}(r) d \mu(\sigma) \tag{8}\\
& =F_{q, \alpha}(r)
\end{align*}
$$

By (7) and (8), we have $\exp \left(F_{q, \alpha}(-r)\right) \leq|h(z)| \leq \exp \left(F_{q, \alpha}(r)\right)$.
Remark 1. As $q \rightarrow 1^{-}$, Lemma 3 yields the corresponding distortion theorem [26] (Theorem $8, p$.117) for the class $S^{*}(\alpha)$.

Lemma 4 ([16] (Theorem 1.3, p. 8)). Let

$$
G_{q, \alpha}(z)=z \exp \left(F_{q, \alpha}(z)\right)=z+\sum_{n=2}^{\infty} c_{n} z^{n}
$$

Then $G_{q, \alpha}(z) \in \mathcal{S}_{q}^{*}(\alpha)$. However, if $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{S}_{q}^{*}(\alpha)$, then $\left|a_{n}\right| \leq c_{n}$ with equality holding for all n if and only if f is a rotation of $G_{q, \alpha}$.

Theorem 1. Let $\phi(z)=\sum_{n=1}^{\infty} \phi_{n} z^{n}$ and $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}=z \exp (\phi(z)) \in \mathcal{S}_{q}^{*}(\alpha)$. Then

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n} \leq d(0, \partial f(\mathbb{D}))
$$

for $|z| \leq r^{*}$, where $r^{*} \in(0,1)$ is the unique root of the equation

$$
r \exp \left(F_{q, \alpha}(r)\right)=\exp \left(F_{q, \alpha}(-1)\right)
$$

The radius is sharp.
Proof. Let $f \in \mathcal{S}_{q}^{*}(\alpha)$. Proceeding as in proof of [16] (Theorem 1.3, p. 8), it is easy to see that coefficients bound for the function $\phi(z)=\sum_{n=1}^{\infty} \phi_{n} z^{n}$ are given by

$$
\begin{equation*}
\left|\phi_{n}\right| \leq \frac{-2 \ln \left(\frac{q}{1-\alpha(1-q)}\right)}{1-q^{n}} \tag{9}
\end{equation*}
$$

For $|z|=r \leq r^{*}$, using Lemma 3 and inequality (9), it follows that

$$
\begin{aligned}
d(0, \partial f(\mathbb{D}))=\lim _{|z| \rightarrow 1^{-}} \inf |f(z)-f(0)| & =\lim _{|z| \rightarrow 1^{-}} \inf \frac{|f(z)|}{|z|} \geq \exp F_{q, \alpha}(-1) \\
& \geq r \exp F_{q, \alpha}(r) \\
& =r \exp \left(\sum_{n=1}^{\infty} \frac{-2 \ln \left(\frac{q}{1-\alpha(1-q)}\right)}{1-q^{n}} r^{n}\right) \\
& \geq|z|+\sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n}
\end{aligned}
$$

if and only if

$$
r \exp \left(F_{q, \alpha}(r)\right) \leq \exp F_{q, \alpha}(-1)
$$

In order to prove that the radius is sharp, let

$$
G_{q, \alpha}(z):=z \exp \left(F_{q, \alpha}(z)\right)
$$

where

$$
F_{q, \alpha}(z)=\sum_{n=1}^{\infty} \frac{-2}{1-q^{n}} \ln \left(\frac{q}{1-\alpha(1-q)}\right) z^{n}, \quad z \in \mathbb{D} .
$$

By Lemma 4, it follows that $G_{q, \alpha} \in \mathcal{S}_{q}^{*}(\alpha)$. For $|z|=r^{*}$, we obtain

$$
\begin{aligned}
|z|+\sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n} & =r^{*} \exp \left(\sum_{n=1}^{\infty} \frac{-2}{1-q^{n}} \ln \left(\frac{q}{1-\alpha(1-q)}\right)\left(r^{*}\right)^{n}\right) \\
& =r^{*} \exp F_{q, \alpha}\left(r^{*}\right) \\
& =\exp F_{q, \alpha}(-1) \\
& =\lim _{|z| \rightarrow 1^{-}} \inf \frac{\left|G_{q, \alpha}(z)\right|}{|z|} \\
& =\lim _{|z| \rightarrow 1^{-}} \inf \left|G_{q, \alpha}(z)-f(0)\right| \\
& =d\left(0, G_{q, \alpha}(\mathbb{D})\right) .
\end{aligned}
$$

