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1. Introduction

Let D := {z :€ C: |z| < 1} be the open unit disc in C. Suppose A denote the class of analytic
functions in D normalized by f(0) = 0 = f/(0) — 1. Also, let S be the subclass of A consisting of
univalent functions in D.

Suppose H(D, Q) is the class of analytic functions mapping open unit disc D) into a domain
Q). Harald Bohr [1] in 1914 proved that if a function f of the form f(z) = Y’ ,a,z" belong to
H(D,D), then Y7 |a,2"| < 1in the disc |z| < k, where k > 1/6. As reported by Bohr in [1], Riesz,
Schur and Wiener discovered that |z| < k is actually true for 0 < k < 1/3 and that 1/3 is the best
possible. The number 1/3 is commonly called the "Bohr radius" for the class of analytic self-maps f
in D, while the inequality }_)”  |a,2"| < 1is known as the "Bohr inequality". Later on, extensions of
Bohr inequality and their proofs were given in [2-4]. Note that Bohr Radius is somewhat whimsical,
for physicists consider the Bohr Radius ag of the hydrogen atom to be a fundamental constant, that is,
47eh? /mee?, or about 0.529A. The physicists Bohr Radius is named for Niels Bohr, a founder of the
Quantum Theory and 1922 recipient of the Nobel Prize for physics.
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The Bohr inequality has emerged as an active area of research after Dixon [5] used it to disprove
a conjecture in Banach algebra. Using the Euclidean distance, denoted by 4, the Bohr inequality
Yoo |anz"| <1 for a function f of the form f(z) = Y;";a,2z" can be written as

2 lanz"| <1< 2 lanz"| <1 —|ag|
n=0 n=1

d (Z Ianznlrlao> =) lanz"| <1—lag| =1~ |f(0)]
n=1

Sd (i lanz"|, |a0> < d(f(0),0D).

where 0D is the boundary of the disc . Thus, the concept of the Bohr inequality for a function
f(z) = Yo anz", defined in D, can be generalized by

(Zlﬂnznl £ (0 ) Z!ﬂn | <d(f(0),0f (D). 1)

Accordingly, the Bohr radius for a class M consisting of analytic functions f of the form f(z) =
Yoo ax2" in the disc D is the largest r* > 0 such that every function f € M satisfies the inequality (1)
forall |z| = r < r*. In this case, the class M is said to satisfy a Bohr phenomenon.

Quantum calculus (or g-calculus) is an approach or a methodology that is centered on the
idea of obtaining g-analogues without the use of limits. This approach has a great interest due
to its applications in various branches of mathematics and physics, such as, the areas of ordinary
fractional calculus, optimal control problems, g-difference, g-integral equations and g-transform
analysis. Jackson [6] intoduced the g-derivative (or g-difference, or Jackson derivative) denoted by D,,
g € (0,1), which is defined in a given subset of C by

f&-fa) i, 20
D _ e ! 2
(Dgf)(2) {f,(o), e 2

provided f(0) exists. If f is a function defined in a subset of the complex plane C, then (2) yields

lim (Dyf)(z) = lim f(z) = flg2) = f'(2).

q—1- —1- (1—9g)z

It is easy to see thatif f(z) =z + ) _;, 4,2", then by using (2) we have
(Dyf Z nlganz" ",
Dy(zDyf (2) Z anz 1

Dgf() Dy(Dyf(z) i anz ,

n=2

where [n], is given by

]y = 1‘_2 g€ (01).

It is a routine to check that

Dy(zDyf(z)) = Dyf(z) + zD%f(z).
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In 1869, Thomae introduced the particular g-integral [7] which is defined as

1 o0
/f(t>dqt =(1-9) Z%)q”f(q”)
0 n=

provided the g-series converges. Later on, Jackson [8] defined the general g-integral as follows:

/ O/bf ()dgt — /f ),

a

where
[ F0dy =a1-a) ¥ o)
0 n=

provided the g-series converges. Also note that

Dy [ F(t)dyt = f(x) and [ Dyf (6)dyt = £(x) ~ £(0),
0 0

where the second equality holds if f is continuous at x = 0.

