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Abstract: In this paper, we study the solvability of various two-point boundary value problems for
x(4) = f (t, x, x′, x′′, x′′′), t ∈ (0, 1), where f may be defined and continuous on a suitable bounded
subset of its domain. Imposing barrier strips type conditions, we give results guaranteeing not only
positive solutions, but also monotonic ones and such with suitable curvature.
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1. Introduction

This paper is devoted to the solvability of boundary value problems (BVPs) for the equation

x(4) = f (t, x, x′, x′′, x′′′), t ∈ (0, 1), (1)

with boundary conditions (BCs) either

x(0) = A, x′(0) = B, x′′(0) = C, x′′′(1) = D (2)

x(1) = A, x′(0) = B, x′′(0) = C, x′′′(1) = D, (3)

x(0) = A, x′(1) = B, x′′(0) = C, x′′′(1) = D, (4)

x(1) = A, x′(1) = B, x′′(0) = C, x′′′(1) = D, (5)

x(0) = A, x′(0) = B, x′′(1) = C, x′′′(1) = D, (6)

x(1) = A, x′(0) = B, x′′(1) = C, x′′′(1) = D, (7)

x(0) = A, x′(1) = B, x′′(1) = C, x′′′(1) = D, (8)

x(1) = A, x′(1) = B, x′′(1) = C, x′′′(1) = D, (9)

x(0) = A, x(1) = B, x′′(0) = C, x′′′(1) = D, (10)

x(0) = A, x(1) = B, x′′(1) = C, x′′′(1) = D, (11)

x(0) = A, x′(0) = B, x′(1) = C, x′′′(1) = D (12)

or
x(1) = A, x′(0) = B, x′(1) = C, x′′′(1) = D, (13)
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where f : [0, 1]× Dx × Dp × Dq × Dr → R, and Dx, Dp, Dq, Dr ⊆ R.
It is well known that fourth-order BVPs appear in beam analysis. Among them, the solvability of

two-point ones has received much attention in the literature. Such problems for equations of the form

x(4) = f (t, x), t ∈ (0, 1),

were studied by A. Cabada et al. [1], J. Caballero et al. [2], J. Cid et al. [3], G. Han and Z. Xu [4],
J. Harjani et al. [5], G. Infante and P. Pietramala [6], J. Li [7] (here f (t, x) may be singular at t = 0, 1 and
x = 0), B. Yang [8] and C. Zhai and C. Jiang [9]. In [1,3–5] the BCs are

x(0) = x(1) = x′′(0) = x′′(1) = 0, (14)

in [2,7] they are
x(0) = x(1) = x′(0) = x′(1) = 0, (15)

homogeneous (12) in [8], and those in [6,9] include homogeneous ones (6).
J. Liu and W. Xu [10], D. O’Regan [11] and Q. Yao [12] studied BVPs for

x(4) = f (t, x, x′),

with BCs (14) in [10], with homogeneous (6) in [12], and with either (6) (for A, B ≥ 0, C, D = 0), (12) (for
A ≥ 0, B, C, D = 0),

x(0) = x(1) = x′′(0) = x′′′(0) = 0 or

x(0) = A ≥ 0, x′(1) = B ≥ 0, x′′(0) = x′′(1) = 0 (16)

in [11] (here f (t, x, p) may be singular at t = 0, 1, x = 0 and/or p = 0).
Many researchers studied BVPs for equations of the form

x(4) = f (t, x, x′′), t ∈ (0, 1),

see Z. Bai et al. [13], D. Brumley et al. [14], M. Del Pino and R. Manasevich [15], A. El-Haffaf [16], P.
Habets and M. Ramalho [17], R. Ma [18] and D. O’Regan [19] ( f (t, x, q) may be singular at t = 0, 1, x =

0 and/or q = 0). The BCs in [14] are

α1x(0)− γ1x(1) = β1x′(0)− δ1x′(1) = −A,

α2x′′(0)− γ2x′′(1) = β2x′′′(0)− δ2x′′′(1) = B,

where A, B, αi, βi, γi, δi > 0, i = 1, 2, in [15] they are inhomogeneous ones of the form (14),

x(0) = x′(0) = x′′(1) = x′′′(0) = 0 (17)

in [20], periodic ones in [17], and in [13,18] they are (14). Except (16), BCs (4), (6) and (12), all with
A ≥ 0, B ≥ 0, C ≤ 0 and D = 0, are considered in [19].