Remark 2. For $\alpha=0$, Theorem 1 yields the corresponding results found in [27] for the class S_{q}^{*}.
Remark 3. Theorem 1 with letting $q \rightarrow 1^{-}$leads to the Bohr radius for the class of starlike functions of order α, $0 \leq \alpha<1$. Bhowmik and Das [28] (Theorem 3, p. 1093) found the Bohr radius for $S^{*}(\alpha)$ with $\alpha \in[0,1 / 2]$.

3. The Bohr Radius for the Class $C_{q}(\alpha)$

In the present section, we obtain the sharp Bohr radius for the class of q-convex functions of order $\alpha, 0 \leq \alpha<1$.

Lemma 5 ([17] (Theorem 2.9, p. 5)). Let

$$
E_{q}(z):=\int_{0}^{z} \exp \left(F_{q, \alpha}(t)\right) d_{q} t=z+\sum_{n=2}^{\infty}\left(\frac{1-q}{1-q^{n}} c_{n} z^{n}\right)
$$

where c_{n} is the nth coefficient of the function $z \exp \left(F_{q, \alpha}(z)\right)$. Then $E_{q} \in \mathcal{C}_{q}(\alpha)$ for $0 \leq \alpha<1$. Moreover, if $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{C}_{q}(\alpha)$, then $\left|a_{n}\right| \leq\left((1-q) /\left(1-q^{n}\right)\right) c_{n}$, with equality holding for all n if and only if f is a rotation of E_{q}.

Theorem 2. The Bohr radius for the class $\mathcal{C}_{q}(\alpha)$ is r^{*}, where $r^{*} \in(0,1]$ is the unique root of the equation

$$
\int_{0}^{r} \exp \left(F_{q, \alpha}(t)\right) d_{q} t=\int_{0}^{1} \exp \left(F_{q, \alpha}(-t)\right) d_{q} t
$$

The radius is sharp.
Proof. Let $f \in \mathcal{C}_{q}(\alpha)$. Then, by (3), $z\left(D_{q} f\right)(z) \in \mathcal{S}_{q}^{*}(\alpha)$. It follows from Lemma 3 that

$$
\exp \left(F_{q, \alpha}(-r)\right) \leq\left|\left(D_{q} f\right)(z)\right| \leq \exp \left(F_{q, \alpha}(r)\right)
$$

Taking q-integral of all the inequalities, we have

$$
\begin{equation*}
\int_{0}^{r} \exp \left(F_{q, \alpha}(-t)\right) d_{q} t \leq|f(z)| \leq \int_{0}^{r} \exp \left(F_{q, \alpha}(t)\right) d_{q} t \tag{10}
\end{equation*}
$$

Since $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in \mathcal{C}_{q}(\alpha)$, Lemma 5 yields the coefficients bound for the function f given by

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1-q}{1-q^{n}} c_{n} \tag{11}
\end{equation*}
$$

where inequality holds for all n if and only if f is a rotation of

$$
E_{q}(z)=\int_{0}^{z} \exp \left(F_{q, \alpha}(t)\right) d_{q} t=z+\sum_{n=2}^{\infty}\left(\frac{1-q}{1-q^{n}}\right) c_{n} z^{n}
$$

and where c_{n} is the $n t h$ coefficient of $z \exp \left(F_{q, \alpha}(z)\right)$.
By (10) and (11), we have

$$
\begin{aligned}
r+\sum_{n=2}^{\infty}\left|a_{n}\right| r^{n} & \leq r+\sum_{n=2}^{\infty} \frac{1-q}{1-q^{n}} c_{n} r^{n} \\
& =\int_{0}^{r} \exp \left(F_{q, \alpha}(t)\right) d_{q} t \leq \int_{0}^{1} \exp \left(F_{q, \alpha}(-t)\right) d_{q} t \leq d(0, \partial f(\mathbb{D}))
\end{aligned}
$$

if and only if

$$
\int_{0}^{r} \exp \left(F_{q, \alpha}(t)\right) d_{q} t \leq \int_{0}^{1} \exp \left(F_{q, \alpha}(-t)\right) d_{q} t
$$

