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Abstract: In this paper, we prove the almost sure convergences for the maximum and minimum of
nonstationary and stationary standardized normal vector sequences under some suitable conditions.
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1. Introduction

The extreme phenomena in nature and human society can be explored by the classical extreme
value theory [1–3]. Almost sure convergence shows a nice behavior of the various ways of
convergences [4–6]. Brosamler and Schatte firstly put forward the almost sure central limit theorem
(ASCLT) on partial sums for independent identically distributed (i.i.d.) random variables [7,8]. Let

X1, X2, . . . be i.i.d. random variables with E(Xn) = 0, Var(Xn) = 1 and Tn =
n
∑

k=1
Xk. Under some

regularity conditions, we have

lim
n→∞

1
log n

n

∑
k=1

1
k

I
( Tk√

k
≤ x

)
= Φ(x) a.s., (1)

for any x, where I denote the indicator function and Φ(x) stands for the standard normal distribution
function. Later, Ibragimov and Lifshits extend Equation (1) to the functional form [9]. Cheng et al. [10],
Fahrnar and Stadtmüller [6] and Berkes and Csáki [11] respectively consider the ASCLT on maximum
of i.i.d random variables. Csáki and Gondigdanzan investigate the ASCLT for the maximum of
a stationary weakly dependent Gaussian sequences [12]. Chen and Lin extend the ASCLT to
nonstationary Gaussian sequences [13]. Chen et al. provide an ASCLT for the maxima of multivariate
stationary Gaussian sequences under some mild conditions [14]. Zhao et al. explore the ASCLT for
the maxima and sum of a nonstationary Gaussian vector sequence [15]. Weng et al. put forward an
ASCLT for the maxima and minima of a strongly dependent stationary Gaussian vector sequence [16].

The purpose of this paper is to extend the result of the ASCLT for the maximum and minimum
to multivariate general normal vector sequences, which include the two cases of nonstationary and
stationary, under some suitable conditions. Throughout this paper, {X1, X2, . . .} is a standardized
nonstationary Gaussian sequence of d-dimensional random vectors (i.e., each component of the random
vectors has a zero mean and a unit standard deviation). The covariance matrix is denoted by

rij(p) = Cov
(
Xi(p), Xj(p)

)
, rij(p, q) = Cov

(
Xi(p), Xj(q)

)
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such that |rij(p)| ≤ ρ|i−j|(p) and |rij(p, q)| ≤ ρ|i−j|(p, q) where

sup
1≤p≤d

ρn(p) < 1, sup
1≤p 6=q≤d

ρn(p, q) < 1

for n ≥ 1.
We set

Mk,n =
(

Mk,n(1), . . . , Mk,n(d)
)
, Mk,n(p) = max

k+1≤i≤n
Xi(p),

especially
Mn = M0,n, Mn(p) = M0,n(p)

for p = 1, . . . , d. The level un =
(
un(1), . . . , un(d)

)
and vn =

(
vn(1), . . . , vn(d)

)
are two real vectors.

The expression un > vn implies un(p) > vn(p) for all p = 1, . . . , d and a � b stands for a = O(b).
Finally, we write an = (2 log n)

1
2 and bn = an − 1

2 a−1
n log(4π log n).

2. Results

Theorem 1. Let {Xn}∞
n=1 be a standardized nonstationary normal d-dimensional vector sequence satisfying

(a) δ = max
p 6=q

(
sup
n≥1

(
|rn(p)|, |rn(p, q)|

))
< 1;

(b) there exists γ ≥ 2(1+δ)
1−δ , such that

1
n2

d

∑
p=1

∑
1≤i<j≤n

|rij(p)| exp
(
γ|rij(p)| log(j− i)

)
� (log log n)−(1+ε), (2)

1
n2

d

∑
1≤p 6=q≤n

∑
1≤i<j≤n

|rij(p, q)| exp
(
γ|rij(p, q)| log(j− i)

)
� (log log n)−(1+ε) (3)

where ε > 0.
Suppose that the levels un(p) and vn(p) satisfy n (1−Φ(un(p))) → τp, nΦ(vn(p)) → ηp for 0 ≤

τp, ηp < ∞ and p = 1, 2, . . . , d, then

lim
n→∞

1
log n

n

∑
k=1

1
k

I(vk < mk ≤ Mk ≤ uk) =
d

∏
p=1

exp(−(τp + ηp)) a.s. (4)

Especially, let un(p) = a−1
n xp + bn and vn(p) = −a−1

n yp − bn, where xp and yp are real numbers for
p = 1, 2, . . . , d, then

lim
n→∞

1
log n

n

∑
k=1

1
k

I(vk < mk ≤ Mk ≤ uk) =
d

∏
p=1

exp
(
− (e−xp + e−yp)

)
a.s. (5)

Corollary 1. Under the conditions of Theorem 1, if the levels un(p) satisfies n (1−Φ(un(p))) → τp as
n→ ∞, then

lim
n→∞

1
log n

n

∑
k=1

1
k

I (|Mk| ≤ uk) =
d

∏
p=1

exp(−2τp). (6)

Especially, the level un(p) satisfies un(p) = a−1
n xp + bn for p = 1, 2, . . . , d, then

lim
n→∞

1
log n

n

∑
k=1

1
k

I (|Mk| ≤ uk) =
d

∏
p=1

exp(−2e−xp). (7)
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Theorem 2. Let {Xn}∞
n=1 be a standardized nonstationary normal d-dimensional vector sequence satisfying

ρn(p) log n(log log n)−(1+ε) = O(1), ρn(p, q) log n(log log n)−(1+ε) = O(1). (8)

If n (1−Φ(un(p))) → τp and nΦ (vn(p)) → ηp as n → ∞ for 0 ≤ τp, ηp < ∞ and ε > 0, then (4)
holds.

Especially, set un(p) = a−1
n xp + bn and vn(p) = −a−1

n yp − bn, where xp and yp are real numbers for
p = 1, 2, . . . , d, then (5) holds.

Theorem 3. Let Z1, Z2, . . . be a standardized stationary normal sequence of d-dimensional random
vectors satisfying

(a) rn(p, q)→ 0 and rn(p)→ 0 for 1 ≤ p 6= q ≤ d as n→ ∞,
(b) there exists γ ≥ 2(1+δ)

1−δ with δ = max
p 6=q

(
sup
n≥1

(
|rn(p)|, |rn(p, q)|

))
< 1, such that

1
n

d

∑
p=1

n

∑
k=1

∣∣rk(p)
∣∣ log k exp

(
γ|rk(p)| log k

)
� (log log n)−(1+ε), (9)

1
n ∑

1≤p 6=q≤d

n

∑
k=1

∣∣rk(p, q)
∣∣ log k exp

(
γ|rk(p, q)| log k

)
� (log log n)−(1+ε). (10)

If n (1−Φ(un(p))) → τp and nΦ(vn(p)) → ηp as n → ∞ for 0 ≤ τp, ηp < ∞ and ε > 0, then (4)
holds.

Especially, set un(p) = a−1
n xp + bn and vn(p) = −a−1

n yp − bn, where xp and yp are real numbers for
p = 1, . . . , d, then (5) holds.

Theorem 4. Let Z1, Z2, . . . be a standardized stationary normal sequence d-dimensional random vectors
satisfying

rn(p) log n(log log n)1+ε = O(1), rn(p, q) log n(log log n)1+ε = O(1), 1 ≤ p 6= q ≤ d. (11)

If n (1−Φ(un(p))) → τp and nΦ (vn(p)) → ηp as n → ∞ for 0 ≤ τp, ηp < ∞ and ε > 0, then
(4) holds.

Especially, set un(p) = a−1
n xp + bn and vn(p) = −a−1

n yp − bn, where xp and yp are real numbers for
p = 1, . . . , d, then (5) holds.

Notice: We replace the nonstationary sequence {Xn}∞
n=1 with the stationary sequence {Zn}∞

n=1 in
Theorem 3 and 4. The symbols of {Xn}∞

n=1 are used to denote the random vector sequence {Zn}∞
n=1 in

the two theorems without ambiguities.

3. Proofs of the Main Results

In the section, we present and prove some lemmas which are useful in the proofs of the
main results.

Lemma 1. Let {ξn}∞
n=1 and {ηn}∞

n=1 be standardized nonstationary normal sequences of d-dimensional
random vectors with r0

ij(p) = Cov
(
ξi(p), ξ j(p)

)
, r0

ij(p, q) = Cov
(
ξi(p), ξ j(q)

)
and r∗ij(p) =

Cov
(
ηi(p), ηj(p)

)
, r∗ij(p, q) = Cov

(
ηi(p), ηj(q)

)
. Denote ρij(p) = max

(
|r0

ij(p)|, |r∗ij(p)|
)
, ρij(p, q) =
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max
(
|r0

ij(p, q)|, |r∗ij(p, q)|
)

and let {un}, {vn} be real vectors. If max
p 6=q

sup
n≥1

(
|rn(p)|, |rn(p, q)|

)
= δ < 1 and

ωni(p) = min
(
|uni(p)|, |vni(p)|), then

∣∣∣P( n⋂
j=1

(−vnj < ξ j ≤ unj)
)
− P

( n⋂
j=1

(−vnj < ηj ≤ unj)
)∣∣∣

≤ K1

d

∑
p=1

∑
1≤i<j≤n

∣∣r0
ij(p)− r∗ij(p)

∣∣ exp
(
−

ω2
ni(p) + ω2

nj(p)

2
(
1 + ρij(p)

) )

+K2 ∑
1≤p 6=q≤d

∑
1≤i<j≤n

∣∣r0
ij(p, q)− r∗ij(p, q)

∣∣ exp
(
−

ω2
ni(p) + ω2

nj(q)

2
(
1 + ρij(p, q)

) )
with the positive constants K1, K2 which depend on δ.

Proof. It follows from Theorem 11.1.2 in Leadbetter et al. [17].

Lemma 2. Let {Xn}∞
n=1 be a standardized nonstationary normal d-dimensional vector sequence satisfying the

conditions (a) and (b) of Theorem 1, then

∑
1≤p 6=q≤d

∑
1≤i<j≤n

∣∣rij(p, q)
∣∣ exp

(
−

ω2
ni(p) + ω2

nj(q)

2(1 + rij(p, q))

)
� (log log n)−(1+ε), (12)

d

∑
p=1

∑
1≤i<j≤n

∣∣rij(p)
∣∣ exp

(
−

ω2
ni(p) + ω2

nj(p)

2(1 + rij(p))

)
� (log log n)−(1+ε). (13)

Proof. Firstly, we peove Equation (12). This sum can be divided into two terms T1 and T2,

∑
1≤p 6=q≤d

∑
1≤i<j≤n

∣∣rij(p, q)
∣∣ exp

(
−

ω2
ni(p) + ω2

nj(q)

2(1 + |rij(p, q)|)

)

= ∑
1≤p 6=q≤d

∑
1≤i<j≤n

j−i≤n
2
γ

∣∣rij(p, q)
∣∣ exp

(
−

ω2
ni(p) + ω2

nj(q)

2(1 + |rij(p, q)|)

)

+ ∑
1≤p 6=q≤d

∑
1≤i<j≤n

j−i>n
2
γ

∣∣rij(p, q)
∣∣ exp

(
−

ω2
ni(p) + ω2

nj(q)

2(1 + |rij(p, q)|)

)

, T1 + T2.

Since exp
( u2

n(p)
2
)
∼
√

log n
n , we have ωni(p) = min

(
|uni(p)|, |vni(p)|) ∼

√
log n
n . Let β = 2

γ , that is

0 < β < 1−δ
1+δ , then the first term T1

T1 ≤ ∑
1≤p 6=q≤d

∑
1≤i<j≤n
j−i≤nβ

∣∣rij(p, q)
∣∣ exp

(
−

ω2
ni(p) + ω2

nj(q)

2(1 + δ)

)

� n1+β
(
n−2 log n

) 1
1+δ

= n1+β− 2
1+δ (log n)

1
1+δ .

As 1 + β− 2
1+δ < 0, we get

T1 � (log log n)−(1+ε). (14)
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Note that j− i > nβ, we have log n < log(j− i)/β. Then, we consider the second part T2,

T2 ≤ ∑
1≤p 6=q≤d

∑
1≤i<j≤n
j−i>nβ

∣∣rij(p, q)
∣∣ exp

(
−

ω2
ni(p) + ω2

nj(q)

2(1 + |rij(p, q)|)

)

� ∑
1≤p 6=q≤d

∑
1≤i<j≤n
j−i>nβ

∣∣rij(p, q)
∣∣(n−2 log n

) 1
1+|rij(p,q)|

= n−2 ∑
1≤p 6=q≤d

∑
1≤i<j≤n
j−i>nβ

∣∣rij(p, q)
∣∣n 2|rij(p,q)|

1+|rij(p,q)| log n
1

1+|rij(p,q)|

≤ n−2 ∑
1≤p 6=q≤d

∑
1≤i<j≤n
j−i>nβ

∣∣rij(p, q)
∣∣(j− i)

2|rij(p,q)|
β log(j− i)

≤ n−2 ∑
1≤p 6=q≤d

∑
1≤i<j≤n
j−i>nβ

∣∣rij(p, q)
∣∣ exp

(
γ|rij(p, q)| log(j− i)

)
log(j− i).

By the condition (a) of Theorem 1, we get

T2 � (log log n)−(1+ε). (15)

Combining Equation (14) and Equation (15) induces that Equation (12) holds. Equation (13) can
be proved in the similar way.

Lemma 3. Let {Xn}∞
n=1 be a standardized nonstationary normal sequence of d-dimensional random vectors

satisfying (a) of Theorem 1 and
(c) there exists γ ≥ 2(1+δ)

1−δ , as n→ ∞

1
n2

d

∑
p=1

∑
1≤i<j≤n

|rij(p)| exp
(
γ|rij(p)| log(j− i)

)
→ 0, (16)

1
n2

d

∑
1≤p 6=q≤n

∑
1≤i<j≤n

|rij(p, q)| exp
(
γ|rij(p, q)| log(j− i)

)
→ 0. (17)

We have
d

∑
p=1

∑
1≤i<j≤n

|rij(p)| exp
(
−

ω2
ni(p) + ω2

nj(p)

2(1 + |rij(p)|)

)
n→∞−→ 0, (18)

d

∑
1≤p 6=q≤n

∑
1≤i<j≤n

|rij(p, q)| exp
(
−

ω2
ni(p) + ω2

nj(q)

2(1 + |rij(p, q))|

)
n→∞−→ 0. (19)

Proof. The proof of Lemma 3 is similar to Lemma 2.

Lemma 4. Suppose that {Xn}∞
n=1 is a standardized nonstationary normal sequence of d-dimensional random

vectors satisfying the conditions (a) and (b) of Theorem 1.
Let un(p) and vn(p) be such that n (1−Φ(un(p))) → τp and nΦ(vn(p)) → ηp as n → ∞ for all

p = 1, 2, . . . , d, then

P(vk < mk ≤ Mk ≤ uk)→
d

∏
p=1

exp(−(τp + ηp)). (20)
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Especially, let un(p) = 1
an

xp + bn and vn(p) = − 1
an

yp − bn with xp, yp ∈ R for all p = 1, 2, . . . , d, then

P(vk < mk ≤ Mk ≤ uk)→
d

∏
p=1

exp(−(e−xp + e−yp)). (21)

Proof. We consider the joint distribution of the maximum Mn and the minimum mn of {Xn}∞
n=1∣∣∣P(vn < mn ≤ Mn ≤ un

)
−

d

∏
p=1

exp
(
−(τp + ηp)

)∣∣∣
≤
∣∣∣P(vn < mn ≤ Mn ≤ un

)
−

d

∏
p=1

(
Φ(up)−Φ(vp)

)n
∣∣∣

+
∣∣∣ d

∏
p=1

(
Φ(up)−Φ(vp)

)n −
d

∏
p=1

exp
(
−(τp + ηp)

)∣∣∣
∆
= L1 + L2.

By Lemmas 1 and 3, we have

L1 =
∣∣∣P(vn < mn ≤ Mn ≤ un

)
−

d

∏
p=1

(
Φ(up)−Φ(vp)

)n
∣∣∣

≤ K1

d

∑
p=1

∑
1≤i<j≤n

∣∣r0
ij(p)− r∗ij(p)

∣∣ exp
(
−

ω2
ni(p) + ω2

nj(p)

2(1 + ρij(p))
)

+ K2 ∑
1≤p 6=q≤d

∑
1≤i<j≤n

∣∣r0
ij(p, q)− r∗ij(p, q)

∣∣ exp
(
−

ω2
ni(p) + ω2

nj(q)

2(1 + ρij(p, q))
)

n→∞−→ 0. (22)

Based on the definition of un and vn, we get

L2 =

∣∣∣∣ d

∏
p=1

(
Φ(up)−Φ(vp)

)n −
d

∏
p=1

exp
(
−(τp + ηp)

)∣∣∣∣
=

∣∣∣∣ d

∏
p=1

[
1−

(
1−Φ(up)

)
−Φ(vp)

]n −
d

∏
p=1

exp(−(τp + ηp))

∣∣∣∣
=

∣∣∣∣ d

∏
p=1

(
1−

ηp

n
−

τp

n
+ o( 1

n )
)n
−

d

∏
p=1

exp
(
−(τp + ηp)

)∣∣∣∣
n→∞−→

∣∣∣∣ d

∏
p=1

exp
(
−(τp + ηp)

)
−

d

∏
p=1

exp
(
−(τp + ηp)

)∣∣∣∣
= 0. (23)

Combining Equation (22) and Equation (23) induces that Equation (20) hold. Equation (21) is a
special case of Equation (20). Then Lemma 4 holds.

Lemma 5. Let {Xn}∞
n=1 be a standardized nonstationary normal d-dimensional vector sequence satisfying the

conditions (a) and (b) of Theorem 1, then

E
∣∣∣I{Mn ≤ un} − I{Mk,n ≤ un}

∣∣∣� k
n
+ (log log n)−(1+ε), (24)
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E
∣∣∣I{mn > vn} − I{mk,n > vn}

∣∣∣� k
n
+ (log log n)−(1+ε). (25)

Proof. We firstly consider Equation (24),

E
∣∣∣I{Mn ≤ un} − I{Mk,n ≤ un}

∣∣∣ = E
∣∣∣I(X1 ≤ un1, . . . , Xn ≤ unn)− I(Xk+1 ≤ un(k+1), . . . , Xn ≤ unn)

∣∣∣
= P(Xk+1 ≤ un(k+1), . . . , Xn ≤ unn)− P(X1 ≤ un1, . . . , Xn ≤ unn)

≤
∣∣∣P(Xk+1 ≤ un(k+1), . . . , Xn ≤ unn)−

d

∏
p=1

n

∏
j=k+1

Φ
(
unj(p)

)∣∣∣
+
∣∣∣P(X1 ≤ un1, . . . , Xn ≤ unn)−

d

∏
p=1

n

∏
j=1

Φ
(
unj(p)

)∣∣∣
+
∣∣∣ d

∏
p=1

n

∏
j=k+1

Φ
(
unj(p)

)
−

d

∏
p=1

n

∏
j=1

Φ
(
unj(p)

)∣∣∣
, A + B + C.

By Theorem 4.2.1 in Leadbetter et al. [17] and Lemma 2, we obtain

A� (log log n)−(1+ε), (26)

B� (log log n)−(1+ε). (27)

As λn(p) = min
1≤i≤n

uni(p) ≥ c(log n)
1
2 , then uni(p) ≥ c(log n)

1
2 for p = 1, 2, . . . , d. Define un by

1− Φ(un) = 1
n , then we have uni(p) ≥ un for some c as p = 1, 2, . . . , d. The third part C can be

controled as below,

C =
n

∏
j=k+1

d

∏
p=1

Φ
(
unj(p)

)
−

n

∏
j=1

d

∏
p=1

Φ
(
unj(p)

)
≤ 1−

k

∏
j=1

d

∏
p=1

Φ
(
unj(p)

)
≤

d

∑
p=1

(
1−

k

∏
j=1

Φ
(
unj(p)

))
≤

d

∑
p=1

(
1−Φk(un)

)
≤

d

∑
p=1

(
1−

(
1− 1

n
)k
)

� k
n

. (28)

Using Equations (26)–(28), Equation (24) can be proved.
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Next, we prove Equation (25). As mk,n = min
k+1≤i≤n

Xi, then −mk,n = max
k+1≤i≤n

(−Xi).

E
∣∣∣I{mn > vn} − I{mk,n > vn}

∣∣∣
= P(mk,n > vn)− P(mn > vn)

= P(−mk,n < −vn)− P(−mn < −vn)

≤
∣∣∣P(−mk,n < −vn)−

d

∏
p=1

Φn−k(−vn(p))
)∣∣∣

+
∣∣∣P(−mn < −vn)−

d

∏
p=1

Φn(−vn(p)))
∣∣∣

+
∣∣∣ d

∏
p=1

Φn−k(−vn(p))
)
−

d

∏
p=1

Φn(−vn(p))
)∣∣∣

, A1 + A2 + A3.

Since
xn−k − xn ≤ k

n
, 0 ≤ x ≤ 1,

we have
A3 ≤

k
n

. (29)

By Theorem 4.2.1 in Leadbetter et al. [17] and Lemma 2, we get

Ak � (log log n)−(1+ε), k = 1, 2. (30)

Using Equations (29) and (30), Equation (25) can be obtained. Then Lemma 5 holds.

Lemma 6. Let {Xn}∞
n=1 be a standardized nonstationary normal d-dimensional vector sequence satisfying the

conditions (a) and (b) of Theorem 1, then∣∣∣∣Cov
(

I{Mk ≤ uk, mk > vk}, I{Mk,n ≤ un, mk,n > vn}
)∣∣∣∣� (log log n)−(1+ε). (31)

Proof. By Lemmas 1 and 2, we have∣∣∣∣Cov
(

I(Mk ≤ uk, mk > vk), I(Mk,n ≤ un, mk,n > vn)
)∣∣∣∣

= P
(
vk < mk ≤ Mk ≤ uk, vn < mk,n ≤ Mk,n ≤ un

)
−P
(
vk < mk ≤ Mk ≤ uk

)
P
(
vn < mk,n ≤ Mk,n ≤ un

)
�

d

∑
p=1

k

∑
i=1

n

∑
j=k+1

∣∣rij(p)
∣∣ exp

(
− ẃ2(p)

1 + rij(p)

)
+ ∑

1≤p 6=q≤d

k

∑
i=1

n

∑
j=k+1

∣∣rij(p, q)
∣∣ exp

(
− ẃ2(p) + ẃ2(q)

2(1 + rij(p, q))

)
� (log log n)−(1+ε),

where ẃ(p) = min
(
|vk(p)|, |vn(p)|, |uk(p)|, |un(p)|

)
, p = 1, 2, . . . , d.
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Lemma 7. Let Υ1, Υ2 . . . be a sequence of bounded random variables. If

Var
( n

∑
k=1

1
k

Υk
)
� (log n)2(log log n)−(1+ε), (32)

for some ε > 0, then

lim
n→∞

1
log n

n

∑
k=1

1
k
(Υk − EΥk) = 0 a.s. (33)

Proof. The proof can be found in Lemma 3.1 [18].

Proof Theorem 1. Let χk = I(vk < mk ≤ Mk ≤ uk), then

Var
( n

∑
k=1

1
k

χk

)
=

n

∑
k=1

1
k2 Var(χk) + 2 ∑

1≤k<l≤n

cov(χk, χl)

kl

≤
n

∑
k=1

1
k2 + 2 ∑

1≤k<l≤n

cov(χk, χl)

kl

, A + B.

Note that for k < l, the absolute value of the numerator of the second term B can be expressed
as below, ∣∣∣cov(χk, χl)

∣∣∣ =
∣∣∣cov

(
I(vk < mk ≤ Mk ≤ uk), I(vl < ml ≤ Ml ≤ ul)

)∣∣∣
≤

∣∣∣cov
(

I(vk < mk ≤ Mk ≤ uk), I(vl < ml ≤ Ml ≤ ul)

−I(vl < ml ≤ Mk,l ≤ ul)
)∣∣∣+ ∣∣∣cov

(
I(vk < mk ≤ Mk ≤ uk),

I(vl < ml ≤ Mk,l ≤ ul)− I(vl < mk,l ≤ Mk,l ≤ ul)
)∣∣∣

+
∣∣∣cov

(
I(vl < ml ≤ Mk,l ≤ ul), I(vl < mk,l ≤ Mk,l ≤ ul)

)∣∣∣
, B1 + B2 + B3.

By Lemma 5, we get

B1 ≤ 2E
∣∣∣I(vl < ml ≤ Ml ≤ ul)− I(vl < ml ≤ Mk,l ≤ ul)

∣∣∣
≤ 2E

∣∣∣I(Ml ≤ ul)− I(Mk,l ≤ ul)
∣∣∣

� k
l
+ (log log n)−(1+ε), (34)

and

B2 ≤ 2E
∣∣∣I(vl < ml ≤ Mk,l ≤ ul)− I(vl < mk,l ≤ Mk,l ≤ ul)

∣∣∣
≤ 2E

∣∣∣I(ml > vl)− I(mk,l > vl)
∣∣∣

� k
l
+ (log log n)−(1+ε). (35)

By Lemma 6, we obtain

B3 ≤ (log log l)−(1+ε). (36)
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Combining Equations (34)–(36), we can estimate B,

B � ∑
1≤k<l≤n

1
kl

( k
l
+ (log log n)−(1+ε)

)
� ∑

1≤k<l≤n

1
l2 + ∑

1≤k<l≤n

1
kl
(log log n)−(1+ε)

� log n + (log n)2(log log n)−(1+ε).

Lastly, we can draw the conclusion

Var
( n

∑
k=1

1
k

χk

)
� (log n)2(log log n)−(1+ε).

By Lemma 7, Theorem 1 is proved.

Proof Theorem 2. If we use Equation (8) instead of the conditions (a) and (b) of Theorem 1, Lemma 2,
Lemma 3, Lemma 5 and Lemma 6 still hold. Theorem 2 can be proved.

Proof Theorem 3. Replace (a) and (b) of Theorem 1 with (a) and (b) of Theorem 3, then Equations (4)
and (5) still hold.

Proof Theorem 4. If we use Equation (11) instead of Equation (8), Theorem 4 can be completed.

4. Conclusions

The almost sure central limit theorems for the maxima and minimum of general normal vector

sequences under suitable conditions are put forward. We note that lim
n→∞

1
log n

n
∑

k=1

1
k is greater than 1 and

converges to 1 as N → ∞. The convergence rate is mainly decided by the log n and the rate is not so
fast. The extreme value theory deals with extreme phenomena which are less likely to occur, but more
harmful [1–3]. The maximum and minimum can be used to depict the extreme risk in the economy
and natural disaster (such as floods, hurricane, stock market crash, megaseism and so on), and then
their joint limiting distribution computes the probability of the controllable risk in an interval.
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