The g-calculus plays an important role in the investigation of several subclasses of A. A firm
footing of the g-calculus in the context of geometric function theory and its usages involving the basic
(or g-) hypergeometric functions in geometric function theory was actually made in a book chapter
by Srivastava (see, for details [9]; see also [10]). In 1990, Ismail et al. [11] introduced a connection
between starlike (convex) functions and the g-calculus by introducing a g-analog of starlike (convex)
functions. They generalized a well-known class of starlike functions, called the class of g-starlike
functions denoted by S, consisting of functions f € A satisfying the inequality

2(Dgf)(z) 1 |_ 1
f(z) l—gq| = 1—9¢

Baricz and Swaminathan [12] introduced a g-analog of convex functions, denoted by C,, satisfying
the relation

,z €D.

feC; ifandonlyif z(Dyf) € S;.

Recently Srivastava et al. [13] (see also [14]) successfully combined the concept of Janowski [15] and
the above mentioned g-calculus and introduced the class S; [A,B] and C4[A,B], -1 < B< A <1,

g € (0,1), given by

A B @) (A+Dz+2+ (A1)
S;[A, B] == {fGA- fz) = (B+1)z+2+(B—1)‘77~}

and

B L zf"(2) (A D)z 42+ (A—1)gz
CylA, B] = {feA.1+ (z) = (B+1)z+2+(B—1)qZ}

respectively, where < denotes subordination. As g — 17, S;[A, B] and (4[4, B] yield respectively the
classes S*[A, B] and C[A, B] defined by Janowski [15]. For various choices of A and B, these classes
reduce to well-known subclasses of g-starlike and g-convex functions. For instance, with 0 < a < 1,
S;(a) := S7[1 — 2a, —1] is the class of g-starlike functions of order &, introduced by Agrawal and
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Sahoo [16]. Motivated by the authors in [16], Agrawal [17] defined a g-analog of convex functions of
ordera, 0 <o <1,Cy(n) := Cq[l — 20, —1], satisfying

f€Cy(a) ifandonlyif z(Dyf) € S;(a). ©)]

Note that S;[1, —1] = S and (41, —1] = C,.

In recent years, there is a great development of geometric function theory because of using
quantum calculus approach. In particular, Srivastava et al. [18] found distortion and radius of
univalence and starlikenss for several subclasses of g-starlike functions with negative coefficients.
They [19] also determined sufficient conditions and containment results for the different types of
k-uniformly g-starlike functions. Naeem et al. [20] investigated subfamilies of g-convex functions and
g-close to convex functions with respect to the Janowski functions connected with g-conic domain
which explored some important geometric properties such as coefficient estimates, sufficiency criteria
and convolution properties of these classes. For a survey on the use of quantum calculus approach
in mathematical sciences and its role in geometric function theory, one may refer to [21]. In addition,
one may refer to a survey-cum-expository article written by Srivastava [22] where he explored the
mathematical application of g-calculus, fractional g- calculus and fractional g-differential operators in
geometric function theory.

In this paper, we investigate Bohr radius problems for the classes S; («) and Cy(«), respectively,
in Sections 2 and 3. In Section 4, we define and investigate the Bohr radius problem for a generalized
class, T'P4(A, A, B), of functions with negative coefficients, where g € (0,1), A € [0,1] and -1 < B <
A < 1. In particular, we also define and obtain sharp Bohr radius for the class of the g-Janowski
functions with negative coefficients in Section 4.

2. The Bohr Radius for the Class S7 («)
To find the Bohr radius for the class S; (), we first need the following four lemmas.
Lemma 1 ([23] (Theorem 2.5, p. 1511)). For g € (0,1), suppose a, b, c are non-negative real numbers

S
satisfying 0 < 1—aq < 1—cqand 0 < 1 —b < 1—c. Then there exists a non-decreasing function
1 :[0,1] — [0,1] with u(1) — u(0) = 1 such that

wq>(q,w qw) _ [ u(t)
¢(a° 4,97, q,w 1—fw

where ¢(a, b;c; q,z) is a hypergeometric function (see [24,25]) given by

v (40)n (67 9)n
a,b;c;g,z) = i
P02 = L (G halaian
and (a;9)0 = 1,(a;9)n = (1 —a)(1 —aq)(1 —ag?)--- (1 —ag"1), which is analytic in the cut-plane
C\ [1, o] and maps both the unit disc and the half-plane {z € C : Rez < 1} univalently onto domains convex
in the direction of the imaginary axis.