Now, consider the function

$$
E_{q}(z):=\int_{0}^{z} \exp \left(F_{q, \alpha}(t)\right) d_{q} t=z+\sum_{n=2}^{\infty}\left(\frac{1-q}{1-q^{n}}\right) c_{n} z^{n}
$$

It follows from Lemma 5 that the function $E_{q}(z) \in \mathcal{C}_{q}(\alpha)$. At $|z|=r^{*}$, we have

$$
\begin{aligned}
r^{*}+\sum_{n=2}^{\infty}\left|a_{n}\right|\left(r^{*}\right)^{n} & =r^{*}+\sum_{n=2}^{\infty} \frac{1-q}{1-q^{n}} c_{n}\left(r^{*}\right)^{n} \\
& =\int_{0}^{r^{*}} \exp \left(F_{q, \alpha}(t)\right) d_{q} t=\int_{0}^{1} \exp \left(F_{q, \alpha}(-t)\right) d_{q} t=d\left(0, \partial E_{q}(\mathbb{D})\right)
\end{aligned}
$$

which shows that the Bohr radius r^{*} is sharp for the class $\mathcal{C}_{q}(\alpha)$.
Putting $\alpha=0$ in Theorem 2, we obtain the Bohr radius for the class \mathcal{C}_{q} of q-convex functions.
Corollary 1 ([27] (Theorem 2, p. 111)). The Bohr radius for the class \mathcal{C}_{q} is r^{*}, where $r^{*} \in(0,1]$ is the unique root of

$$
\int_{0}^{r} \exp \left(F_{q, 0}(t)\right) d_{q} t=\int_{0}^{1} \exp \left(F_{q, 0}(-t)\right) d_{q} t .
$$

The radius is sharp.
If $q \rightarrow 1^{-}$, then Corollary 1 yields the Bohr radius for the class \mathcal{C} of convex functions, that is, $r^{*}=1 / 3$. The same Bohr radius for general convex functions had been earlier obtained by Aizenberg in [29] (Thoerem 2.1).
4. The Bohr Radius Problems for the Class $\mathcal{T} \mathcal{P}_{q}(\lambda, A, B)$

In 1975, Silverman [30] investigated two new subclasses of the family \mathcal{T}, where

$$
\mathcal{T}=\left\{f \in \mathcal{S}: f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}, z \in \mathbb{D}\right\}
$$

Recently, Altıntaş and Mustafa [31] introduced a generalized class, $\mathcal{T P}_{q}(\lambda, A, B), q \in(0,1), \lambda \in$ $[0,1],-1 \leq B<A \leq 1$, given by

$$
\mathcal{T} \mathcal{P}_{q}(\lambda, A, B)=\left\{f \in \mathcal{T}: \frac{z D_{q} f(z)+\lambda z^{2} D_{q}^{2} f(z)}{\lambda z D_{q} f(z)+(1-\lambda) f(z)} \prec \frac{1+A z}{1+B z}, z \in \mathbb{D}\right\}
$$

For $\lambda=0$, this class reduces to the class $\mathcal{T} \mathcal{S}_{q}^{*}[A, B]$ of q-Janowski starlike functions with negative coefficients defined by

$$
\mathcal{T} \mathcal{S}_{q}^{*}[A, B]=\left\{f \in \mathcal{T}: \frac{z D_{q} f(z)}{f(z)} \prec \frac{1+A z}{1+B z}, z \in \mathbb{D}\right\}
$$

