
mathematics

Article

On the Reversibility of Discretization

Jens V. Fischer 1,2,* and Rudolf L. Stens 2,*
1 German Aerospace Center (DLR), Microwaves and Radar Institute, 82234 Wessling, Germany
2 Lehrstuhl A für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
* Correspondence: jens.fischer@dlr.de (J.V.F.); stens@matha.rwth-aachen.de (R.L.S.);

Tel.: +49-8153-28-3057 (J.V.F.)

Received: 24 March 2020; Accepted: 12 April 2020; Published: 17 April 2020
����������
�������

Abstract: “Discretization” usually denotes the operation of mapping continuous functions to infinite
or finite sequences of discrete values. It may also mean to map the operation itself from one that
operates on functions to one that operates on infinite or finite sequences. Advantageously, these
two meanings coincide within the theory of generalized functions. Discretization moreover reduces
to a simple multiplication. It is known, however, that multiplications may fail. In our previous
studies, we determined conditions such that multiplications hold in the tempered distributions sense
and, hence, corresponding discretizations exist. In this study, we determine, vice versa, conditions
such that discretizations can be reversed, i.e., functions can be fully restored from their samples.
The classical Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem is just one particular case in
one of four interwoven symbolic calculation rules deduced below.
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1. Introduction

The theory of generalized functions [1–41] is a standard setting today, not only in mathematics, in
particular, Fourier [42–53] and wavelet analysis [54–57], but also in physics [58–74] and in electrical
engineering [75–81]. It has already proved to be helpful for finding a simple validity statement
for Poisson’s Summation Formula [82], an explanation for Heisenberg’s uncertainty principle [83],
the insight that four Fourier transform definitions are actually all the same Fourier transform [84]
and, eventually, to understand the multiplication difficulties (Figure 1, Section 2, Lemma 1) among
generalized functions which led us to a better understanding of the “square of the Dirac delta”, in what
sense it exists and in what sense it does not exist [85].
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Figure 1. Multiplication products, discrete–discrete fails, discrete–smooth products exist.

Within generalized functions theory, all functions and generalized functions are infinitely
differentiable. It implies simple answers to questions which concerned researchers for decades,
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see e.g., [26], Charts 1–2, pp. 222–223. The theory of generalized functions, distribution theory, is for
example a valuable tool for solving ordinary and partial differential equations [11,28–30,86–89], also
fractional differential equations [81,90–92]. Hence, it is a key instrument to describe natural laws.
Above all, it extends the idea of Fourier transformation because not only integrable but also constant,
polynomially growing, even exponentially growing functions can now be Fourier transformed. Finally,
it also allows us to treat Dirac delta functions [93] and Dirac combs [94] just as if they were ordinary
functions but with adequate mathematical rigor.

Here, we continue a series of studies [82–85] towards a sampling theorem on tempered
distributions. The present study is, more precisely, the second half of [85] which is a foundation
for this one. Our primary goal is the embedding of the Whittaker-Kotel’nikov-Shannon sampling
theorem [95–105] in generalized functions theory, more precisely, its embedding within the
space of tempered distributions. Tempered distributions, in turn, lie in the intersection of
distributions and ultradistributions, see Figure 1 in [85], and distributions and ultradistributions
are particular hyperfunctions [106–109]. Hyperfunctions arise as a difference of pairs of holomorphic
functions [26,40] and “generalized functions” are nothing else than “Randwerte”, boundary values,
of these pairwise arising holomorphic functions [3,4,8]. We proceed as follows. Section 2 describes
the outer framework and the motivation for these studies, Section 3 introduces to used notations and
Section 4 reviews the results we have so far. Section 5 presents new results, it introduces to four kinds
of “truncation”, sharp and smooth truncation in both time and frequency domain, and their respective
symbolic calculation rules. They are needed in Section 6 which is our main result. It consists of two
halves (Theorems 1 and 2) of a theorem on “Cyclic Dualities” (Theorem 3), a statement on the Fourier
duality between two commonly known identities (periodicity-finiteness and discreteness-entireness).
Section 7 is an important consequence. It allows us to discretize already discrete functions and to
periodize already periodic functions. Section 8, finally, concludes this study.

2. Motivation

2.1. Scale of Observation

Once, Mandelbrot asked the question “How long is the coast of Britain?” and the answer
is infinite, unless the “scale” T > 0, the smallest measuring unit, is specified [110]. Equivalently, the
multiplication product between two Dirac delta functions remains undetermined (Figure 1), unless
their relative “position uncertainty” T > 0 is known [85]. In any measurement, some uncertainty
T > 0 is present (Figure 2, left) because measuring devices with infinite bandwidth do not exist. A key
finding in renormalization theory [111] is the fact that measurement results depend on the “scale” of
observation [112]. The “scale” is moreover well-known in optical and radar imaging, in terms of the
chosen “frequency band” [113], “resolution” [114] and “pixel size” [115,116], denoted T (Figure 2).
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Figure 2. Equivalent pixel representations, Dirac’s delta (left) and Lighthill’s unitary function (right).

The “scale” is also known in wavelet analysis [54,55,57,117]. Each “pixel”, often denoted using a
Dirac delta [50,57,77,79,118–123], does not only have a (1) position and a (2) value but also a (3) width,
given by T = 1/B as a consequence of the finite bandwidth B of a used measuring device (Appendix C).
One may recall, B may be large but cannot be infinite. Hence, for every sample (Dirac delta), there
is a corresponding scale T > 0 greater than zero (Figure 2, left). Vice versa, choosing T = 0 in ⊥⊥⊥T ,
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“discretization” ceases to exist (see Definition 1). The pixel size T > 0 is, so to say, a hidden property
of any Dirac delta. It is its smoothness component, the “scale” at which we are able to “see”, a tiny
surface interacting with matter. In radar remote sensing, for example, we are able to “see” clouds
at short (<3 cm) wavelengths and we are able to “see” (the ground) through clouds at longer (>3 cm)
wavelengths [113,124]. So, the “things” we “see” depend on the scale of observation.

2.2. Discretization versus Regularization

In the history of quantum mechanics, two opposite positions can be found, Dirac, on one side,
with his δ functions as the representatives of discreteness, i.e., infinitely precise (position or momentum)
measurements and Pauli [111,125,126] on the other who regularized δ functions in order to obtain
smoothness, i.e., to get rid of improper functions and the infinities they introduce. The intention of
Pauli was to introduce mathematical rigor into “renormalization” theory [111], initiated by Heisenberg
and developed by Schwinger, Feynman and others [36]. His idea was to smear out “sharp” results
(Figure 1) and in this way to regain regular (smooth) functions, i.e., functions which possess a “norm”
in contrast to improper functions. However, both strategies, Dirac’s and Pauli’s, are correct from a
strict mathematical point of view (distribution theory). They are, in fact, “dual” to one another, i.e.,
one strategy cannot exist without the other. It is expressed in the reciprocal relationships (Theorem 3)

⊥⊥⊥T ◦ û T = id = û T ◦ ⊥⊥⊥T (1)

⊥⊥⊥T ◦ ∩ T = id = ∩ T ◦ ⊥⊥⊥T (2)

between discretization ⊥⊥⊥ and two kinds of regularization, û and ∩ , at a respective scale T (see an
example in Figure A6), ◦ is the concatenation of operations and id is the identity operation. The reason
why û T can be replaced by ∩ T and vice versa is Lemma 5 in [85]. Regularization [11,13–15,17,30,35,49]
is well-established today, used for example in [47,69,91,111,125–130]. It is the inverse operation
of discretization ([14], p. 132 and [15], p. 401). Localization is another most important tool, e.g.,
in [13,65,131–136]. It is the Fourier dual of regularization [83,136]. A particular case of localization is
truncation [137–141] and a link between discretization, truncation and “Tikhonov regularization” is
studied in [128,129]. In generalized functions theory, we replace the “Picard condition” by f ∈ OC

′

(see Tables 1–3, [84]). It ensures that f falls to zero with exponential decay, cf. [133]. Equivalent is the
condition f̂ ∈ OM, see Lemma 1. It ensures that f̂ is an ordinary, infinitely differentiable function [41].

2.3. Regularization Methods

All together, there are four regularization methods and in [85] we showed that all four are exactly
those which reverse “discretizations” in both time and frequency domain. They correspond to four
kinds of “truncation”: sharp and smooth truncation in both time and frequency domain. Their main
application is a back-and-forth “sampling theorem” on generalized functions (Table A3, Rules 25–28).
However, amongst other things, it also tells us how to regularize generalized functions in both time
and frequency domain (simultaneously). The latter is a core demand in renormalization theory [13].
It is known that, once the “distribution multiplication problem” is solved, then the central problem in
renormalization theory is solved as well.

3. Notation

All functions and generalized functions in generalized functions theory (distribution theory) are
smooth (infinitely differentiable), either in the ordinary or in the generalized functions sense. In this
study, we follow the standard notation in distribution theory and continue [85] where we already
introduce to the topic in much greater detail. Amongst others, we explain how to deal with generalized
functions and how to extend the one-dimensional case t, T ∈ R to the n-dimensional case t, T ∈ Rn.
See [142] for a treatment in n dimensions. An example for n = 2 is given in Appendix C. In this section,
we merely summarize the most important facts and notations.
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3.1. Fourier Transform

We denote all spaces of ordinary and generalized functions as in the standard literature,
e.g., [1,14,15,27,30]. The “unitary ordinary frequency” or “normalized” Fourier transform of integrable
functions is

f̂ (σ) :=
∫
Rn

f (t) e−2πi t·σdtn = 〈 f , e−2πi t·σ〉

where t ·σ is the usual inner product in Rn and for generalized functions f ∈ S ′ it is 〈F f , ϕ〉 := 〈 f ,F ϕ〉
for ϕ ∈ S , 〈·, ·〉 is the application of f to ϕ [85]. We denote them as F ( f ) or F f or simply f̂ . The space
of tempered distributions S ′ includes, in particular, the Schwartz space S , the subspace of functions
which are well-localized in both time and frequency domain.

3.2. Sinc and Rect Functions

The sinc function is defined to be 1 at t = 0 and sinc(t) := sin(πt)/(πt) else and rect := F (sinc)
is its Fourier transform. It equals 1 within the interval ]−1/2,+1/2[ as well as 1/2 at t = −1/2 and
t = +1/2 and zero else. We prefer using rect instead of the characteristic function of an interval χ

which cannot take on values other than 0 or 1. This “mid-point property at jumps”, cf. [43], p. 52, is
a property of the Fourier transform [9,45]. It implies, for example, Rules 19 and 20 in [84]. The sinc
function belongs to OM, the subspace of all ordinary smooth functions in S ′ and rect belongs to OC

′,
the subspace of rapidly decreasing generalized functions in S ′. Vice versa, rect does not belong to OM
because it is not smooth (infinitely differentiable) and sinc does not belong to OC

′ because its decrease
is too slow (polynomially instead of exponentially), cf. Remark 2 in [84]. Additionally, rect belongs to
E ′, the subspace of compactly supported “time-limited” tempered distributions in S ′ and sinc belongs
to PW, the subspace of Paley-Wiener “band-limited” ordinary functions in S ′.

3.3. Finite, Entire, Local and Regular Functions

For reasons of brevity, we call functions “finite”, “entire”, “local” and “regular” if they belong
to the spaces E ′, PW, OC

′ and OM, respectively [85]. The Paley-Wiener-Schwartz-Ehrenpreis
theorem [143] states that, briefly, F (E ′) = PW and F (PW) = E ′. It is also known in terms of
the Paley-Wiener-Schwartz [46,100] or the Paley-Wiener theorem [46,133,144]. We call this the Fourier
duality between time and band-limited functions. It extents to F (OM) = OC

′ and F (OC
′) = OM

(Lemma 1) which is the Fourier duality between time and band-localized functions. In particular,
δ ∈ E ′ and 1 ∈ PW satisfy Fδ = 1 and F1 = δ. Figure 1 in [85] visualizes these relations and tells us
that “time or band-localization” is wider than “time or band-limitness”. A subspace of OM is D, the
space of “time-limited” Schwartz functions, and a subspace of OC

′ is Z , the space of “band-limited”
Schwartz functions [145], cf. Figure 1 in [85].

3.4. Localized Sinc, Regularized Rect, Unitary Functions and Dirac Comb

The Fourier duality between sinc and rect is not directly applicable to arbitrary tempered
distributions [37,49,85,127,146]. However, localized sinc and regularized rect functions [13] can be
applied to any tempered distribution [83]. We denote them Ω and Ω̂, respectively [85]. The function
Ω is a so-called Lighthill unitary function [7,42,58,147]. It is furthermore a “building block” of the
function that is constantly 1. Hence, it forms a “smooth partition of unity” [13] and as such it plays a
very central role in Fourier analysis. It serves, for example, as cutout function whenever the Fourier
coefficients of a periodic tempered distribution [7,30,34] such as the “Dirac comb”

IIIT :=
+∞

∑
k=−∞

δkT

need to be determined. Here, T > 0 is real-valued and δkT := τkTδ extends to τkT f := f (t− kT) for
ordinary functions f . We briefly write δ if k = 0 and III if T = 1. Clearly, IIIT ∈ S ′ [35,76,148] and
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F (IIIT) = T−1 III 1
T

and F (III 1
T
) = T IIIT, see e.g., [43,52,76,82]. The functions ΩT ∈ D and Ω̂T ∈ Z are,

in fact, the convolution and multiplication (cross) inverses of IIIT, see [85]. The regularization of rect
and the localization of sinc are both linked to “Riemann’s localization theorem” [45,134,146,149,150].

4. Preliminaries

We briefly list the most important ingredients (Lemma 1, Definition 1, Lemma 2) here. These are
known facts. For details one may refer to [85].

Lemma 1 (Convolution-Multiplication Duality). Let g ∈ S ′ and f ∈ OC
′ and α ∈ OM, then

F (g ∗ f ) = Fg · F f (3)

F (g · α) = Fg ∗ Fα (4)

in the tempered distributions sense.

The conditions described in this lemma [15,17,24,27] are both necessary and sufficient for the
existence of convolutions and multiplications on tempered distributions [84]. They secure, for example,
the existence of the “square of the Dirac delta” in a rigorous distributional sense [85]. Using Lemma 1,
we may define “discretizations” and “periodizations” as follows.

Definition 1 (Periodization and Discretization). For f ∈ OC
′, α ∈ OM and real T > 0, we define

444T f := IIIT ∗ f (5)

⊥⊥⊥ 1
T

α := III 1
T
· α (6)

periodization and discretization, respectively.

These operations, primarily intended for radar applications, can already be found in
Woodward [151], p. 28, as rep and comb operations (cf. [84], Table 2). Woodward
is known for first mentioning the sinc function [32,43,100,152,153] and his time-frequency
ambiguity function [46,51,56,154–162]. We now let g be the Dirac comb, it leads us to the following
lemma [82,142].

Lemma 2 (Discrete Functions vs. Periodic Functions). Let T > 0 be real, f ∈ OC
′ and α ∈ OM, then

F (444T f ) = 1
T
⊥⊥⊥ 1

T
(F f ) (7)

F (⊥⊥⊥ 1
T

α) = T 444T(Fα) (8)

in the tempered distributions sense.

We are well-prepared now. In Sections 5–7 we present new results. Lemma 3 and Lemma 4 below
are particular cases of Theorem 1 in [83].

5. Truncation

There are, basically, four kinds of truncation. All four arise naturally as the multiplication
and convolution inverses of the Dirac comb [85]. Truncation can be done sharply or smoothly,
e.g., [51], p. 37, and in time or frequency domain, e.g., [100], p. 191. All four are introduced next.
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5.1. Sharp Truncation

First, we distinguish between sharp truncation in time (finitization) and sharp truncation in
frequency domain (entirization). The resulting functions are time-limited (E ′) or band-limited (PW).
An explicit construction of ΩT is described in [85].

Definition 2 (Finitization). Let T > 0 be real. For any f ∈ S ′, we define another tempered distribution by

u T f := ΩT · f (9)

where ΩT ∈ D is double-sided unitary. The operation u T : S ′ → E ′, f 7→ u T f is called finitization.

Definition 3 (Entirization). Let B > 0 be real. For any f ∈ S ′, we define another tempered distribution by

û B f := Ω̂B ∗ f (10)

where Ω̂B ∈ Z is double-sided unitary. The operation û B : S ′ → PW, f 7→ û B f is called entirization.

Finitization restricts f to an interval [−(T + ε)/2,+(T + ε)/2] where 0 < ε < T may be arbitrarily
small such that f is finite (∈ E ′) and f̂ is entire (∈ PW). Entirization, in turn, restricts f̂ to an interval
[−(B + ε)/2,+(B + ε)/2] where 0 < ε < B such that f̂ is finite and f is entire.

5.2. Smooth Truncation

A wider idea of sharp truncation (time or band-limitness) is smooth truncation (time or
band-localization), e.g., [163], p. 49. Instead in E ′ and PW we now land in OC

′ and OM, respectively,
which include E ′ ⊂ OC

′ and PW ⊂ OM, i.e., “time or band-limitness” is generalized in this way.

Definition 4 (Regularization). Let T > 0 be real. For any f ∈ S ′, we define another tempered distribution by

∩ T f := ΩT ∗ f (11)

where ΩT ∈ D is double-sided unitary. The operation ∩ T : S ′ → OM, f 7→ ∩ T f is called regularization.

Definition 5 (Localization). Let B > 0 be real. For any f ∈ S ′, we define another tempered distribution by

∩̂ B f := Ω̂B · f (12)

where Ω̂B ∈ Z is double-sided unitary. The operation ∩̂ B : S ′ → OC
′, f 7→ ∩̂ B f is called localization.

It is known that the space of “time-limited” and the space of “band-limited” functions do not
overlap (except for the zero function). For this reason, a concept of “time and band-localized” functions
is required. Here, the well-known Schwartz space S is in its overlap (Figure 1 in [85]). Schwartz
functions are, correspondingly, well-localized in both time and frequency domain. It explains their
extraordinary role as (1) test functions for tempered distributions, (2) test functions in quantum
mechanics [63], p. 12 and [164], pp. 317–318, (3) window functions in the Short Time Fourier
Transform (STFT) [41,51,56,165,166] and (4) their validity-satisfying role in Poisson’s Summation
Formula [20,84,142,165].

5.3. Four Truncation Rules

The above definitions obey the following four symbolic calculation rules. They are particular
cases of a generally valid regularization-localization duality [83].
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Lemma 3 (Time vs. Band-Truncation). Let T > 0 be real-valued and f , g ∈ S ′, then

F ( u T g) = T û 1
T
(Fg) ∈ PW (13)

F ( û 1
T

f ) = 1
T
u T ( F f ) ∈ E ′ (14)

in the tempered distributions sense.

Lemma 4 (Time vs. Band-Localization). Let T > 0 be real-valued and f , g ∈ S ′, then

F ( ∩̂ T g) = T ∩ 1
T
(Fg) ∈ OM (15)

F ( ∩ 1
T

f ) = 1
T
∩̂ T ( F f ) ∈ OC

′ (16)

in the tempered distributions sense.

Obviously, the first and the second line in both lemmas are Fourier transforms of one another. We
merely prove the first lemma, the second is shown analogously.

Proof. Let ΩT ∈ D be double-sided unitary, then F (ΩT) = F (Ω(t/T)) = T Ω̂(Tt) = T Ω̂ 1
T

is again
double-sided unitary [85] and belongs to F (D) = Z . Using our operator definitions and Lemma 1,

F ( u T g) = F (ΩT · g) = T Ω̂ 1
T
∗ Fg = T û 1

T
(Fg)

F ( û 1
T

f ) = F (Ω̂ 1
T
∗ f ) = 1

T
ΩT · F f = 1

T
u T (F f )

in the tempered distributions sense.

In engineering, Lemma 3 reduces to the trivial statement that time and band-limited functions are
Fourier transforms of one another and Lemma 4 expresses the same but in a wider sense. The latter
is known as the Fourier duality between windowing (localization) and smoothing (regularization).
The use of mollifiers [86] and regularizers [127] has its origin here.

6. Representation Theorems

The next two theorems can be understood as representation theorems for periodic functions,
discrete functions and for time and band-limited generalized functions in S ′. The entity TB = 1 is
known as the “time-bandwidth” product [163], cf. Woodward [151], pp. 118–119.

Theorem 1 (Global Inversion). Let T, B > 0 be real, TB = 1, p ∈ S ′ be B-periodic and p̂ = d, then

444B ( u B p) = p (17)

⊥⊥⊥T ( û T d) = d (18)

in the tempered distributions sense.

Theorem 2 (Local Inversion). Let T, B > 0 be real, TB = 1, f ∈ E ′ be B-finite and f̂ = α, then

u B (444B f ) = f ∈ E ′ (19)

û T (⊥⊥⊥T α) = α ∈ PW (20)

in the tempered distributions sense.
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Proof. Global Inversion. Because 444B ΩB = 1, therefore (444B ΩB) · p = p, we have

p = (
∞

∑
k=−∞

τkBΩB) · p =
∞

∑
k=−∞

τkB(ΩB · p) = 444B ( u B p) (21)

where the second equality holds because p is B-periodic. The symbol u B p denotes one period of p.
With Lemmas 2 and 3 we now deduce that

p̂ = F (444B ( u B p)) = 1
B
⊥⊥⊥ 1

B
F ( u B p) = ⊥⊥⊥ 1

B
û 1

B
F (p) = ⊥⊥⊥ 1

B
( û 1

B
d) = d

d̂ = F (⊥⊥⊥ 1
B
( û 1

B
d)) = B444BF ( û 1

B
d) = 444B u B F (d) = 444B ( u B p) = p

in the tempered distributions sense.

Although the next proof is very similar, it is presented here for comparison purposes. More
precisely, (21) and (22) are needed below in Corollary 1.

Proof. Local Inversion. Using the fact that f is B-finite, symbolically f = u B f , we obtain

f = ΩB · f =
∞

∑
k=−∞

τkB(ΩB · f ) = ΩB · (
∞

∑
k=−∞

τkB f ) = u B (444B f ) (22)

where the second equality holds because τkB(ΩB · f ) = f for k = 0 and zero else. With Lemma 2 and
Lemma 3 we now deduce that

f̂ = F ( u B (444B f )) = B û 1
B
F (444B f ) = û 1

B
⊥⊥⊥ 1

B
F ( f ) = û 1

B
(⊥⊥⊥ 1

B
α) = α

α̂ = F ( û 1
B
(⊥⊥⊥ 1

B
α)) = 1

B
u BF (⊥⊥⊥ 1

B
α) = u B444B F (α) = u B (444B f ) = f

in the tempered distributions sense.

Equation (17) can also be found in Vladimirov [34], p. 114 as (1.4), in particular (1.5), for the
reader’s convenience—although it is derived here differently. In the special case where p is an
ordinary function, u B can be replaced by multiplication with the characteristic function of an interval,
cf. Benedetto and Zimmermann [167], p. 508. In general, however, the cutout function is a unitary
function, i.e., it is not unique [7], p. 61. Equation (18) is the Fourier transform of (17). We may think of
u B p as the “period” of p, of û T d as the “wave” of d, of 444B f as the “cycle” of f and of ⊥⊥⊥T α as the

“coefficients” of α. Clearly, u B p and û T d as well as 444B f and ⊥⊥⊥T α are all not unique in (17)–(20).
It is, hence, convenient to think of them as equivalence classes in these equations.

Equation (20) is the classical Whittaker-Kotel’nikov-Shannon (WKS) sampling
theorem [95,98,101,104] in S ′ and (19) is its Fourier domain, u B is rect-multiplication and û T is
sinc-convolution in the limiting case. For ordinary functions, (20) and (19) coincide with (28)
and (29) in [151], pp. 33–34, respectively. One may recall, sinc-convolution succeeds on Lebesgue
square-integrable functions with extremely slow convergence but fails on arbitrary tempered
distributions [49]. We therefore constructed u B as the multiplication with a “regularized”
rect-function [13] and û T as the convolution with a “localized” sinc-function in [85]. The duality
between regularization and localization [83] is often used in connection with the classical sampling
theorem, e.g., in [146]. Using “localized” sinc-functions accelerates (cf. [7], p. 6, ε > 0) the convolution
convergence and corresponds to the use of “regularizers” [127]. The use of regularizers, in turn,
corresponds to using “oversampling” [54]. In fact, “any sampling rate higher than the Nyquist rate is
sufficient” [168]. Let us remind here to the fact that sinc functions cannot be integrated, neither in the
Riemann nor in the Lebesgue sense [47,169]. However, it exists as an “improper integral” [151,170]
which corresponds to using “convergence factors” [171] as, for example, in García and Moro [101].
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The idea used in [101] is moreover equivalent to the use of Lighthill’s unitary functions [7,85,147], in
other words, to the use of the operators u B and û T .

The condition f = u B f is further studied in Appendix B. It is now just a small step to deduce the
following statement. We relate finiteness to periodicity and smoothness to discreteness.

Theorem 3 (Cyclic Dualities). If g ∈ S ′ is considered being cyclic and finite, simultaneously, then

u B (444B g) = g = 444B ( u B g) (23)

û T (⊥⊥⊥T ĝ) = ĝ = ⊥⊥⊥T( û T ĝ) (24)

in the tempered distributions sense, where TB = 1. Hence, ĝ ∈ S ′ is both discrete and entire, simultaneously.

Proof. If Theorem 1 and 2 are true and p is f and f is p then, by Fourier duality, d is α and α is d.

Therefore, [ û T , ⊥⊥⊥T] = 0 = [ u B ,444B ] . The commutator [63,84] is defined as [A,B] := AB − BA.
In other words, û and ⊥⊥⊥ as well as u and 444 commute. Dualities as in (23) or (24) do indeed exist.
They are, often unawarely, heavily used in practice. We give three examples.

Example 1 (Discrete Fourier Transform). Cyclic dualities are routinely used in digital signal processing.
Whenever we use the Discrete Fourier Transform (DFT), we actually identify finite functions with periodic
functions and periodic functions with finite functions [50]. Hence, g and ĝ are both finite and periodic.
Simultaneously, ĝ and g are both entire (smooth) and discrete (Theorem 3) by Fourier duality.

Example 2 (Number-Function-Duality). Every real number is a constant function and every constant
function is a real number. More generally, complex numbers are “waves” (Figure 3), cf. [172]. Thinking of 1 as
a discrete periodic function, we may use the DFT, its Fourier transform is 1. Thinking of 1 as a smooth periodic
function, using F in S ′, its Fourier transform is δ. One may recall, this is no contradiction [84].

c = r e i t versus c(t) = r(t) e i t

Figure 3. Complex numbers are discrete (as a number) and smooth (as a function), simultaneously.

Example 3 (Wave-Particle Duality). Cyclic dualities are moreover known in quantum physics where we either
observe (discrete) positions of a particle or all its positions as an entire (smooth) wave. Its momentum (Fourier
transform) is, correspondingly, smooth if its position is discrete and discrete if its position is smooth. It is known
as the “wave-particle duality” and it turned out be equivalent to Heisenberg’s uncertainty principle [173].

An intimate relationship between finiteness and periodicity is also known in other branches
of physics, e.g., in crystallography [94] or, more generally, whenever periodic boundary conditions
arise, e.g., in [174,175]. “Dirichlet boundary conditions” emerge for example in connection with
the “time-periodic” case of Maxwell’s equations in [88,89]. Here, it is intended to find real-valued,
time-periodic and spatially localized solutions. Theorem 3 tells us that whenever we add periodic
boundary conditions to finite or infinite intervals, i.e., as soon as we close a circle (Figure 4), it implies
identifying smoothness with discreteness in its Fourier domain.
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444T

u T
−T/2 +T/2

−∞ 0 +∞

left
boundary

right
boundary

0

t+T = t
periodic boundary condition

Figure 4. The real axis before (left) and after (right) periodization, T replaces “infinity”.

Obviously, many infinities (if not all) arise by just cycling around finitely extended circles.
More generally, circles can be replaced by (nearly arbitrary) closed paths in the complex plane [176,177].
Our result is obviously related to the Fundamental Theorem of Calculus ([177], Theorem 24) and
Cauchy’s theorem ([177], Theorem 25). The idea that “infinity” might not exist in the real world [178]
is presently hotly debated in physics [179,180]. It is moreover known in complex analysis that the
“complex plane” is not a plane but a “Riemann sphere” and the “real axis” is not a line but a circle
on the Riemann sphere going through its “north pole” where −∞ and +∞ coincide [3,8,9,176]. The
“imaginary axis” is now another circle on the Riemann sphere, also through its north pole, but intersects
the real axis orthogonally.

7. Wider Definitions

The “classical” sampling theorem (20) states that û T ◦ ⊥⊥⊥T = id , i.e., regularization reverses
discretization. Vice versa, the “forward” sampling theorem (18) states that ⊥⊥⊥T ◦ û T = id , i.e.,
discretization reverses regularization. Both together yield (1). So, discrete functions can always
be applied to smooth functions and smooth functions can always be applied to discrete functions. This
discreteness-smoothness duality is in fact the foundation of generalized functions theory. It can
be used as follows.

Definition 6 (Periodization and Discretization, revisited). For any g ∈ S ′ and real T > 0, we define

444T g := IIIT ∗ ( u T g) (25)

⊥⊥⊥T g := IIIT · ( û T g) (26)

periodization and discretization, respectively.

The underlying idea in Definition 6 is depicted in Figures A3 and A4 below.

Remark 1 (Constants). This definition, in contrast to Definition 1, allows us to periodize already periodic
functions and to discretize already discrete functions, e.g., 444T1 = 1 and ⊥⊥⊥T δ = δ hold for any T > 0.

Remark 2 (Special Functions). One may briefly denote time-limited, band-limited, periodic or discrete
functions as u T f = f , û T α = α, 444T p = p, ⊥⊥⊥T d = d, for some T > 0, respectively.

Convolution-Multiplication Associativity

Another beautiful detail shall be mentioned. Following Ellis [181], Novelli and Thibon [182], we
call it “cross-associativity” between multiplication and convolution in S ′. We believe this property is
not known in the literature so far. It relies on Lemma 1.

Corollary 1 (Cross-Associativity). There are a, b, c ∈ S ′ such that

a ∗ (b · c) = (a ∗ b) · c (27)

a · (b ∗ c) = (a · b) ∗ c (28)

in the tempered distributions sense.
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Proof. Equation (27) is (21), a = IIIB, b = ΩB and c is periodic, (28) is then its Fourier transform where
c is discrete. Vice versa, (28) is (22), a = ΩB, b = IIIB and c is finite, (27) is now its Fourier transform
where c is entire.

Corollary 1 may also be true on other tempered distributions, Schwartz functions a, b, c ∈ S ,
for example. However, most generally, multiplication or convolution products are not associative
in S ′, not in a mixture of ∗ and · and not even among multiplication products alone, see e.g., [8].
Nevertheless, the idea that periodic functions, discrete functions as well as time and band-limited
functions might exactly be those which satisfy these equations in a widest sense in S ′ is fascinating and
worth being further investigated.

8. Discussion and Outlook

Woodward concludes in [151], p. 120, that “the effective ‘area of ambiguity’ in the time-frequency
domain [...] is equal to unity”. More precisely, he expresses this in two equations

“(time resolution-constant) × (frequency span) = 1” and

“(frequency resolution-constant) × (time span) = 1”.

They correspond to TB = 1 in this study, i.e., (1/B)× B = 1 and (1/T)× T = 1, respectively.
This relation between sampling rate T ≡ 1/B and bandwidth B is known as the “classical sampling
theorem” and it is linked herewith to Woodwards’s effective “area of ambiguity” which equals 1.
The “Classical Sampling Theorem” in S ′ is summarized in Table A3, Rules 25–28. One may note,
it does not matter whether T is B or B is T, both variables are fully equivalent. They are reciprocal
to one another. Furthermore, (1/T)× T = 1 is nothing else than the definition of “frequency”. It
means “frequency” is “reverse time” and, trivially, “reverse time” × “time” equals unity. For a deeper
understanding one may study Max Born’s theory of reciprocity [183,184].

The theorems derived in this study are in fact part of a larger symbolic calculation scheme,
summarized in Appendix A. One may have noticed, four truncation methods { u , û } and { ∩ , ∩̂ } are
introduced but only { u , û } have been used intensively. According to [85], Lemma 5, it is possible to
replace û by ∩ and ∩̂ by u in many cases—done e.g., in Appendix C. We will have a closer look at
this phenomenon in a later study.
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Appendix A. Symbolic Calculation Rules

The following tables summarize the results in this study, they complement previously found
rules, cf. Tables 1–3 in [84]. All rules below are given pairwise, i.e., two consecutive lines are Fourier
transforms of one another where TB = 1. Hence, B = 1/T and T = 1/B, respectively.

The unitary function 1T, see Rules 01, 03 and 07, is a generalization of the characteristic function
(cf. [57], p. 47, [53], p. 3, [105], p. 570) on the interval [−T/2,+T/2] and δB is its Fourier transform.
At the same scale, δT and 1T are two different pixel representations (Figure A6, left and right).
Tables A1 and A2 are both generalized in Table A3. The properties “finite” and “entire” are inherited
from unitary functions and “discrete” and “periodic” are inherited from Dirac combs.
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Table A1. Unitary Functions—Synthesis & Analysis.

No Rule Remark Operation Result

01 1T = u T 1 Synthesis of 1T = Analysis of 1 Time-Truncation of 1 finite

02 δB = û B δ Synthesis of δB = Analysis of δ Band-Truncation of δ entire

03 1 = 444T 1T Analysis of 1T = Synthesis of 1 Periodization of 1T periodic

04 δ = ⊥⊥⊥B δB Analysis of δB = Synthesis of δ Discretization of δB discrete

05 444T( u T 1) = 1 Rule 01 + Rule 03 Restoration of 1 periodic

06 ⊥⊥⊥B( û B δ) = δ Rule 02 + Rule 04 Restoration of δ discrete

07 u T (444T 1T) = 1T Rule 03 + Rule 01 Restoration of 1T finite

08 û B (⊥⊥⊥B δB) = δB Rule 04 + Rule 02 Restoration of δB entire

Table A2. Dirac Comb—Synthesis & Analysis.

No Rule Remark Operation Result

11 IIIT = 444T δ Syn. of IIIB = Analysis of δ Periodization of δ periodic + discrete

12 IIIB = ⊥⊥⊥B 1 Syn. of IIIT = Analysis of 1 Discretization of 1 discrete + periodic

13 δ = u T IIIT Analysis of IIIB = Syn. of δ Time-Truncation of IIIT finite + discrete

14 1 = û B IIIB Analysis of IIIT = Syn. of 1 Band-Truncation of IIIB entire + periodic

15 u T (444T δ) = δ Rule 11 + Rule 13 Restoration of δ finite + discrete

16 û B (⊥⊥⊥B 1) = 1 Rule 12 + Rule 14 Restoration of 1 entire + periodic

17 444T( u T IIIT) = IIIT Rule 13 + Rule 11 Restoration of IIIT periodic + discrete

18 ⊥⊥⊥B ( û B IIIB) = IIIB Rule 14 + Rule 12 Restoration of IIIB discrete + periodic

Table A3. Discrete/Periodic and Time/Band-limited Functions—Synthesis & Analysis.

No Rule Remark Operation Result

21 p = 444T f Synthesis of p = Analysis of f Periodization of f periodic

22 d = ⊥⊥⊥B α Synthesis of d = Analysis of α Discretization of α discrete

23 f = u T p Analysis of p = Synthesis of f Time-Truncation of p finite

24 α = û B d Analysis of d = Synthesis of α Band-Truncation of d entire

25 444T( u T p) = p Rule 21 + Rule 23 Restoration of p periodic

26 ⊥⊥⊥B( û B d) = d Rule 22 + Rule 24 Restoration of d discrete

27 u T (444T f ) = f Rule 23 + Rule 21 Restoration of f finite

28 û B (⊥⊥⊥B α) = α Classical Sampling Theorem Restoration of α entire

The classical Whittaker-Kotel’nikov-Shannon sampling theorem arises in Rule 28 as a particular
case of the “sampling theorem” on tempered distributions. Rule 28 is regularization, its reversal is
discretization: Rule 26. Equivalently, Rule 27 is localization, its reversal is periodization: Rule 25.

Appendix B. The Condition u T f = f

In this appendix, we have a closer look at the condition u T f = f which ensures that the
Whittaker-Kotel’nikov-Shannon sampling theorem holds [97], also in the tempered distributions
sense. It can be found in [97,105] and [167], p. 508, for example, which is the conventional functions
case and [13], p. 22, [23], p. 77 and [101], Lemma 2, is the distributional case. However, the condition
u T f = f is just one in four such function properties (Remark 2). All four are described below.
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Appendix B.1. Time-Limited Functions

The property u T f = f means that ΩT · f and f are the same function. The support of f is
fully contained in [−(T − ε)/2,+(T − ε)/2] where ε > 0 is arbitrarily small (cf. [167], p. 506, where
d > 0, [54], p. 18 where λ > 0, [45], p. 24 where ε > 0). Functions f satisfying u T f = f are called
“time-limited” in electrical engineering and u T is truncation with respect to T, centered around the
origin. Truncation fails if both ε = 0 and f 6∈ OM, i.e., if Lemma 1 is ignored, due to undetermined
interval boundaries after truncation.

Figure A1 shows the example of ΩT (blue) multiplied by III 1
2

(gray) where T = 9/2 and ε = 1/2.
A special case is u T δ = δ, for any T > 0, hence, δ is “universally” time-limited.

Finitization

−tmax/2 0 +tmax/2

ε ε

T

Support of f

Figure A1. Finitization of a tempered distribution.

Appendix B.2. Band-Limited Functions

The property û T f = f , where TB = 1, means that u B f̂ = f̂ . Hence, ΩB · f̂ and f̂ are the
same function. This is true due to the reciprocity between time and frequency domain (Lemma 3).
The support of F f is fully contained in [−(B− ε)/2,+(B− ε)/2] where ε > 0 is arbitrarily small.
Functions f satisfying û T f = f are called “Paley-Wiener functions” or “band-limited” and u B is
band-truncation with respect to B, centered around the origin. The difference ε = B− σmax (or the
quotient B/σmax > 1) is called “oversampling” [54,163].

The case ε = 0 , sometimes called “Nyquist sampling” [44,49,163], fails if F f 6∈ OM, i.e., if
Lemma 1 is ignored. Figure A2 shows the example of ΩB (blue) multiplied by III 1

2
(gray) where

B = 9/2 and ε = 1/2. A special case is û T 1 = 1, for any T > 0, hence, 1 is “universally” band-limited.

Entirization

−σmax/2 0 +σmax/2

ε ε

B

Support of F f

Figure A2. Entirization of a tempered distribution via finitization of its Fourier transform.

Appendix B.3. Periodic Functions

The property 444T f = f , where 444T is understood in the sense of Definition 6, means that f is
periodic with period T > 0. However, f may additionally be periodic with respect to L if T = L k for
some integer k > 0 (Figure A3).



Mathematics 2020, 8, 619 14 of 21

Periodization

−tmax/2 0 +tmax/2

ε ε

T

Support of f

Figure A3. Periodization of a tempered distribution.

Here, 444T III 1
2
= III 1

2
is periodic with period T = 1

2 k, where k = 9, and L = 1
2 is the lowest period

duration. A special case is 444T1 = 1, for any T > 0, hence, 1 is “universally” periodic.

Appendix B.4. Discrete Functions

The property ⊥⊥⊥T f = f , where ⊥⊥⊥T is understood in the sense of Definition 6, means that f
is discrete at integer multiplies of T > 0. It is connected to its bandwidth B > 0 via TB = 1.
Figures A3 and A4 are the same, except for the re-interpretation of f as F f and of T as B. A special
case is ⊥⊥⊥T δ = δ, for any T > 0, hence, δ is “universally” discrete.

Discretization

−σmax/2 0 +σmax/2

ε ε

B

Support of F f

Figure A4. Discretization of a tempered distribution via periodization of its Fourier transform.

Appendix C. Image Scale

The “scale” in digital images is an inherent property known as the “pixel size” [115]. In Figure A5
it is T = [30, 30] cm and in Figure A6 it is T = [10, 10] m.

Figure A5. Radar image, scale T = [30, 30] cm, “Dirac” shaped pixels.

Images can be displayed in Dirac, Sinc or Rect representation (Figure A6). The respective pixel
representation does not change their “scale”.
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⊥⊥⊥T

û T

⊥⊥⊥T

∩ T

Figure A6. Radar image, scale T = [10, 10] m, “Sinc”, “Dirac” and “Rect” shaped pixels.

In generalized functions theory, rect is replaced by a regularized rect function, denoted Ω, and
sinc is replaced by a localized sinc function, denoted Ω̂. The regularizations sinc∗ and rect∗ become û
and ∩ , respectively [85].
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