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Abstract: We study the solvability for boundary value problems to some nonlocal second-order
integro-differential equations that degenerate by a selected variable. The possibility of degeneration
in the equations under consideration means that the statements of the corresponding boundary value
problems have to change depending on the nature of the degeneration, while the nonlocality in the
equations implies that the boundary conditions will also have a nonlocal form. For the problems
under study, the paper provides conditions that ensure their well-posedness.
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1. Introduction

Let Q) be a bounded domain in the space R" with a smooth (infinitely differentiable for the
simplicity) boundary T, Q is the cylinder Q) x (0,T), 0 < T < +oo, ag(x,t), k = 0,1,2, while by(x) and
f(x,t) are given functions that defined at x € O, t€0,T], Bisan integral functional on the space
L,(Q)), defined by the equality

By = /bo(x)<p(x) dx, ¢(x) € Ly(Q).
Q

The purpose of the work is the study of the solvability of boundary value problems for the
integro-differential equations

2 aZ—k
Au + ];)ak(x,t)m(Bu) = f(x,t), 1)
n
where u = u(x,t), A = ¥ % is the Laplace operator with respect to the variables x1,x7,...,xy.
i=1 '

The features of the above equations are, firstly, that they are nonlocal, or loaded [1,2], and secondly,
that these equations allow degeneration by the selected variable ¢ (degeneration occurs if the function
ap(x, t) somehow turns to zero, and with a possible change of sign, for certain values of the variable t).

As in general for degenerate or mixed-type equations, the boundary conditions for (1) may differ
depending on the nature of the degeneration, see [3-9]. Note that in many cases, for degenerate
equations, for mixed-type equations, only the existence of generalized solutions to certain boundary
value problems is proved. In our work, the main goal will be to prove the existence and uniqueness
of regular solutions, i.e., solutions that have all generalized in the sense of S.L. Sobolev derivatives
included in the equation.
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Below, we show that for Equation (1) one, two, or three conditions can be defined for ¢, or even
conditions may not set at all, and for all such problems in the work conditions will be given that ensure
their correctness.

The nonlocal character of the Equation (1) leads to the nonlocal character of the boundary
conditions att = 0 or t = T. We will specify exactly what conditions will be discussed below.

Let by (x) be a solution of the Dirichlet problem

Abg(x) = bg(x), x€Q,

bo(x)|r = 0.

Define the functional B:

Bp= [bo(x)p(x)dx, 9(x) € La(€Y).
Q

Further define the nonlocal condition for u(x, t), which will be used in various boundary value
problems for (1):

Bu(x,t)|xeq,i=0 = 0; 2)
Bu(x,t)|xeq,i=1 = 0; ®)
Bug(x,t)|veq,t=0 = 0; 4
Buy(x,t)|xeq, =1 = 0. 5)

As mentioned above, boundary value problems for (1) will use one, two, or three nonlocal
conditions from conditions (2)—(5), or, in one case, all nonlocal conditions (2)—(5) will not be used.

The technique used is based on the regularization method, a priori estimates, and limit transition.

Some of the results presented below are new even for local (non-integro-differential) equations.

One last note. Some comments on the results obtained, their possible generalizations and
amplifications will be discussed at the end of the article.

2. Solvability of the Boundary Value Problem without Nonlocal Conditions

Consider the boundary value problem: Find a function u(x, t) that is a solution of (1) in the cylinder
Q satisfying
u(x, t)[rx (o) = 0. (6)

The solvability of this problem is established using an auxiliary result on the solvability of
degenerate ordinary differential equations.

Everywhere below, Ly, W,’, (p > 1) denotes the usual Lebesgue spaces of summable functions, or,
respectively, functions that have generalized in the sense of S.L. Sobolev derivatives of order up to and
including I, whose modulus is summed over a given domain with degree p. The definition of these
spaces can be found, for example, in the monograph [10].

We will denote by 1/, h”, W'"" and so on the first, the second, the third derivative with respect to
the unique variable respectively.

Let hy(t), h1(t) and hy(t) be given functions defined at ¢t € [0, T|, and let F; (&, %) and F>(&, 1) be
the quadratic forms

Fi(&,m) = [11(0) — hy(0)] &% — 2h5(0)&n — [h1(0) + h(0)] 72,

E(&,1) = [h(T) = h(T)] &% +2h5(T)&n + [ (T) + ho(T)] ™.
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Theorem 1. Let the conditions

he(t) € C3([0,T]), k=0,1,2, ?)
be satisfied;
ho(t) >0 attel0,T); 8
ho(0) = ho(T) =0, Fi(§n) >0, FEn) >0 at(§n) €R% )
hy(t) — %h’l(t) + %h()’(t) < —hy<0 attel0,T]; (10)
ho(t) + %hg(t) <-h <0 attel0,T; (11)
a(t) + () + SHY(0) < T <0 atte 0T, (12)

and let g(t) be a given function, such that one of the conditions

(@) g(t) € W3([0,T]), §'(0) =&'(T) = 0;

®)  g(t) € Lo([0,T]), [ho(H)] 3¢ (+) € Lo([0,T))
be satisfied. Then the differential equation

ho(t)0" + hy ()0 + hy(t)v = g(t) (13)

has a unique solution v(t) in the space W2 ([0, T]), moreover, for this solution the inclusion [ho(t)] 2y (t) €
Ly([0, T)) is fulfilled.

Proof. Let ¢ be a positive number. Consider the boundary value problem: Find a function v(t), which is
the solution on the segment [0, T| of the equation

gv”” + ho(t)"()" + hl(t)v' + ho(t)v = g(t) (14)

and such that the conditions
o' (0) = (T) =" (0) =2"(T) =0 (15)

is satisfied. The solvability of this problem for a fixed € and if the function g(#) belongs to the space
L,([0, T]) is not difficult to establish using the continuation method for parameter [11] and the first a

priori estimate
/U“Z dt+/h0 o2 dt+/ dt<l<1/g (16)

(the constant Kj in (16) is defined by the functions ki (t), k = 0,1,2, only), which is true for solutions of
boundary value problem (13), (14) if conditions (7)—-(10) are fulfilled. We show that for solutions v(t)
of this problem, the a priori estimates are valid, which will allow us to perform the limit transition
procedure for the € parameter (with the choice of a convergent subsequence) and to prove the existence
of the required solution of Equation (13).

Multiply Equation (13) by the function v”(t) and integrate over the segment [0, T]. After
integration in parts we get the equality

T: T T T T
s/v”’z(t) dt + /ho(t)v”z /[ )+ h’ ] /h Vo' () di — /g’(t)v’(t) dt
0 0 0 0 0
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From this, using the conditions of the theorem, first a priori estimate (16), and Young’s inequality,
it is easy to deduce the second a priori estimate for solutions v(t) of boundary value problem (14), (15)

T T T
e [o"2(t)dt + [ ho(H)o(t)dt + [ () dt < Ko (17)
[ s |

with a constant Ky, defined by the functions i (t), k = 0,1,2, and g(¢) only.
On the next step multiply Equation (13) by the function —v"”/(t) and integrate over the segment
[0, T]. After the integration in parts we obtain the equality

T T T
e/v””z(t) dt+/h0 Yo" (1) dt / { )+ h’ )+;hg(t)] "2 dt+
0 0 0

T
+%F1 (0(0),2"(0)) + %Fz (o(T),0"(1) = - [ & (2" (1 e+
0

T T
n / 1Y (40 (£)0" (£) dt +2 b/'hg(t)v’(t)v”(t) dt + 0/ 1Y (o ()0 (1) dt—

3 [(0) ~ (0] (0) — 2 [Hh(T) ~In(T)] (7).

Taking into account conditions (7)-(12) of the theorem, estimates (16) and (17), applying Young's
inequality and under condition a) for the function g(t), additionally integrating in parts in the term
with the function g’(#), we can show that the result of this equality implies the third a priori estimate

T T T
. / o2 (8 d + / o (£)0""(8) dt + / o"2(t) dt < Ks (18)
0 0

with a constant K3, defined by the functions f(t), k = 0,1,2, and g(t) only.

It follows from estimates (16)-(18) and from the reflexivity property of a Hilbert space that there
are sequences {ey, }_; of positive numbers, {1, (t) }5_; of solutions to boundary value problems (14),
(15) with € = ¢, and a function v(t) such that at m — co we have the convergences

em — 0,

o (t) — v(t) weakly in the space W3 ([0, T]),

\ ho(£)viy (t) — 1/ ho(t)0"" (t) weakly in the space L ([0, T]),
emtpy (t) — O weakly in the space Ly ([0, T]).

From these convergences, it follows that the limit function v(t) will be a solution of Equation (13)
belonging to the space W2 ([0, T]), and this solution will satisfy the inclusion [k (t)} "(t) € Lp([0, T)).

The uniqueness of a solution to (13) is easy to establish by multiplying this equation by the function
—v(t), integrating the resulting equality over the segment [0, T| and using conditions (7)—(10). [

We will denote by the subscript the partial derivative with respect to the corresponding variable,
for example, f; = %.
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Let’s return to the Equation (1). Everywhere else (here and in what follows), we assume that /i (t),
k=0,1,2, have the form

he(t) = /ak(x,t)yo(x) dx, k=0,1, hy(t) = /az(x,t)go(x) dx +1.
0 0

Theorem 2. Let the conditions

dag(x,t)

s € C(Q), i,k=0,1,2, by(x) € C(Q), (19)

be fulfilled and functions hy(t), k = 0,1, 2, satisfy conditions (8)-(12), and

lao(x, t)| < Ky/ho(t), K>0, (x1)€Q. (20)
Then for every function f(x, t), which satisfies one of the conditions
(@) f(x,t) € L2(Q), fi(x, 1) € La(Q), fu(x, 1) € L2(Q);
(b))  fi(x,0) = fi(x,T) = Oatlx e
(€ flxt) € La(Q), [ho(t)] 2 fi(x,t) € La(Q)

boundary value problem (1), (6) has a solution u(x,t) such that u(x,t) € Le(0, T; W2(Q)), (Bu)(t) €
W2 ([0, T)), and it is unique.

Proof. Consider Equation (13) with a function g(f) of the form
g(t) = [ £ )bo(x) dx.
Q

Theorem 1 implies the existence of a unique solution v(t) of this equation, such that
o(t) € W0, 7)), [o(1)20" (1) € La((0, T)). @)
Consider a boundary value problem: Find a function u(x, t) which is a solution of the equation
Au = f(x,t) —ag(x, t)0"(t) —ar(x,t)0' (t) — az(x, )0 (22)

in the cylinder Q, such that condition (6) is fulfilled. The right-hand side of this equation belongs
to the space Lo (0, T; Ly(Q2)) (due to condition (20) and inclusions (21)). According to the general
theory of elliptic equations, boundary value problem (22), (6) has a solution u(x, t) from the space
L,(0, T; W2([0, T))), see, e.g., [12,13]. Multiply equation (22) by the function by(x) and integrate over
the domain (). After simple transformations, we obtain the equality

/bo(x)u(x,t) dx = o(t).
Q

It follows from this equality that a solution u(x, t) of boundary value problem (22), (6) will be
a solution to boundary value problem (1), (2) simultaneously. It is obvious that the function u(x, t)
belongs to the required class.

Now let us establish the uniqueness of a solution. Let f(x,t) = 0. Then the function v(t) will
be identical to the zero function on the interval (0, T). But then the function u(x, t) as a solution to
problem (22), (6) with the zero right-hand side will be zero function in the cylinder Q. This means that
a solution of boundary value problem (1), (6) is unique in the required class. [J
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3. The Boundary Value Problem with One Nonlocal Condition

In this section the solvability of the boundary value problem for Equation (1) with boundary
condition (6) and one nonlocal condition at ¢ = 0, condition (2), or (4), will be investigated (boundary
value problem with one nonlocal condition at t = T, condition (3), or condition (5), by the obvious way
with replacing ' = T — t can be reduced to the problem with condition (2) or condition (4)). We will
not highlight the auxiliary results on the solvability of the boundary value problem for the degenerate
ordinary differential equation.

Theorem 3. Let condition (19) be fulfilled, functions hy(t), k = 0,1, 2, satisfy conditions (8), (10)—(12), (20),
and
ho(0) >0, ho(T) =hy(0) =0, F(Ey)>0at(&y) € R

Then for every function f(x, t), which satisfies one of the conditions

(@) f(x,t) € L2(Q), fr(x,t) € L2(Q), fu(x,t) € La(Q);
(b)  f(x,0) = fi(x,T) =0atx € O

©  f(x,1) € Lo(Q), [ho(B)] "2 filx, t) € La(Q), f(x,0) = Oat x € Q)

boundary value problem (1), (2), (6) has a solution u(x, t) such that u(x,t) € Le(0, T; W3(Q)), (Bu)(t) €
W2 ([0, T)), and it is unique.

Proof. Let g(t) has the form
g(t) = [ flxbo(x)dx
o}

again. Consider a boundary value problem: Find a function v(t) which is a solution of Equation (13) on the
interval (0, T) and satisfies the condition
v(0) = 0. (23)

Again applying the regularization of Equation (13) by Equation (14), using also the boundary
conditions
v(0) ="(0) =o'(T) ="(T) =0,

it is easy to establish, that boundary value problem (13), (23) has in the space sz ([0, T]) exactly one

solution v(t), for whom the inclusion [ho(t)]%v’ "(t) € Lp([0,T)) is fulfilled. Next, we define the
function u(x,t) as the solution of problem (22), (6). This function will be the required solution to
problem (1), (2), (6).

Uniqueness of problem (1), (2), (6) solution follows from the uniqueness of a solution to boundary
value problem (13), (23) once more. [

Theorem 4. Let condition (19) be fulfilled, functions hy(t), k = 0,1, 2, satisfy conditions (8), (10)—(12), (20),
and
ho(0) >0, ho(T)=0, Fi(&n)>0, E(&n)>0 at(&y) e R

Then for every function f(x, t), which satisfies one of the conditions
(@) f(x,t) € Lr(Q), fr(x,1) € L2(Q), fur(x,t) € L2(Q);
()  fi(x,0) = fi(x,T) = Oatlx €
(©  f(xt) € La(Q), [ho(t)]"2fi(x,t) € L2(Q)

boundary value problem (1), (4), (6) has a solution u(x, t) such that u(x,t) € Le(0, T; W3(Q)), (Bu)(t) €
W2 ([0, T]), and it is unique.
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The proof of this theorem is carried out quite similarly to the proof of Theorem 3. The necessary
auxiliary result on the unique solvability in the space W2 ([0, T]) of the boundary value problem for
Equation (13) with the condition

v (0)=0 (24)

is also proved analogously to the proof of Theorem 1.

The proof of Theorem 1 on the solvability of degenerate ordinary differential Equation (13), as well
as the proof of the corresponding results on the solvability of boundary value problems (13), (23) and
(13), (24) (used in the proof of Theorem 3 and Theorem 4), are based on the “elliptic-parabolic” [3-5]
approach. But for problem (13), (23), you can use another, “hyperbolic-parabolic” approach [5,6,9].
This approach will give different conditions for the solvability of boundary value problem (1), (2), (6)
compared to Theorem 3.

Theorem 5. Let condition (19) be fulfilled, functions hy(t), k = 0,1,2, satisfies the conditions

ho(0) <0, ho(T) > 0; (25)
hﬂﬂ—%%aﬁz%>0,hﬂﬂ+g%ﬁﬁzﬂ>0 att € [0, T); (26)
ho(t) + %hg(t) <-h <0 attel0,T; (27)

ho(T) >0, Hy(t) <0 attel0,T). (28)

Then for every function f(x,t) such that

flxt) € La(Q), fi(x 1) € La(Q), fu(x,t) € La(Q),

boundary value problem (1), (2), (6) has a solution u(x, t) such that u(x,t) € Le(0, T; W3(QY)), (Bu)(t) €
w3 ([0, T]).