On the other hand, the case $\lambda=1$ yields the class $\mathcal{T \mathcal { C } _ { q }}[A, B]$ of q-Janowski convex functions, defined by

$$
\mathcal{T} \mathcal{C}_{q}[A, B]=\left\{f \in \mathcal{T}: 1+\frac{z D_{q}^{2} f(z)}{D_{q} f(z)} \prec \frac{1+A z}{1+B z}, z \in \mathbb{D}\right\} .
$$

As $q \rightarrow 1^{-}, \mathcal{T S}_{q}^{*}[A, B]$ and $\mathcal{T} \mathcal{C}_{q}[A, B]$ reduce respectively to $\mathcal{T} \mathcal{S}^{*}[A, B]$ and $\mathcal{T C}[A, B]$ studied initially in [32]. Note that the classes $\mathcal{T} \mathcal{S}^{*}(\alpha) \equiv \lim _{q \rightarrow 1^{-}} \mathcal{T} \mathcal{S}_{q}^{*}[1-2 \alpha,-1]$ and $\mathcal{T C}(\alpha) \equiv \lim _{q \rightarrow 1^{-}} \mathcal{T} \mathcal{C}_{q}[1-$ $2 \alpha,-1]$ were defined and studied by Silverman [30] in 1975.

In the present section, we will first investigate the sharp Bohr radius for the class $\mathcal{T} \mathcal{P}_{q}(\lambda, A, B)$, $q \in(0,1), \lambda \in[0,1]$ which in particular gives the Bohr radius for the classes $\mathcal{T} \mathcal{S}_{q}^{*}[A, B]$ and $\mathcal{T} \mathcal{C}_{q}[A, B]$. However, in order to obtain Bohr radius, we first need some results given here in two lemmas.

Note that there is a typing error in the statement of [31] (Theorem 3.1, p. 993) (replace α by β). The correct statement in Lemma 6 is as follows:

Lemma 6 ([31] (Theorem 3.1, p. 993)). If $f \in \mathcal{T} \mathcal{P}_{q}(\lambda, A, B), q \in(0,1), \lambda \in[0,1]$, then

$$
r-\frac{1-\beta}{\left([2]_{q}-\beta\right)\left[1+\left([2]_{q}-1\right) \lambda\right]} r^{2} \leq|f(z)| \leq r+\frac{1-\beta}{\left([2]_{q}-\beta\right)\left[1+\left([2]_{q}-1\right) \lambda\right]} r^{2}
$$

where $\beta=(1-A) /(1-B),-1 \leq B<A \leq 1$, with equality for the function

$$
f(z)=z-\frac{1-\beta}{\left([2]_{q}-\beta\right)\left[1+\left([2]_{q}-1\right) \lambda\right]} z^{2},|z|=r .
$$

Lemma 7 ([31] (Theorem 2.8, p. 991)). If $f \in \mathcal{T P}_{q}(\lambda, A, B), q \in(0,1), \lambda \in[0,1]$, then the following conditions are satisfied:

$$
\begin{gathered}
\sum_{n=2}^{\infty}\left|a_{n}\right| \leq \frac{1-\beta}{\left([n]_{q}-\beta\right)\left(1+\left([n]_{q}-1\right) \lambda\right)} \\
\sum_{n=2}^{\infty}[n]_{q}\left|a_{n}\right| \leq \frac{(1-\beta)[n]_{q}}{\left([n]_{q}-\beta\right)\left(1+\left([n]_{q}-1\right) \lambda\right)}, n=2,3, \cdots,
\end{gathered}
$$

where $\beta=(1-A) /(1-B),-1 \leq B<A \leq 1$. The results obtained here are sharp.
Theorem 3. If $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \in \mathcal{T} \mathcal{P}_{q}(\lambda, A, B)$ where $q \in(0,1), \lambda \in[0,1], \beta=(1-A) /(1-B)$ and $c=q(\lambda+1+q \lambda-\beta \lambda)$, then

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq d(0, \partial f(\mathbb{D}))
$$

for $|z|<r^{*}$, where

$$
r^{*}=\frac{2 c}{1-\beta+c+\sqrt{4(1-\beta) c+(1-\beta+c)^{2}}}
$$

The radius r^{*} is the sharp Bohr radius for class $\mathcal{T} \mathcal{P}_{q}(\lambda, A, B)$.
Proof. It follows from Lemma 6 that the distance between the origin and the boundary of $f(\mathbb{D})$ satisfies the inequality

$$
\begin{equation*}
d(0, \partial f(\mathbb{D})) \geq 1-\frac{1-\beta}{(1+q-\beta)(1+q \lambda)} \tag{12}
\end{equation*}
$$

The given r^{*} is the root of the equation

$$
r^{*}+\frac{(1-\beta)\left(r^{*}\right)^{2}}{(1+q-\beta)(1+q \lambda)}=1-\frac{1-\beta}{(1+q-\beta)(1+q \lambda)}
$$

For $0<r \leq r^{*}$, we have

$$
r+\frac{(1-\beta) r^{2}}{(1+q-\beta)(1+q \lambda)} \leq r^{*}+\frac{(1-\beta)\left(r^{*}\right)^{2}}{(1+q-\beta)(1+q \lambda)}=1-\frac{1-\beta}{(1+q-\beta)(1+q \lambda)}
$$

Using Lemma 7, it is easy to show that

$$
\sum_{n=2}^{\infty}\left|a_{n}\right| \leq \frac{1-\beta}{(1+q-\beta)(1+q \lambda)}
$$

The above inequality together with inequality (12) yield

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq r+\frac{1-\beta}{(1+q-\beta)(1+q \lambda)} r^{2} \leq 1-\frac{1-\beta}{(1+q-\beta)(1+q \lambda)} \leq d(0, \partial f(\mathbb{D}))
$$

For sharpness, consider the function $f: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$
f(z)=z-\frac{1-\beta}{(1+q-\beta)(1+q \lambda)} z^{2}
$$

This function clearly belongs to $\mathcal{T} \mathcal{P}_{q}(\lambda, A, B)$. For $|z|=r^{*}$, we find

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right|=r^{*}+\frac{1-\beta}{(1+q-\beta)(1+q \lambda)}\left(r^{*}\right)^{2}=1-\frac{1-\beta}{(1+q-\beta)(1+q \lambda)}=d(0, \partial f(\mathbb{D}))
$$

Putting $\lambda=0$ in Theorem 3, we get the sharp Bohr radius for the class $\mathcal{T} \mathcal{S}_{q}^{*}[A, B]$.
Theorem 4. If $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \in \mathcal{T} \mathcal{S}_{q}^{*}[A, B], \beta=(1-A) /(1-B)$ and $-1 \leq B<A \leq 1$, then

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq d(0, \partial f(\mathbb{D}))
$$

for $|z|<r^{*}$, where

$$
r^{*}=\frac{2 q}{1+q-\beta+\sqrt{1+6 q+q^{2}-2 \beta-6 q \beta+\beta^{2}}}
$$

The radius r^{*} is sharp.
Letting $A=1-2 \alpha$ and $B=-1$ in Theorem 4, we obtain the sharp Bohr radius for the class of q-starlike functions of order $\alpha, 0 \leq \alpha<1$, with negative coefficients.

Corollary 2. Let $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \in \mathcal{T} \mathcal{S}_{q}^{*}(\alpha)$. Then

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq d(0, \partial f(\mathbb{D}))
$$

for $|z|<r^{*}$, where

$$
r^{*}=\frac{2 q}{1+q-\alpha+\sqrt{q^{2}+6 q(1-\alpha)+(1-\alpha)^{2}}}
$$

When $q \rightarrow 1^{-}$in Corollary 2, we obtain the following sharp Bohr radius for the class of starlike functions of order $\alpha, 0 \leq \alpha<1$, with negative coefficients obtained by Ali et al. [33].

Corollary 3 ([33] (Theorem 2.3)). If $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \in \mathcal{T} \mathcal{S}^{*}(\alpha)$, then

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq d(0, \partial f(\mathbb{D}))
$$

for $|z|<r^{*}$, where

$$
r^{*}=\frac{2}{2-\alpha+\sqrt{8-8 \alpha+\alpha^{2}}}
$$

The radius r^{*} is the Bohr radius for $\mathcal{T} \mathcal{S}^{*}(\alpha)$.