The existence of solutions for more general equations of the form

x(4) = f (t, x, x′, x′′), t ∈ (0, 1),

was studied by M. Elgindi and Z. Guan [20], A. El-Haffaf [16], T. Ma [21] and Q. Yao [22] (here
f (t, x, p, q) may be singular at t = 0, 1, x = 0, p = 0 and q = 0). Homogeneous BCs (4), (6), (12), (14)
and (15) are considered in [20], in [16] they are again (17), in [21] are (14), and (4) in [22].

BVPs for equations of the form (1) were considered by R. Agarwal [23], Z. Bai [24],
C. De Coster et al. [25], J. Ehme et al. [26], D. Franco et al. [27], A. Granas et al. [28], Y. Li and
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Q. Liang [29], Y. Liu and W. Ge [30], R. Ma [31], F. Minhós et al. [32], B. Rynne [33], F. Sadyrbaev [34]
and Q. Yao [35]. The BCs in those works are as follows:

x(0) = A, x′(0) = B, x(1) = C, x′′(1) = D

in [23,34], homogeneous (16) in [24], homogeneous (4) in [24,31], (14) in [29,32,33], periodic in [25], (15)
in [28,33],

x′(0) = x′(1) = x′′′(0) = x′′′(1) = 0

in [30], homogeneous (6), (12), (14), (15) in [31], general nonlinear in [34], of the form

g1(x̄) = 0, g2(x̄) = 0, h1(x̃) = 0, h2(x̃) = 0

in [26,27], where gi, hi, i = 1, 2, are continuous, x̄ = (x(0), x(1), x′(0), x′(1), x′′(0), x′′(1)) in both
papers, x̃ = x̄ in [26], and x̃ = (x(0), x(1), x′(0), x′(1), x′′(0), x′′(1), x′′′(0), x′′′(1)) in [27].

In the works mentioned above, the main nonlinearity is a Carathéodory function on
unbounded set, see [6,31,35], or is defined and continuous on a set such that each dependent
variable changes in a left- and/or right-unbounded set, see [1–5,7,8,10,11,13–30,32–34,36,37]; an
exception is [9] where it is supposed that f (t, x) is continuous on a set of the form (0, 1) × [a, b].
Several results guaranteeing a unique solution, at least one or multiple solutions are obtained
by using various techniques, conditions and tools as: the classical lower and upper solutions
technique [1,7,13,16,17,24,26,27,32,34], requirements to the main nonlinearity of the equation to be
positive or non-negative [2,3,5–8,10,14,18,19,21,22], Nagumo-type growth conditions [24,26,27,32,34],
nonresonance conditions [15,25], monotone conditions [7,24], maximum principles [1,17], various
applications of Greens function [2,3,6,8,10,14,16,29,36–38]. Because of the nature of processes
leading to fourth-order BVPs, a variety of authors study the existence of positive solutions,
see [2,3,5–10,12,14,18,21,22].

We do not use the above tools. Throughout the paper we assume that:

Hypothesis 1 (H1). There are constants Fi, Li, i = 1, 2, and a sufficiently small σ > 0 such that

F2 + σ ≤ F1 ≤ D ≤ L1 ≤ L2 − σ, [F2, L2] ⊆ Dr,

f (t, x, p, q, r) ≥ 0 for (t, x, p, q, r) ∈ [0, 1]× Dx × Dp × Dq × [L1, L2], (18)

f (t, x, p, q, r) ≤ 0 for (t, x, p, q, r) ∈ [0, 1]× Dx × Dp × Dq × [F2, F1]. (19)

Besides, we will say that some of the BVPs (1),(k), k = 2, 3, ..., 13(k = 2, 13 for short) satisfies (H2)
for constants mi, Mi, i = 0, 3, if:

Hypothesis 2 (H2). mi ≤ Mi, i = 0, 3, [m0 − σ, M0 + σ] ⊆ Dx, [m1 − σ, M1 + σ] ⊆ Dp,
[m2 − σ, M2 + σ] ⊆ Dq,[m3 − σ, M3 + σ] ⊆ Dr, where σ is as in (H1), and f (t, x, p, q, r) is continuous
on [0, 1]× J, where J = [m0 − σ, M0 + σ]× [m1 − σ, M1 + σ]× [m2 − σ, M2 + σ]× [m3 − σ, M3 + σ].

The condition (H1) is a variant of the barrier strips type conditions used in [39–41], for example,
for studying the solvability of first-order initial and second-order boundary value problems; we do
not know another application of conditions of this type for studying the solvability of fourth-order
problems. (H1) allows the sets Dx, Dp, Dq and Dr to be bounded and f to be continuous only on a
bounded subset of its domain. Also, together with (H2), it allows studying not only the existence of
positive solutions, but also of monotone ones as well as of solutions with suitable curvature.
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The paper is organized as follows. In Section 2, we give our basic existence theorem and auxiliary
results guaranteeing a priori bounds for x′′′(t), x′′(t), x′(t) and x(t), in this order, for each eventual
solution x(t) ∈ C4[0, 1] to the families of BVPs for

x(4) = λ f (t, x, x′, x′′, x′′′), λ ∈ [0, 1], t ∈ (0, 1), (1)λ

with one of the boundary conditions (k), k = 2, 13. Section 3 is devoted to the solvability of BVPs (1),
(2), ..., (1), (8) and (1), (9). In Section 4 we study (1), (10) and (1), (11), and in Section 5 give existence
results for (1), (12) and (1), (13).

2. Basic Existence Results, Auxiliary Results

For the convenience of the reader we include basic notions and facts needed to formulate the
topological transversality theorem. Moreover, we follow A. Granas et al. [28].

Let Y be a convex subset of a Banach space E and let U ⊂ Y be open in Y. The compact map
F : U → Y is called admissible if it is fixed point free on the boundary, ∂U, of U. We denote the set of
all such maps by L∂U(U, Y).

A map F ∈ L∂U(U, Y) is inessential if there is a compact fixed point free map G : U → Y such
that the restrictions of G and F to ∂U coincide. A map F ∈ L∂U(U, Y) which is not inessential is
called essential.

Two maps F and G in L∂U(U, Y) are called homotopic if there is a compact homotopy Hλ : U → Y
for which F = H0, G = H1, and Hλ is admissible for each λ ∈ [0, 1].

Theorem 1 (Chapter I, Theorem 2.2, [28]). Let p ∈ U be fixed and F ∈ L∂U(U, Y) be the constant map
F(x) = p for x ∈ U. Then F is essential.

Lemma 1 (Chapter I, Lemma 2.4, [28]). A map F ∈ L∂U(U, Y) is inessential if and only if it is homotopic to
a fixed point free map.

The next result is a consequence of this lemma.

Theorem 2 (Topological transversality theorem, Chapter I, Theorem 2.5, [28]). Let F and G in L∂U(U, Y)
be homotopic maps. Then one of these maps is essential if and only if the other is.

In fact, the transversality theorem is used in the following equivalent form.

Theorem 3 (Chapter I, Theorem 2.6, [28]). Suppose:

(i) F, G : U → Y are compact maps.
(ii) G ∈ L∂U(U, Y) is essential.

(iii) H(x, λ), λ ∈ [0, 1], is a compact homotopy joining G and F, i.e.,

H(x, 0) = G(x) and H(x, 1) = F(x).

(iv) H(x, λ), λ ∈ [0, 1], is fixed point free on ∂U.

Then H(x, λ), λ ∈ [0, 1], has at least one fixed point in U and in particular there is a x0 ∈ U such that
x0 = F(x0).

Consider the BVP

x(4) +
3

∑
k=0

sk(t)x(k) = f (t, x, x′, x′′, x′′′), t ∈ (0, 1), Vi(x) = ri, i = 1, 4, (20)



Mathematics 2020, 8, 603 5 of 19

where sk(t), k = 0, 3, are continuous on [0, 1], f : [0, 1]× Dx × Dp × Dq × Dr → R,

Vi(x) ≡
3

∑
j=0

[aijx(j)(0) + bijx(j)(1)], i = 1, 4,

with constants aij and bij for which ∑3
j=0(a2

ij + b2
ij) > 0, i = 1, 4, and ri ∈ R.

For λ ∈ [0, 1] consider also the family of BVPs

x(4) +
3

∑
k=0

sk(t)x(k) = g(t, x, x′, x′′, x′′′, λ), t ∈ (0, 1), Vi(x) = ri, i = 1, 4, (21)

where g : [0, 1]× Dx × Dp × Dq × Dr × [0, 1]→ R, and sk(t), k = 0, 3, Vi, ri, i = 1, 4, are as above.
Finally, let BC be the set of functions satisfying the boundary conditions Vi(x) = ri, i = 1, 4, let

C4
BC[0, 1] = C4[0, 1] ∩ BC, BC0 be the set of functions satisfying the homogeneous boundary conditions

Vi(x) = 0, i = 1, 4, and C4
BC0

[0, 1] = C4[0, 1] ∩ BC0.
In this setting, we will prove the following basic existence result which is a variant of (Chapter I,

Theorem 5.1 and Chapter V, Theorem 1.2, [28]).

Theorem 4. Assume that:

(i) For λ = 0 problem (21) has a unique solution x0 ∈ C4[0, 1].
(ii) Problems (20) and (21) are equivalent when λ = 1.

(iii) The map Λh : C4
BC0

[0, 1]→ C[0, 1], defined by

Λhx = x′′′ + s3(t)x′′′ + s2(t)x′′ + s1(t)x′ + s0x,

is one-to-one.
(iv) Each solution x ∈ C4[0, 1] to family (21) satisfies the bounds

mi ≤ x(i) ≤ Mi for t ∈ [0, 1], i = 0, 4,

where the constants −∞ < mi, Mi < ∞, i = 0, 4, are independent of λ and x.
(v) There is a sufficiently small σ > 0 such that [m0 − σ, M0 + σ] ⊆ Dx, [m1 − σ, M1 + σ] ⊆ Dp, [m2 −

σ, M2 + σ] ⊆ Dq, [m3 − σ, M3 + σ] ⊆ Dr, and g(t, x, p, q, r, λ) is continuous for (t, x, p, q, r, λ) ∈
[0, 1]× J × [0, 1]; mi, Mi, i = 0, 4, are as in (iv).

Then BVP (20) has at least one solution in C4[0, 1].

Proof. Define the set

U = {x ∈ C4
BC[0, 1] : mi − σ ≤ x(i) ≤ Mi + σ on [0, 1], i = 0, 4}

and the maps
j : C4

BC[0, 1]→ C3[0, 1] by jx = x,

Λ : C4
BC[0, 1]→ C[0, 1] by Λx = x(4) + s3(t)x′′′ + s2(t)x′′ + s1(t)x′ + s0(t)x,

and for λ ∈ [0, 1]

Φλ : C3[0, 1]→ C[0, 1] by Φλx = g(t, x, x′, x′′, x′′′, λ), x ∈ j(U).

Our next step is to show that Λ−1 : C[0, 1]→ C4
BC[0, 1] exists and is continuous. Observe firstly

that according to (iii) for each y ∈ C[0, 1] the BVP

x(4) + s3(t)x′′′ + s2(t)x′′ + s1(t)x′ + s0(t)x = y(t),
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Vi(x) = 0, i = 1, 4,

has a unique C4[0, 1]-solution of the form

x(t) = C∗1 x1(t) + C∗2 x2(t) + C∗3 x3(t) + +C∗4 x4(t) + η(t),

where xi(t), i = 1, 4, are linearly independend solutions to the homogeneous equation

x(4) + s3(t)x′′′ + s2(t)x′′ + s1(t)x′ + s0(t)x = 0, (22)

and η(t) is a solution to the inhomogeneous equation. Since (C∗1 , C∗2 , C∗3 , C∗4 ) in x(t) is the unique
solution to the system

C1Vi(x1) + C2Vi(x2) + C3Vi(x3) + C4Vi(x4) = −Vi(η), i = 1, 4,

we must have det[Vi(xj)] 6= 0. The last means that the system

C1Vi(x1) + C2Vi(x2) + C3Vi(x3) + C4Vi(x4) = ri, i = 1, 4,

also has a unique solution (C1, C2, C3, C4) and so

l(t) = C1x1(t) + C2x2(t) + C3x3(t) + C4x4(t)

is the unique C4[0, 1]-solution to the homogeneous Equation (22) satisfying the inhomogeneous
boundary conditions

Vi(x) = ri, i = 1, 4.

Now, it is not hard to check that Λ−1y = Λ−1
h y + l. On the other hand, for x ∈ C4

BC0
[0, 1] we have

||Λhx||C[0,1] ≤ ||x(4)||C[0,1] + S3||x′′′||C[0,1] + S2||x′′||C[0,1] + S1||x′||C[0,1] + S0||x||C[0,1]

≤ ||x||C4[0,1] + S3||x||C4[0,1] + S2||x||C4[0,1] + S1||x||C4[0,1] + S0||x||C4[0,1]

≤ (1 + S3 + S2 + S1 + S0)||x||C4[0,1],

where Sk = max[0,1] |sk(t)|, i = 0, 3. This means that the linear map Λh is bounded and so it is
continuous. Then, Λ−1

h is continuous and so Λ−1 is also continuous.
Furthermore, let the homotopy Hλ : U × [0, 1]→ C4

BC[0, 1] be defined by Hλ = Λ−1Φλ j. Since j
is a completely continuous embedding and U is bounded, the set j(U) is compact. Because of the
continuity of g on the set [0, 1] × J × [0, 1], the map Φλ is continuous on j(U) for each λ ∈ [0, 1].
These facts together with the proved above continuity of Λ−1 imply that the homotopy is compact.
For its fixed points we have

x = Λ−1Φλ jx

and
Λx = Φλ jx,

which means that the fixed points of Hλ are precisely the solutions of family (21). Consequently, by
(iv), the homotopy is fixed point free on the boundary of U. Finally, using (i), we see that H0 = x0.
Since x0 ∈ U, H0 is essential by Theorem 1. Then, H1 is also essential by Theorem 3 which means that
H1 has a fixed point, i.e., (21) has a solution in C4[0, 1] when λ = 1, and, by (ii), problem (20) has a
solution in C4[0, 1].

The following auxiliary results ensure the a priori bounds which (iv) of Theorem 4 requires.
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Lemma 2. Let (H1) hold. Then each solution x ∈ C4[0, 1] to a BVP for (1)λ with one of the boundary conditions
(k), k = 2, 13, satisfies the bounds

F1 ≤ x′′′(t) ≤ L1 on [0, 1].

Proof. Assume on the contrary that the set

S+ = {t ∈ [0, 1] : L1 < x′′′(t) ≤ L2}

is not empty. Then x′′′(1) ≤ L1 and x′′′ ∈ C[0, 1] imply that there is a γ ∈ S+ with the property

x(4)(γ) < 0.

On the other hand, from (γ, x(γ), x′(γ), x′′(γ), x′′′(γ)) ∈ S+ × Dx × Dp × Dq × (L1, L2] and (18)
it follows f (γ, x(γ), x′(γ), x′′(γ), x′′′(γ)) ≥ 0, which means

x(4)(γ) = λ f (γ, x(γ), x′(γ), x′′(γ), x′′′(γ)) ≥ 0,

a contradiction. Thus,
x′′′(t) ≤ L1 for t ∈ [0, 1].

Furthermore, by essentially the same reasoning as above, assuming that the set

S− = {t ∈ [0, 1] : F2 ≤ x′′′(t) < F1}

is not empty and using (19), we reach a contradiction which yields

F1 ≤ x′′′(t) for t ∈ [0, 1].

Lemma 3. Let (H1) hold. Then each solution x(t) ∈ C4[0, 1] to a BVP for (1)λ with one of the boundary
conditions (k), k = 2, 11, satisfies the bound

|x′′(t)| ≤ |C|+ max{|F1|, |L1|}, t ∈ [0, 1].

Proof. If x′′(0) = C, by the mean value theorem, for each t ∈ (0, 1] there is a ξ ∈ (0, t) such that

x′′(t) = x′′′(ξ)t + x′′(0).

Now, keeping in mind that according to Lemma 2

|x′′′(t)| ≤ max{|F1|, |L1|}, t ∈ [0, 1],

derive the bound for |x′′(t)|. If x′′(1) = C, we obtain similarly that for each t ∈ [0, 1) there is an
η ∈ (t, 1) with the property

x′′(1)− x′′(t) = x′′′(η)(1− t),

from where the assertion follows as above.

Lemma 4. Let (H1) hold. Then each solution x(t) ∈ C4[0, 1] to (1)λ, (12) or (1)λ, (13) satisfies the bound

|x′′(t)| ≤ |C− B|+ max{|F1|, |L1|}, t ