. mathematics ﬁw\o\w

Article
Generating of Nonisospectral Integrable Hierarchies
via the Lie-Algebraic Recursion Scheme

Haifeng Wang'” and Yufeng Zhang *

School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
* Correspondence: zhangyfcumt@163.com

check for

Received: 20 February 2020; Accepted: 11 April 2020; Published: 17 April 2020 updates

Abstract: In the paper, we introduce an efficient method for generating non-isospectral integrable
hierarchies, which can be used to derive a great many non-isospectral integrable hierarchies. Based
on the scheme, we derive a non-isospectral integrable hierarchy by using Lie algebra and the
corresponding loop algebra. It follows that some symmetries of the non-isospectral integrable
hierarchy are also studied. Additionally, we also obtain a few conserved quantities of the isospectral
integrable hierarchies.
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1. Introduction

We have known that there exist two main approaches for constructing nonlinear systems
integrable by the inverse scattering transform: the one of the Lax representation (L; = [A,L])
and the one of the zero curvature representation (U; — Vi + [U, V] = 0) [1,2]. In [3], the authors
introduced the spectral transform technique to solve certain classes of nonlinear evolution equations,
and gave a thorough account also of the non-isospectral deformations of KdV-like equations [4,5].
Magri once proposed one approach for generating integrable systems [6], which was called the Lax-pair
method [7,8]. Based on it, Tu [9] proposed a method for generating integrable Hamiltonian hierarchies
by making use of a trace identity, which was called the Tu scheme [10,11]. Through making use of
the Tu scheme, some integrable systems and the corresponding Hamiltonian structures as well as
other properties were obtained, such as the works in [12-16]. It is well known that many different
methods for generating isospectral integrable equations have been proposed [17-19]. However,
as far non-isospectral integrable equations are concerned, fewer works were presented, as far as we
know. In [20,21], the author proposed a method of constructing its corresponding non-isospearal
At = A"(n > 0) hierarchy of evolution equations closely related to T-symmetries. Generally speaking,
integrable systems correspond to the isospectral (A; = 0) case, and mastersymmetries of integrable
systems correspond to the non-isospectral Ay = A"(n > 0) case. In [22], the author adopted
the Lenard series method to obtain some non-isospectral integrable hierarchies under the case
At = A™1M, and found that the same spectral problem can produce two different hierarchies
of soliton evolution equations.

In this article, we apply an efficient scheme to generating non-isospectral integrable hierarchies

n .
of evolution equations under the case where A; = Y- k;(t)A" /. Obviously, this case is a generalized
j=0

expression for the case A; = A" [23,24]. By taking different values of the parameters in the
non-isospectral integrable hierarchies, we can obtain many integrable equations, such as the coupled
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equations. Under obtaining non-isospectral integrable systems, their properties including Darboux
transformations, exact solutions, and so on, could be investigated; a lot of such work has been done,
such as the papers [25-34].

2. A Non-Isospectral Integrable Hierarchy

In this section, we derive a non-isospectral integrable hierarchy by using the Lie algebra,
and obtain a Hamiltonian construction of the hierarchy via the trace identity proposed by Tu [9]. In the
following, the steps for generating non-isospectral integrable hierarchies of evolution equations present

Step 1: Introducing the spectral problems

P = U, U= RA4uje(n) + - - - +ugeg(n), 1)
Yr =V, V= Arer(n) +---+ Apep(n), )
=Y k(AN ®3)

i>0

where the potential functions uy, - - ,u; € S(the Schwartz space), and R(n), ey(n),--- ,ep(n) € G
satisfy that

(@) R,eq, -, eparelinear independent,
(b) Ris pseudoregular,

(c) deg(R(n)) > deg(ei(n)),i=1,2,...,p.

Step 2: Solving the following stationary zero curvature equation for A;,i =1,2,...,p:

ou
Ve = S0+ U, V], @

It follows that one can get the compatibility condition of Equations (1) and (2)

ou ou
aut + ﬁ/\t - Vx + [U, V} = 0 (5)

Equation (4) can be broken down into

d
—vi %A( )

ou
+ (L, V) = v = Al — v, ©6)

where
A — ANy Zk (HANm=Ni+x y = 01,... N, —1;m < n.

Step 3: We search for a modified term A so that, for

v = ANy 4 A = v )+An,

—v 4 ﬁ)\( " LU, V"] = By + - - + Byey,

where B;(i=1,2,...,q) € C
Step 4: The non-isospectral integrable hierarchies of evolution equations could be deduced via
the non-isospectral zero curvature equation
ou (n) _ yln)
t

u wﬁh v+ [, v =o. @)
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Step 5: The Hamiltonian structures of the hierarchies Equation (7) are sought out according to the
trace identity given by Tu [9]. We will show the specific calculation process in the following:
A basis of the Lie algebra A is given by

A =span{h,e, f}

1 0 0 0 01 0 0 0100
0 -1 0 0 10 0 0 1000
ith h = 1 e = 1 r_ , "
wi 210 0 1 o |”° 2o 0 o 1|°f 2o o o 1| and the
0 0 0 -1 0 0 -1 0 0010

corresponding loop algebra is taken by

A = span{h(n),e(n), f(n)},

where h(n) = hA?", e(n) = eA?"~1, f(n) = fA?"~1. Itis easy to find that the commutator of A is as
follows:

[h(n),e(m)] = FA21211 = f(mn), [h(n), f(m)] = e(m+n), le(n), f(m)] = h(m+n—1), mn € Z,
where the gradations of h(n), e(n), and f(n) are given by
degh(n) =2n, dege(n) =2n—1, degf(n)=2n—1,ne Z.

Consider the following non-isospectral problems based on A

A? (r+q)A 0 0
1[(r—gr =22 0 0
=Uy, U=h(1 1 1) ==

0 0 (r—g)A  —A?

a (b+c) 0 0

(=b+c)A —a 0 0

=Vy, V=ah be(1 1) ==

$r=Vip, V= ah(0) +be(1) +cf (1) . , S PO

0 0 (=b+c)A —a

wherei? = —1,a= Y aA 2 b= Y bA 2% c= Y A2,
i>0 i>0 i>0
It follows that we have
r+q 0 0
—2/\ 0 j
k —2i+1
2) r+q l;)
r—q —2A
Zk J2h(1 — i) +qe(1 —i) +rf(1—1)].
i>0

Furthermore, the following equation can be derived by taking A; = Y ki(H)A1~% with

i>0

Equation (6),
Ay = qciy1 — rbip1 + 2ki 1 (1),
bix = ciy1 —ra; +ki(t)g, (10)
Ciy = biv1 — qa; + ki(t)r,
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that is,

aix = qbix — rcix — q2ki(t) + r2ki(t) + 2k (£),

Cip1 = biy +ra; — qki(t), (11)
k().

biv1 =ciy+qa;—r

We take the initial values
by = koailq, cp = koailr

Then, Equation (11) admits that
ag = 2k1(t)x + Po(t),
b1 = 2k1(t)gx, c1 =2ki(H)rx
a1 = ki (£)x(g* — %) + 2ka(£)x + B1 (1),
by = k1 (£)(r + 2xrx) + gx(ky ()97 — k1 (£)r* + 2ka(1)),
2 = k1(£)(q +2xgy) + rx(ky (£)g* — ky (£)r% + 2Ky (1)),

where Bo(t)B1(t) = 01is an integral constant. Denoting that

n
VJ(F”) =) (ajh(n—i)+be(n+1—i)+cif(n+1—1)),
i=0
VW = Y (ah(n—i) +be(n+1—i) +cif (n+1—1)),
i=n+1
/\Enl _ ZKi(t)AZ‘rz—Zi-HI Z K;(t)A2n—2i+1)
i=0 i=n+1

By using Equations (8) and

—~

9), the gradations of the left-hand side of Equation (6) are derived as:
deg V) = (0,1,1) > o\ (m) _. > (M _. : >
egV,’' =:(0,1,1) >0, deg— I Ay =:(2,1,1) > 1, deg([U,V;"]) =:(2,1,1;0,1,1) > 1,

which signifies that the minimum gradation of the left-hand side of Equation (6) is zero. Similarly,
the gradations of the right-hand side of Equation (6) are also obtained as follows:

deg V™ =i (=2,-1,-1) < -1, deg WA = (0,~1,-1) <0, deg([U, V")) =: (2,1,1;-2,-1,-1) < 1,

which indicates that the maximum gradation of the right-hand side of Equation (6) is 1. By taking
these terms which have the gradations 0 and 1, one has

VI = SN = U V) = <buia f(1) = cnane(1) = gens1h(0) + rbyih(0) = 2Ky1 (H)R(0),

that is,
_V(n) + ﬁ/\( D+ +U, VJ(:Z)] = —by1f(1) = cnr1e(1) — qeu417(0) + by 11h(0) — 2K, (£)R(0). (12)

In what follows, we takes modified term A, = —a,k(0) so that, for V(") = VJ(:Z) — ayh(0) to
obtain the non-isospectral integrable hierarchies, we have from Equation (13) that

ou
v+ A0 U, VO] = (4 1a)e(D) + (b + ) ).
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Thus, Equation (7) admits the non-isospectral integrable hierarchy
up = ) _ (1 —ran\ _ (bnx — Kn(t)q
" ), bpy1 —qay Cnx — K (t)r
0 9\ (cn q
— — 13
Cn q
=: — Ky (t

or
S A 13 by + (1 —rd1g) eyt — 2rKy 1 (H)x
t r ; —qa_lqcn+1 + (1 + qa_lr)bn+1 — 2qKn+1(t)x
1-r0lg ro~1r Cna1 —r
= 2K t 14
( _qa—lq 1+ qa—1r> (bn+1 + n+1( )x —q ( )
=P Cntl + ZKn+1(f)X - ,
bn+1 —-q

where

I = 0 o . 1—ra g  rolr
7 o o) P\ —golg 14g0 )"

From Equation (11), we infer that

Cn+1 ) —ro~1rd a+ra—1qa Cn ra_l(—q2+72) - .
(an) B <a—qa_1r8 49109 b, + K (t) g0 (—q? +12) 1 + 2K,p1 (£)x .

(15)
=: L <2n> + Kn(t)Q +2Kn+1(t)xR,
n
where
—ro~lro 9+ro~1g0 (=g +1%) —q r
F=lo—ga gt ) S (@ rm)—r) R \4)
g0~ g9 q qO~ (=g~ +17) =7 q
Therefore, Equation (13) can be written as
q Koa—lr n—-1 n=1 q
y, = < ) =L’ <1< - ) + 1L (FKy1-i(DQ) + 211 ) LKyi(1)xR — Ka(t)
") 00 g i=0 i=0 r
n (16)
q n—-1 n—1 . xq q
=d"K, s Y @[Ky_1-i(H)Q+2 ) K,_i(t)P'0 ) Ky (1) Ik
i=0 i=0
where
4 g0 lg+q*  9—qu0 lr—gr
= = . 17
©=nLn (8 +rd g+ qgr —rdlr — 12 {17)
When 1 = 1, the non-isospectral integrable hierarchy Equation (16) becomes
qt = Ki(2xqx + q), (18)
Ty = K1 (ZXTX + 1’).
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When n = 2, the non-isospectral integrable hierarchy Equation (16) reduces to

{Qt = K (g®x — gr2x + 1+ 2ryX)x + 2Ko(qx)x + Ko (2xqx + q), 19)

re = Ky (—=73x + r%x + g + 292X x + Ko (2x7y + 1)

Furthermore, we focus on a format of Hamiltonian constructure of the hierarchy Equation (16)
via the trace identity proposed by Tu [9]. Denoting the trace of the square matrices A and B by
< A,B>=tr(AB).

Equations (8) and (9) admit that

u._ —bA?, < V,‘Lu >=cA?, < v,afu >= crA +2a\ — bgA,

<Vigg ar oA

which can be substituted into the trace identity

6 ou ) <y, A
ey A L ’ 9q
s~V ax ) oA << v, >>

gives rise to

6 ., 0 [—bATY
%(cr)\—l—Za/\—qu) =A 75 < A2+ ) . (20)

It follows that one can get the following equation by comparing the two sides of the above formula

) —bn
E(Zan —qby+7rcy) =(2—-2n+17) ( Cb > . (21)

Inserting the initial values of Equations (11) into (21), we obtain 7y = 0. Hence, we have

—b,\ d0H, (0 -1 | cn

_ 2iay — qb, — rcy 1[0 1 (0 -1
M= M =l o) M=t o)

Hence, the hierarchy Equations (13) and (14) can be written as

q _10H, q _10Hy 41 —r
h, = (r)t = iM 1 E = Ka(t) <r> = RMy = 2K (0 (- (22)

where

u

It is remarkable that, when K,,(t) = K;,+1(t) = 0, Equation (22) is the Hamiltonian structure of
the corresponding isospectral integrable hierarchy of Equation (16).

3. Discussion on Symmetries and Conserved Quatities

In this section, we consider the K symmetries and T symmetries of the hierarchy Equation (16),
and obtain some conserved quantities of the hierarchy Equation (16) from the obtained symmetries.
The way to find K symmetries and T symmetries comes from Li and Zhu [14], who applied the
isospectral and non-isospectral integrable AKNS hierarchy to construct K symmetries and T symmetries
which constitute an infinite-dimensional Lie algebra. In the following, we show the specific process.

One can find that the ® presented in Equation (17) satisfies

D' [Df]g — D' [Dg]f = P{P[f]g — D'[g]f},
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for Vf,g € S. Therefore, ® is the hereditary symmetry of Equation (16). In addition, we can also prove
the following relation holding:

Proposition 1.

P’ [Ko] = [Ké,@], (23)
_ [9x) _
where Ko = = Uy,.
T'x
In fact,
i1 o (907 g+ g0 gy —gx0lr —go Ty
Ko} =0 (rxa_lq + ra_qu —red Yy —ro1r, )’
and thus

O] = (P01 (et 0070 0y — (1) — 407y
a0 g+ (qr)x +7x0 7y —rad Tl = (PP)y —1x0 7y )

K.® — 0o 0 Qxa_lq + q2 Jd— Qxa_lr —qr
0" \0 o) \o+rdlgtgr —rdlr—1?
B Gxx0~'q + 3q9x + %0 02 — gxx0~r — 2qyr — qry — qrd
02+ 10 1g+ 27y + gy + qro —rxx0 ¥ = 3rry — 120 ‘

PK. — qx0~ 10 + g%0 02 — g0~ 1rd — qrd
07\ +r0 g0 +gr0  —rd71rd — 129

We therefore verified that Equation (23) is correct. Owing to the ® is a hereditary symmetry, one finds

@' [Kpn] = [Ky, @],

which means ® is a strong symmetry, where K, = O™ (Zx> .
X

Proposition 2.

@' [xu] + ®(xu)’ — (xu)'® = HI, (24)
where u = <qx ,H = <0 8) and I is an identity matrix.
Ty 0 0
In fact,
, (A B
D' [xu] = (C Dl
where

A = 9,071 + xq2x0 71 + 2xqxq + G201 xq,

B = —(gx0 717 + xqxx0 17 + xqy7 + xqrx + 950 1x1y),
C = rx07 g + x72x0 71 + x7xq + x7qx + 140 x4y,

D = —(re07r + xryx @ r + 2x7y7 + 10 Lary).

o(xu) xq%9 + xqqx — 4x0~ (9 + Xqx) —xqrd + 9 + x9% — x7qx + G0~ L (r + x7y)
(xu)” = xard 2 _ -1 25 -1 ’
qro + 0 + x0° + xqry — rx0~ (7 + xqx) X120 — Xrty + 150" (7 + Xry)
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P quxa_lq +3xqqx + xqza x9% — quxa_lr — 2xrqy — XqTy — Xq10
(xu)'® = 2 -1 -1 2 ’
X0° + X7yx07 g + 2xqry + X¥qy + Xq10 — X0 7 — 3XTTy — X170

d x(q +€01)x o1 x@ 0
N1 4 _ r_
(xu) [U] - de ‘EZO (x(q+€0_2)x xa 0_2 (xu) 0 xa .
Thus, Equation (24) holds.

Proposition 3.

[Ky, xu] = [®u, xu] = Hu + Ky, (25)
where u = <zx>, H= (g g) and Ky = du.
X
In fact,
oy — [ Tx T 29x(% = 1%) — grre + %
u= 1, (2 2 2
Gax + 57x(q° = 1°) + qragx — 171y
(@u) = (200 )3+ 300 + 470 — 11 9 —qrd — (qr)x
0%+ qro + (qr)« (g =710 — 3rry — 129 + qqx

(uy (795 = (10 = r2)2(x0) + 3xagd + P(xgs) —xrrage +3(xrs) —qrd(ere) —(an)s
O (34x) + 4r3(x0) + 107 ) + 1% — 2)3(xr2) — 35173 = PO(a7s) + X7

Then, we have

ra1 [ X0(rxx + 32 (42 = 12) — qrry + 47q2)
(xu)'[@u] = ( 23 (qxx + 11,x(q2_1,2) +qrqx—721’x) ’

_ / _ / _ (0 9) (4« Txx + %%(qz —r2) —qrre+ 7Gx _
[Du, xu] = (Pu) [xu] — (xu)'[®u] = (a 0) (Tx + Grx + Lre(q? —12) + qray —Pry | = Hu+Kj.

We therefore verified that Equation (25) is correct.
Proposition 4.
[KH’I/KW] = 0/ m,n = 0/ 1/2/ e (26)
where K;;, = ®"u, K, = ®"u.
Proposition 5.
[@"xu, xu] = m®" 1 (xu).

The proofs of Propositions 4 and 5 were presented in [23].
From the above results, one have

[@"xu, ®"xu] = (m — n)®" " Y(xu), m=0,1,2,---;1=0,1,2,- -

We can find that {®"u, ®"xu} can not constitute a Lie algebra from Equation (25). However, {®"u,n =
0,1,2,--- } and {®"xu,n = 0,1,2,- - - } constitute the infinite-dimensional Lie algebra, respectively based on
the above analysis.

Now, we will derive some conserved quantities of Tu isospectral hierarchy

Uy, = <‘Z> — " <’Z"> . 27)
ty x
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Definition 1 ([14,16]). If we have known the integrable hierarchy uy = Ky (u), then the v satisfied the

following equation:

d
K=, (28)

which is called the conserved covariance, where K’ is the linearized operator of K, and K'* denotes a conjugate
operator of K'.

Proposition 6 ([13,16]). If o is a symmetry of Equationu; = K, (u), v is its conserved covariance, then we have

[ee]
/ vodx =< v,0 >,

—00

which is independent of time t, that is, % <v,0>=0.

Definition 2 ([13,14,16]). If F'f =< v, f >, for Vf € S, then v is called the gradient of the functional F,

which is denoted by v = 2—5.

Proposition 7 ([16]). If v’ = v'*, then v is the gradient of the following functional

1
F— / < o(Au),u > dA. (29)
0

According to the symbols above, we can deduce:

Proposition 8 ([13,14]). If I is a conserved quality of the hierarchy u; = Ky, (u), and the conserved covariance
v satisfies
I/Kn =< U,Kn >,

then one has
ol

$+ <v,K, >=0,
that is, 5
ait) + Ko+ 0Ky = 0.

Therefore, we deduce the following conserved quantities related to the integrable hierarchy u; = Ky, (1)

1
Iy = / < 3 K(Au), u > dA. (30)
0

Moreover, a few conserved quantities are also derived for the integrable hierarchy Equation (27) as follows:

20 [9x ) _ 0 1 —TIx
1 1 (o -1\ (g:A 0
_ -1 _ qx T (4 _ .
Iy —/0 < 9y Ko(Au),u >da —/0 < [(1 0 ) (Tx)\>] , <r> >dA = /_Oo(qxr rxq)dx,

Ky — dy — Txx + %qx(qZ — rz) —qrry + qux _ 0 1 —Gx — %Tx(q2 _ 1’2) — qrgs +1’21’x
1 Gxx + %rx(qZ _ 72) +qrgx — rzrx -1 0 Fyx + %qx(qZ o 1,2) —grre+ qqu ’

1 0 -1 TxxA + lq (g% — A3 — qrre A3 + g% A3 q
I — 24x x x T
1 /0 ) [<1 0 ) <Lixx/\+ L2 = A+ grgard — re® )L\ ) = A

1 1
= /700[5(_‘75]” +77xx) + g(qZ — 1) (gxr — 1xq))dx,
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I = /_OO < <(1) 01> Kk()\u), (z) > dA.
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