When $A=1$ and $B=-1$, Theorem 4 gives the following sharp Bohr radius for the class of q-starlike functions with negative coefficients.

Corollary 4. If $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \in \mathcal{T} \mathcal{S}_{q}^{*}$, then

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq d(0, \partial f(\mathbb{D}))
$$

for $|z|<r^{*}$, where

$$
r^{*}=\frac{2 q}{1+q+\sqrt{1+6 q+q^{2}}}
$$

When $A=1, B=-1$ and $q \rightarrow 1^{-}$, Theorem 4 gives the following sharp Bohr radius for the class of starlike functions with negative coefficients obtained by Ali et al. [33].

Corollary 5 ([33]). The sharp Bohr radius for the class $\mathcal{T} \mathcal{S}^{*}$ is $\sqrt{2}-1 \simeq 0.414214$.
When $\lambda=1$, Theorem 3 gives the following sharp Bohr radius for the class of $\mathcal{T} \mathcal{C}_{q}[A, B]$.
Theorem 5. If $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \in \mathcal{T C}_{q}[A, B], \beta=(1-A) /(1-B)$ and $-1 \leq B<A \leq 1$, then

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq d(0, \partial f(\mathbb{D}))
$$

for $|z|<r^{*}$, where

$$
r^{*}=\frac{2 q(2+q-\beta)}{1+2 q+q^{2}-\beta-q \beta+\sqrt{4(1-\beta)\left(2 q+q^{2}-q \beta\right)+\left(q \beta-1-2 q-q^{2}+\beta\right)^{2}}}
$$

The result is sharp for the function

$$
f(z)=z-\frac{1-\beta}{(1+q-\beta)(1+q)} z^{2}
$$

When $A=1-2 \alpha$ and $B=-1$, Theorem 5 gives the sharp Bohr radius for the class of q-convex functions with negative coefficients.

Corollary 6. The sharp Bohr radius for the class $\mathcal{T C}_{q}(\alpha)$ is

$$
\frac{2 q(2+q-\alpha)}{1+2 q+q^{2}-\alpha-q \alpha+\sqrt{(1+q)^{2}(1+q-\alpha)^{2}+4 q(2+q-\alpha)(1-\alpha)}}
$$

Letting $q \rightarrow 1^{-}$in Corollary 6, we get the following sharp Bohr radius for the class of convex functions of order $\alpha, 0 \leq \alpha<1$, with negative coefficients obtained by Ali et al. [33].

Corollary 7 ([33] (Theorem 2.4)). If $f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \in \mathcal{T C}(\alpha)$, then

$$
|z|+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq d(0, \partial f(\mathbb{D}))
$$

for $|z|<r^{*}$, where

$$
\frac{3-\alpha}{2-\alpha+\sqrt{7-8 \alpha+2 \alpha^{2}}}
$$

The radius r^{*} is the Bohr radius for $\mathcal{T C}(\alpha)$.
For $A=1$ and $B=-1$, Theorem 5 yields the sharp Bohr radius for the class of q-convex functions with negative coefficients.

Corollary 8. The sharp Bohr radius for the class $\mathcal{T C} \mathcal{C}_{q}$ is

$$
\frac{2 q(2+q)}{1+2 q+q^{2}+\sqrt{1+12 q+10 q^{2}+4 q^{3}+q^{4}}}
$$

Letting $q \rightarrow 1^{-}, A=1$ and $B=-1$, Theorem 5 gives the sharp Bohr radius for the class of convex functions with negative coefficients by Ali et al. [33].

Corollary 9 ([33]). The sharp Bohr radius for the class $\mathcal{T C}$ is $\sqrt{7}-2 \simeq 0.645751$.