Lemma 2 ([16] (Theorem 1.1, p. 17)). If f € A, then f € S; () if and only if there exists a probability
measure y supported on the circle such that

Z;(g;) =1+ |o|=1 UZFq/,a (UZ)dy(a),

where

_ 2 q n
Fa(z) =), 1q”1n<11x(1q)>z , zeD.

n=1
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Lemma 3 (Distortion theorem). Let f(z) =z + Y37, anz" = zh(z) € S; (). Then

exp(Fpa(=7)) < [h(2)] < exp(Fya(r))-

Proof. Let f € 57 (a). By Lemma 2, there exists a probability measure y supported on the unit circle
such that

Zf/(z) /
=1+ ozE, (oz)du(o),
e T Falo2)p (@)
where
o —2In
Fq’a(z) — 1(1_0(,([1 ‘7)) n/ z € D
n=1 q

Integrating and then taking exponential on both sides, we have
f(z) = zexp </| - Fqla(az)dy(0)> .
ol=

Since f(z) = zh(z) € S;(a), it follows that

Ih(z)| = exp (Re /w:l Fq,a(az)dy(a)) .

Thus
In |(2)] :Re/H Fya(02)du(0)
ol=
_ q > v (02)"
= —2In Re du(c
<1—vc(1—¢7) \v|:1,§11—q” He)
=2 q 2
- o (Tt ) Re [ (000,67 0,02))dn(o)
_ 2 q 27 e 2 o
= i (Y Re [T (0, e (o)
_ —2 q 27 2 _ it
=7 _qln (1 —zx(l—q)) Re/ (we(q,9,97°,q,w))du(0), w=-ezecD
2 q ) T wp(4,9,9%,q,w)
- In Re [ LT DY) 4, ), (4)
1-q (1—a(1—q) o oa i w O
where ¢(a, b; c; q,z) is the hypergeometric function defined in Lemma 1. By Lemma 1, we have
wg(9,9,9%,9,w) /1 w
— e = du(t). 5
paiaw) o T-rm ™ ©
Let
ipy _ w — it
g(re'?) Re1 e
r(cosp +isinp)

N el—tr(cosl/]+isin1p)
_ rcosp(l —trcosy) — tr¥sin?
B 1+ 1242 — 2tr cos ¥ ’
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A routine calculation shows that

mlping(rei‘/’) =g(—-r) and mllzjlxg(re“/’) = g(r).

Thus - ., w .
i Re T T i M maxRer—o = ©)
By (4)—(6), it follows that
infh(2)) = i (e ) [ g —n)inG) )
~1—gq 1—a(l—9q)) Jio)=1
> 2 1 (—r¢(9,9,9%,9, 1))
iy 1 _ q 1 _ a(l _ q) 7 7 7 7
= Fpa(-1)
and
In|h(z)] < /w:l Fpa(r)dp(0) ®)
= Fa(r).

By (7) and (8), we have exp(F;«(—7)) < |h(z)| < exp(Fyu(r)). O

Remark 1. As q — 1=, Lemma 3 yields the corresponding distortion theorem [26] (Theorem 8, p. 117) for the
class S* (w).

Lemma 4 ([16] (Theorem 1.3, p. 8)). Let
Gga(z) = zexp(Fya(z)) =2+ Y cp2".
n=2

Then Ggu(z) € Sy (a). However, if f(z) = z + Y375 anz" € S; (), then |a,| < ¢, with equality holding for
all n if and only if f is a rotation of Gy 4.

Theorem 1. Let ¢(z) = Y37 puz" and f(z) = z+ 157, anz" = zexp(¢(z)) € Sy («). Then

2] + ﬁZ lanl |2l < d(0,2£(D))

for |z| < r*, where r* € (0,1) is the unique root of the equation
rexp(Fga(r)) = exp(Fya(—1)).
The radius is sharp.

Proof. Let f € S;(a). Proceeding as in proof of [16] (Theorem 1.3, p. 8), it is easy to see that coefficients
bound for the function ¢(z) = Y_;° 1 ¢uz" are given by

721n<
P e—

#1—‘7))'

9
— ©)
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For |z| = r < r*, using Lemma 3 and inequality (9), it follows that

d(0,9f(D)) = lim inf|f(z) — f(0)] = lim inf @)l > exp Fpa(—1)

|z —1 |z —1- ||

> rexp Fq,,x(r)

o 2In(—1
= rexp (Z 1(1_;731_‘7)) r”)

=1

[0
> [z + ) |an|lz]"
n=2

if and only if
rexp(Fya(r)) < exp Fa(—1).

In order to prove that the radius is sharp, let

Gga(z) = zexp(Fya(z)),

where

Fou(z) = ln< >z”, zeD.
1a(2) ,1;1—4” 1—a(l-9q)

By Lemma 4, it follows that Gg« € S; (). For |z| = r*, we obtain

o 0ok ) -2 q *\n
A+ X lanllel” =7 exp(El—q"1“<1—a<l—q>>(”)

=r"exp Fja(r")

= exp Fq,,x(fl)

G
= lim inf M
FESE 2|

= lim inf|Gya(z) — f(0)]

|z] =1~

=d(0,Gya(DD)). O
Remark 2. For a = 0, Theorem 1 yields the corresponding results found in [27] for the class S;.

Remark 3. Theorem 1 with letting g — 1~ leads to the Bohr radius for the class of starlike functions of order «,
0 < a < 1. Bhowmik and Das [28] (Theorem 3, p. 1093) found the Bohr radius for S* («) with a € [0,1/2].
3. The Bohr Radius for the Class C; ()

In the present section, we obtain the sharp Bohr radius for the class of g-convex functions of order

w,0<a<l1.

Lemma 5 ([17] (Theorem 2.9, p. 5)). Let

zZ

[o0] 1 _
Ey(z) := /exp(Fq,a(t))dqt =z+ ) <1_;1cnz”) ,
0 n=2

where ¢y, is the nth coefficient of the function zexp(Fya(z)). Then E; € Cy(a) for 0 < & < 1. Moreover, if
f(z) = z4+ X5 s anz" € Cy(a), then |ay| < ((1—q)/ (1 —q"))cn, with equality holding for all n if and only
if f is a rotation of Eg.
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Theorem 2. The Bohr radius for the class Cq(a) is r*, where r* € (0,1] is the unique root of the equation

r

1
/ exp(Fya(t))dgt = / exp(Fya(—t))dyt.
0

0

The radius is sharp.

Proof. Let f € Cy(a). Then, by (3), z2(Dyf)(z) € S; (w). It follows from Lemma 3 that

exp(Fq,a(—r)) < |(qu)(z)\ < exp(Fq,,x(r)).

Taking g-integral of all the inequalities, we have

r r

[exp(Fya(=t)dyt < |F()] < [ exp(Fralt))dt (10)

0 0

Since f(z) = z + ¥, anz" € Cy(a), Lemma 5 yields the coefficients bound for the function f given by

1
e (11)

where inequality holds for all # if and only if f is a rotation of

4

Ey(z) = [ exp(Fya(t

0

It

) cpz"

and where c;, is the nth coefficient of zexp(F;4(z)).

By (10) and (11), we have
T ) " <
n=2
1
/ p(Epa(t))dgt < /exp(Fq,a(—t))dqt < d(0,3f (D))
0 0
if and only if

r 1
/exp Fya(t) / p(Fau(—t))dgt.
0 0

Now, consider the function

zZ

E;(z) := /exp(l—",M dgt =z + Z (

0

> cnz".

It follows from Lemma 5 that the function E;(z) € Cy(a). At |z| = r*, we have

* - 1-
r 4+ Z 1= qncn(r )"
n=2 q

/exp Fya(t) =
0

) fan| ()"
n=2

exp(Fya(—t))dgt = d(0,0E;(ID))

o
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which shows that the Bohr radius 7* is sharp for the class C;(«). O

Putting « = 0 in Theorem 2, we obtain the Bohr radius for the class C; of g-convex functions.

Corollary 1 ([27] (Theorem 2, p. 111)). The Bohr radius for the class C is r*, where r* € (0,1] is the unique
root of

r 1
/ exp(Fyo(t))dyt = / exp(Fyo(—t))d,t.
0 0
The radius is sharp.

If g — 17, then Corollary 1 yields the Bohr radius for the class C of convex functions, that is ,
r* = 1/3. The same Bohr radius for general convex functions had been earlier obtained by Aizenberg
in [29] (Thoerem 2.1).

4. The Bohr Radius Problems for the Class 7 P;(A, A, B)
In 1975, Silverman [30] investigated two new subclasses of the family 7, where
T={feS:f(z)=z— ) |an|z",z € D}.

n=2

Recently, Altintag and Mustafa [31] introduced a generalized class, 7P4(A, A, B),q € (0,1),A €
[0,1], -1 < B < A <1, given by

TP (AAB)—{fGT. zDof(2) + A2?Dif(2) 1+ Az D}
g\t 43, = : .

AzD,f(z)+ (1—A)f(z) ~1+Bz'"

For A = 0, this class reduces to the class 7S, [A, B] of g-Janowski starlike functions with negative
coefficients defined by

Ts;[A,B]_{feT: 2Dif(z) 1+ 4z ze]D}.

f(z) “ 178z

On the other hand, the case A = 1 yields the class 7C,[A, B] of g-Janowski convex functions, defined by

TC,[A,B] = {feT:1+ZD§f(Z) L1+ Az D}.

< ,Z €
D;f(z) 1+ Bz

Asq — 17, TS;[A, B] and TCy[A, B] reduce respectively to TS*[A, B] and TC[A, B] studied
initially in [32]. Note that the classes 7S*(a) = hI{l TS;[1—2a,—1] and TC(a) = linln TCy[1—
=1 q—=1"

2w, —1] were defined and studied by Silverman [30] in 1975.

In the present section, we will first investigate the sharp Bohr radius for the class 7P4(A, A, B),
q € (0,1), A € [0,1] which in particular gives the Bohr radius for the classes 7S;[A, B] and 7C,[A, B].
However, in order to obtain Bohr radius, we first need some results given here in two lemmas.

Note that there is a typing error in the statement of [31] (Theorem 3.1, p. 993) (replace « by B).
The correct statement in Lemma 6 is as follows:

Lemma 6 ([31] (Theorem 3.1, p. 993)). If f € TP4(A, A, B), q € (0,1), A € [0,1], then

1-B 1-B 2

v — 7’2 s s
@, P @, =@ = = @, - oA
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where p = (1—A)/(1—B),—1 < B < A <1, with equality for the function

zZ) =z — 1-p 2zl =71
f& =2 =@, —pnr @, o #=r

Lemma 7 ([31] (Theorem 2.8, p. 91)). If f € TP4(A, A, B), g € (0,1), A € [0,1], then the following
conditions are satisfied:

ad 1
Ll < G =gy

= 1-B)lnl,
L lonl < =gy (ful, ~ 1A

where p = (1—A)/(1—B),—1 < B < A < 1. The results obtained here are sharp.

[n]g = 1)A)

n=23,

Theorem 3. If f(z) = z — Y57, |an|z" € TPy(A, A, B) whereq € (0,1),A € [0,1], = (1—-A)/(1—B)
and c = q(A +1+qA — BA), then

2] + iZ lanz"| < d(0,3£(D))

for |z| < r*, where
N 2c
rt = .
1—B+c++/4(1—B)c+ (1—B+c)?

The radius r* is the sharp Bohr radius for class TP4(A, A, B).

Proof. It follows from Lemma 6 that the distance between the origin and the boundary of f(ID) satisfies
the inequality

_ 1-p
d(0,0f(D)) > 1 (ErE ey (12)

The given r* is the root of the equation

oy (1-B)(r*)? 11— 1-8 .
(1+q-B)(1+4qA) (1+q-B)(1+4qA)

For 0 < r < r*, we have
(1-B)(r)? 1-p

(1713)72 <T’*—|— —1—
(1+g-p)(1+qr) — (1+q-p)(1+4A) (1+g-B)(1+gr)

Using Lemma 7, it is easy to show that

r—+

00 1_‘B
Ll < G paT o

The above inequality together with inequality (12) yield

Z 3 a.z" r 1_‘8 7’2 _ 1—'8
Ihigyn <t a e haTa” S ATy <40 @),

For sharpness, consider the function f : D — C defined by

- l_ﬁ ZZ.
g - B +4d)

flz) =z
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This function clearly belongs to 7P, (A, A, B). For |z| = r*, we find

= n| g 1_18 1’*22 _ 1_18 —
At Gl = e aran T wr g YO 0

Putting A = 0 in Theorem 3, we get the sharp Bohr radius for the class 7S, [A, B].

Theorem 4. If f(z) =z — Y7, |an|z" € TSH[A,B], p=(1—-A)/(1—B)and -1 < B < A <1, then

2] + )fz laz"| < d(0,3£(D))

for |z| < r*, where
* 2q
rt = .
1+q—p+/1+6q+q>—2B—64B+ B>

The radius r* is sharp.

Letting A = 1 — 2ax and B = —1 in Theorem 4, we obtain the sharp Bohr radius for the class of
g-starlike functions of order «, 0 < a < 1, with negative coefficients.

Corollary 2. Let f(z) =z — Y37, |an|z" € TS5 (a). Then

2] + izwnzﬂ < d(0,0f(D))

for |z| < r*, where
S 29
l+g—a+ /P +6q0—a)+(1—a)?

When g — 17 in Corollary 2, we obtain the following sharp Bohr radius for the class of starlike
functions of order &, 0 < & < 1, with negative coefficients obtained by Ali et al. [33].

Corollary 3 ([33] (Theorem 2.3)). If f(z) =z — Y 5y |an|z" € TS* (), then

2] + fz lan2"| < d(0,3f (D))

for |z| < r*, where
2

C2—a+V8—8a+a
The radius r* is the Bohr radius for T S™ («).

r*

When A = 1 and B = —1, Theorem 4 gives the following sharp Bohr radius for the class of
g-starlike functions with negative coefficients.

Corollary 4. If f(z) =z — Y oo, |an|2z" € TS}, then

2] + f;z lan2"| < d(0,3f (D))

for |z| < r*, where
* 29

r= .
14+g++/1+6q+4?
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When A =1, B = —1and q —+ 17, Theorem 4 gives the following sharp Bohr radius for the class
of starlike functions with negative coefficients obtained by Ali et al. [33].

Corollary 5 ([33]). The sharp Bohr radius for the class TS* is /2 — 1 =~ 0.414214.
When A = 1, Theorem 3 gives the following sharp Bohr radius for the class of 7C;4[A, B].

Theorem 5. If f(z) =z — Y575 |an|z" € TC4[A,B], = (1—-A)/(1—-B)and -1 < B < A <1, then
|zl + ) lanz"| < d(0,0f(D))
n=2

for |z| < r*, where

rf =

R 1429+ g2 — B—qp+ 40— B) 29+ > —qB) + (4B —1— 29— 2+ B)*

The result is sharp for the function

B 1-p
f& =T —paza’

When A =1 — 2« and B = —1, Theorem 5 gives the sharp Bohr radius for the class of g-convex
functions with negative coefficients.

Corollary 6. The sharp Bohr radius for the class T Cq(a) is

29(2+q—a)
1+29+ 2 —a—qau++/A+9)2(0+q—a)2+492+q—a)(1—a)

Letting ¢ — 1~ in Corollary 6, we get the following sharp Bohr radius for the class of convex
functions of order &, 0 < & < 1, with negative coefficients obtained by Ali et al. [33].

Corollary 7 ([33] (Theorem 2.4)). If f(z) =z — Y 5oy |an|z" € TC(a), then

2] + f;z lan2"| < d(0,3f (D))

for |z| < r*, where
3—uw
2—a+V7—8a+2a2
The radius r* is the Bohr radius for TC(a).

For A = 1and B = —1, Theorem 5 yields the sharp Bohr radius for the class of g-convex functions
with negative coefficients.

Corollary 8. The sharp Bohr radius for the class T Cg is

29(2+9) ‘
1+29+q2++/1+129+ 1042 + 443 + ¢*

Lettingg — 17, A = 1and B = —1, Theorem 5 gives the sharp Bohr radius for the class of convex
functions with negative coefficients by Ali et al. [33].
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Corollary 9 ([33]). The sharp Bohr radius for the class TC is /7 — 2 ~ 0.645751.
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