Proof. Let ¢ be a positive number. Consider a boundary value problem: Find a function v(t) which is a
solution of the equation

e0® (1) + ho(£)0" (1) + iy (2 (1) + Ia(£)o(t) = g(¢) (29)
on the interval (0, T) and satisfies the conditions
v(0) = 2" (0) =o""(0) =0, o"(T)=7""(T)=0. (30)

For a solution of problem (29), (30) under conditions (25)—(28) there are a priori estimates

T T T
e [ 0"2(t)dt+ [ o(t)dt < Ny [ ¢2(t)dt, (31)
[ [raasn ]
T T T
e [P (1)7dt+ [ o (t)dt < Ny [ [g(t) +g(t) + &% (1)) dt (32)
[erora] /

with constants Nj and N, defined only by the functions h(t), k = 0,1, 2, and by the number T (we
prove these estimates by analyzing the equalities obtained after multiplying equation (29) sequentially
on the functions ’(t) and v (t) and integrating over the segment [0, T|). Estimates (31) and (32)
imply, first, that for a fixed € and if the function g(t) belongs to the space L ([0, T]), boundary value
problem (29), (30) is uniquely solvable in the space W3 ([0, T]), and, secondly, that in this problem,
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if the function g(t) belongs to the space W2 ([0, T]), the limit transition procedure can be performed
(with the selection of appropriate numerical and functional sequences). As a result, we get that
when conditions (25)—(28) are met and the function g(t) belongs to the space W2([0, T]), boundary
value problem (13), (23) has a solution v(t) belonging to the space W3 ([0, T]), and there is exactly one
solution.

Let now g(t) be

g(t) = / f(x,t)bo(x) dx,
Q

v(t) be a solution of problem (13), (23) with such g(t). Let us define the function u(x, t) in a standard
way (within the framework of this work). This function will be the required solution to boundary
value problem (1), (2), (6).

The uniqueness of the solutions is obvious. [J

Note that the conditions of Theorem 5 have significant differences from the conditions of
Theorems 1-4, since they do not require nonnegativity of the function f(t).

4. The Case of Two Nonlocal Conditions

The study of the solvability of the boundary value problem for Equation (1) with condition (6) and
two nonlocal conditions is quite similar to the study of the solvability of the problem with condition (6)
and with one nonlocal condition.

Theorem 6. Let condition (19) be fulfilled, for function hy(t), k = 0,1,2, conditions (8), (10)-(12), (20) be
satisfied, and
]’10(0) >0, ho(T) >0, I (0) = h](T) =0.

Then for every function f(x, t) which satisfies one of the conditions

(@) f(x,t) € La(Q), fr(x,t) € L2(Q), fur(x,t) € L2(Q);
(b)  f(x,0)=f(x,T)=0atx € Q)

() f(x,t) € Lx(Q), [ho(t)]_%ft(x,t) € Lr(Q), f(x,0) = f(x,T) =0atx € Q

boundary value problem (1), (2), (3), (6) has a solution u(x, ) such that u(x,t) € Lo (0, T; W2(Q2)), (Bu)(t) €
W2([0, T]), and it is unique.

Proof. Using condition (14) and the boundary conditions

it is easy to establish the existence of an unique function v(t), which is a solution of Equation (13) and
such that inclusions (21) are satisfied. Using this function, the required solution of boundary value
problem (1), (2), (3), (6) is constructed in a standard way.

The uniqueness of a solution is obvious. [

Theorem 7. Let condition (19) be satisfied, functions hy(t), k = 0,1, 2, satisfy conditions (8), (10)—~(12), (20),
and
ho(0) >0, ho(T) >0, h(0)=0, E(&n)>0at(E1y) e R

Then for every function f(x, t) which satisfies one of the conditions
(@ f(x,t) € Lr(Q), fr(x,1) € L2(Q), fur(x,t) € L2(Q);
(b))  f(x,0)= fi(x,T) :0at1x€Q;
(@ flxt) € La(Q), [ho(H)] 2 filx,t) € La(Q), f(x,0) = Oat x € O
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boundary value problem (1), (2), (5), (6) has a solution u(x, t) such that u(x,t) € Lo (0, T; W3(Q2)), (Bu)(t) €
W2 ([0, T)), and it is unique.

Theorem 8. Let condition (19) be satisfied, functions hy(t), k = 0,1, 2, satisfy conditions (8), (10)—(12), (20),
and
ho(0) >0, ho(T) >0, F(&y) >0, F(&n)>0 at(&n) <R

Then for every function f (x, t) which satisfies one of the conditions

(@) f(xt) € La(Q), fr(x,t) € La(Q), fu(x,t) € La(Q);
() fi(x,0) = fi(x,T) =0at x € O

(©  f(x,1) € Lo(Q), ho(B)] "2 fi(x,t) € La(Q)

boundary value problem (1), (4), (5), (6) has a solution u(x, t) such that u(x,t) € Leo(0, T; W2(QY)), (Bu)(t) €
W3 ([0, T)), and it is unique.

The proof of these theorems is carried out in the same way as the proof of Theorem 2, we only
specify that Equation (14) is supplemented with the conditions

when proving Theorem 7, and by the conditions
v'(0) =9"(0) =0, o(T)=7"(T)=0,
for the proof of Theorem 8.

Remark 1. It is obvious that boundary value problem (1), (3), (4), (6) by the change of variables t' = T — t
reduced to problem (1), (2), (5), (6).

We give two more results on the solvability of boundary value problems (1), (2), (4), (6) and (1),
(2), (5), (6), the proof of which will be based on the “hyperbolic-parabolic” approach.

Theorem 9. Let condition (19) be satisfied, functions hy(t), k = 0,1, 2, satisfy conditions (26), (28), and

Then for every function f(x,t) such that

f(x,t) € Ly(Q), fr(x,t) € L2(Q), fu(x,t) € L2(Q),

f(x,0) = fi(x,0) =0atx € O

boundary value problem (1), (2), (4), (6) has a solution u(x, t) such that u(x,t) € Lo (0, T; W3(Q2)), (Bu)(t) €
w3 ([0, T]).

Theorem 10. Let condition (19) be satisfied, functions hy(t), k = 0,1, 2, satisfy conditions (26), (28), and
ho(O) <0, ho(T) < 0.
Then for every function f(x, t) such that

f(xt) € L2(Q), fi(x,t) € L2(Q), fu(x,t) € L2(Q),

f(x,T)=fi(x,T) =0atx € Q
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boundary value problem (1), (2), (5), (6) has a solution u(x, t) such that u(x,t) € Lo (0, T; W3(Q2)), (Bu)(t) €
w3 ([0, T]).

The proof of Theorem 9 and Theorem 10 is carried out analogously to the proof of Theorem 5, only
the boundary conditions for Equation (29) change. When proving Theorem 9, instead of conditions (30),
the conditions
v(0) =o' (0) =2"(0) =0, o"(T)=v""(T)=0

are used. For the proof of Theorem 10 we use the conditions
v(0) =" (0) =2""(0) =0, o (T)=v"(T)=0
instead of conditions (30).

5. The Boundary Value Problem with Three Nonlocal Conditions

The “hyperbolic-parabolic” approach to mixed-type equations (both for ordinary differential
equations and partial differential equations) allows us to show that for second-order differential
equations, the boundary value problem with three boundary conditions can also be correct.

Theorem 11. Let condition (19) be satisfied, functions hy(t), k = 0,1, 2, satisfy conditions (26), (28), and
ho(0) >0, ho(T) <O.
Then for every function f(x,t) such that
f(x,t) € La(Q), fi(x,t) € L2(Q), fu(x,t) € L2(Q),

f(x,0) = fi(x,0) = f(x,T) = fry(x,T) =0at x € Q

boundary value problem (1), (2), (4), (5), (6) has a solution u(x,t) such that u(x,t) € Le(0, T; W3(Q2)),
(Bu)(t) € W3 ([0, T)).

The proof of this theorem is carried out quite similarly to the proof of Theorem 5, but with the
replacement of conditions (30) by the conditions

Remark 2. As in other cases, replacing t' = T — t it is not difficult to convert boundary value problem (1), (3),
(4), (5), (6) to one considered and thus to get a theorem about its solvability.

6. Comments and Additions

1. The integro-differential equations studied in this paper, as already mentioned in the Introduction,
can be called nonlocal equations, or loaded equations. In general, a very significant number of papers
have been devoted to the theory of integro-differential equations. Studies of the solvability of such
equations and boundary value problems for them are important both from the point of view of the
development of mathematics, and from the point of view of mathematical modeling, since nonlocal
equations, integro-differential equations, and loaded equations arise in the mathematical modeling
of many processes in mechanics, physics, and biology. Note also that nonlocal integro-differential
equations arise naturally in fractional calculus [14], in some studies related to the theory of inverse
coefficient problems [15], and in some other sections of the mathematical theory. The equations
considered in this paper can also be interpreted as equations that are not resolved with respect to
the derivative, namely, as an equation /Bu 4+ Au = f with a differential operator / acting on a time
variable [16,17].
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On the other hand, we note that nonlocal integro-differential equations of form (1) with
degeneration have not been studied before. Here we can only note the work [18], which studied
first-order with respect to t equations close to (1) (we specify that the methods of studying degenerate
ordinary differential equations of the second order have a number of significant differences from the
methods of studying similar first-order equations).

2. It is obvious that the Laplace operator in Equation (1) can be replaced by a general elliptic
operator, including an operator of the order 2m (with the natural addition of the necessary boundary
conditions).

3. Theorem 1 and auxiliary results on the existence of solutions to boundary value problems for
degenerate ordinary differential equations of the second order can be interpreted as a refinement in
relation to the one-dimensional case of some results of works [4,6,9].

4. If for the auxiliary boundary value problems for degenerate ordinary differential Equation (13)
we establish the existence of solutions which are smoother than in Sections 14, then it is not difficult
to prove that the corresponding nonlocal boundary value problem for Equation (1) will have a solution
u(x, t) such that u(x, t), uy(x, t) exist and belong to the space Lo (0, T; W2(Q))). Here is just one such
result.

Theorem 12. Let functions ay(x,t), k = 0,1,2, have continuous in Q derivatives with respect to t up to
and including the fourth order, function by(x) be continuous in Q. Next, let the conditions (25)—(28) be met.
Then for every function f(x,t) such that it and its derivatives in the variable t up to and including the fourth
order belong to the space L, (Q), boundary value problem (1), (2), (6) has a solution u(x,t) such that u(x,t) €
Loo(0, T; W2(QY)), us(x,t) € Loo(0, T, W2(Q)), use(x, 1) € Leo(0, T; W2(Q)), (Bu)(t) € W3 ([0, T)).

Proof. Consider the auxiliary value problem: Find a function v(t) which is a solution on (0, T) of the
equation
e0) () + ho(£)0" (8) + ha ()2 (1) + ha(B)o(t) = g(t) (33)

and such the conditions

o®ON(T) = vO(T) = o")(T) = 0®(T) = 0

are satisfied for it. The a priori estimates obtained after multiplying Equation (33) by the functions
/() and v (t) and integration will allow us to organize a limit transition and get that the boundary
value problem for Equation (13) with the condition v(0) = 0 has a solution v(t) belonging to the
space W3 ([0, T]). It implies that in boundary value problem (22), (6), the right-hand side and its
derivatives with respect to the variable ¢ up to and including the second order will belong to the
space Leo (0, T; W2(Q2)). This means that the solution u(x, t) of boundary value problem (1), (2), (6)
will be such that the functions u;(x,t) and uy(x,t) are correctly defined and belong to the space
Leo(0, T; W2(QY)). O

7. Conclusions

A new class of integro-differential equations with degeneracy is studied. Statements of non-local
boundary value problems are proposed for these equations, and theorems of existence and uniqueness
of regular solutions (solutions belonging to Sobolev spaces) are proved. Let us clarify that the problem
statements are essentially determined by the nature of the degeneracy in the equation itself.

Funding: The work is supported by the Mathematical Center in Academgorodok, the agreement with Ministry of
Science and High Education of the Russian Federation number 075-15-2019-1613.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.



Mathematics 2020, 8, 606 12 of 12

References

10.

11.
12.

13.
14.

15.

16.

17.

18.

Nakhushev, A.M. Loaded Equations and Their Applications; Nauka: Moscow, Russia, 2012. (In Russian)
Dzhenaliev, M.T.; Ramazanov, M.I. Loaded Equations as Perturbations of Differential Equations; Gylym: Almaty,
Kazakhstan, 2010. (In Russian)

Fichera, G. On a unified theory of boundary value problems for elliptic-parabolic equations of second order.
In Boundary Problems. Differential Equations; Univ. of Wisconsin Press: Madison, Wisconsin, 1960; pp. 97-120.
Oleinik, O.A.; Radkevich, E.V. Equations with Non-Negative Characteristic Form; Moscow State Univ.: Moscow,
Russia, 2010. (In Russian)

Vragov, V.N. On the theory of boundary value problems for mixed-type equations. Differ. Equ. 1976, 13,
1098-1105. (In Russian)

Egorov, L.E.; Fedorov, V.E. Nonclassical Highest Order Equations of Mathematical Physics; Computational Center
of SB RAS: Novosibirsk, Russia, 1995. (In Russian)

Pyatkov, S.G.; Popov, S.V.; Antipin, V.I. On solvability of boundary value problems for kinetic operator-
differential equations. Integral Equ. Oper. Theory. 2014, 80, 557-580. [CrossRef]

Egorov, LE.; Fedorov, V.E. Smooth solutions of parabolic equations with changing time direction. AIP Conf.
Proc. 2018, 2048, 040013.

Vragov, V.N. Boundary Value Problems for Nonclassical Equations of Mathematical Physics; Novosibirsk State
Univ.: Novosibirsk, Russia, 1983. (In Russian)

Triebel, H. Interpolation Theory. Function Spaces. Differential Operators; VEB Deutscher Verlag der
Wissenschaften: Berlin, Germany, 1978.

Trenogin, V.A. Functional Analysis; Nauka: Moscow, Russia, 1980. (In Russian)

Ladyzhenskaya, O.A.; Ural’tseva, N.N. Linear and QuasiLinear Elliptic Equations; Academic Press: New York,
NY, USA, 1968.

Evans, L.C. Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 1998.
Nakhushev, A.M. Elements of Fractiona Calculus and Their Applications; Kabardino-Balkarian Scientific Center
of RAS: Nal’chik, Russia, 2000. (In Russian)

Kozhanov, A.I. Parabolic equations with unknown time-dependent coefficients. Comput. Math. Math. Phys.
2017, 57, 956-966. [CrossRef]

Demidenko, G.V.; Uspenskii, S.V. Partial Differential Equations and Systems not Solvable with Respect to Highest
Order Derivatives; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2003.

Sviridyuk, G.A.; Fedorov, V.E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators; VSP:
Utrecht, The Netherlands; Boston, MA, USA, 2003.

Kozhanov, A.IL. Boundary value problems for a class of nonlocal integro-differential equations with
degeneration. Bull. Samara Univ. Ser. Nat. Sci. 2017, 23, 19-24. (In Russian) [CrossRef]

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1007/s00020-014-2172-7
http://dx.doi.org/10.1134/S0965542517060082
http://dx.doi.org/10.18287/2541-7525-2017-23-4-19-24
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Solvability of the Boundary Value Problem without Nonlocal Conditions
	The Boundary Value Problem with One Nonlocal Condition
	The Case of Two Nonlocal Conditions
	The Boundary Value Problem with Three Nonlocal Conditions
	Comments and Additions
	Conclusions
	References