Author Contributions: Investigation, S.A. and N.K.J.; Methodology, O.A. and N.K.J.; Resources, O.A. and S.A.; Software, S.A.; Supervision, N.K.J.; Writing original draft, S.A.; Writing, review and editing, O.A. and N.K.J. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.
Acknowledgments: The authors are grateful to the referees for their helpful suggestions and insights that helped to improve quality and clarity of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bohr, H. A theorem concerning power series. Proc. Lond. Math. Soc. 1914, 13, 1-5. [CrossRef]
2. Paulsen, V.I.; Popescu, G.; Singh, D. On Bohr's inequality. Proc. Lond. Math. Soc. 2002, 85, 493-512. [CrossRef]
3. Paulsen, V.I.; Singh, D. Bohr's inequality for uniform algebras. Proc. Am. Math. Soc. 2004, 132, 3577-3579. [CrossRef]
4. Paulsen, V.I.; Singh, D. Extensions of Bohr's inequality. Bull. Lond. Math. Soc. 2006, 38, 991-999. [CrossRef]
5. Dixon, P.G. Banach algebras satisfying the non-unital von Neumann inequality. Bull. Lond. Math. Soc. 1995, 27, 359-362. [CrossRef]
6. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253-281. [CrossRef]
7. Thomae, J. Beiträge zur Theorie der durch die Heinesche Reihe: Darstellbaren Functionen. J. Reine Angew. Math. 1869, 70, 258-281.
8. Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193-203.
9. Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329-354.
10. Srivastava, H.M.; Owa, S. Current Topics in Analytic Function Theory; World Scientific Publishing: Hackensack, NJ, USA, 1992.
11. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77-84. [CrossRef]
12. Baricz, Á.; Swaminathan, A. Mapping properties of basic hypergeometric functions. J. Class. Anal. 2014, 5, 115-128. [CrossRef]
13. Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407-425. [CrossRef]
14. Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [CrossRef]
15. Janowski, W. Some extremal problems for certain families of analytic functions. I. Ann. Polon. Math. 1973, 28, 297-326. [CrossRef]
16. Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15-27. [CrossRef]
17. Agrawal, S. Coefficient estimates for some classes of functions associated with q-function theory. Bull. Aust. Math. Soc. 2017, 95, 446-456. [CrossRef]
18. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [CrossRef]
19. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613-2626. [CrossRef]
20. Naeem, M.; Hussain, S.; Khan, S.; Mahmood, T.; Darus, M.; Shareef, Z. Janowski type q-convex and q-close-to-convex functions associated with q-conic domain. Mathematics 2020, 8, 440. [CrossRef]
21. Ahuja, O.P.; Çetinkaya, A. Use of Quantum Calculus approach in Mathematical Sciences and its role in geometric function theory. AIP Conf. Proc. 2019, 2095, 020001-1-020001-14.
22. Srivastava, H.M. Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis, Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327-344. [CrossRef]
23. Agrawa, S.; Sahoo, S.K. Geometric properties of basic hypergeometric functions. J. Differ. Equ. Appl. 2014, 20, 1502-1522. [CrossRef]
24. Andrews, G.E.; Askey, R.; Roy, R. Special functions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71.
25. Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966.
26. Goodman, A.W. Univalent Functions; Mariner Publishing Co., Inc.: Tampa, FL, USA, 1983; Volume I
27. Agrawa, S.; Mohapatra, M.R. Bohr radius for certain classes of analytic functions. J. Class. Anal. 2018, 12, 109-118. [CrossRef]
28. Bhowmik, B.; Das, N. Bohr phenomenon for subordinating families of certain univalent functions. J. Math. Anal. Appl. 2018, 462, 1087-1098. [CrossRef]
29. Aizenberg, L. Generalization of results about the Bohr radius for power series. Studia Math. 2007, 180, 161-168. [CrossRef]
30. Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109-116. [CrossRef]
31. Altıntaş, O.; Mustafa, N. Coefficient bounds and distortion theorems for the certain analytic functions. Turkish J. Math. 2019, 43, 985-997. [CrossRef]
32. Goel, R.M.; Sohi, N.S. Multivalent functions with negative coefficients. Indian J. Pure Appl. Math. 1981, 12, 844-853.
33. Ali, R.M.; Jain, N.K.; Ravichandran, V. Bohr radius for classes of analytic functions. Results Math. 2019, 74, 179. [CrossRef]
(c) 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution
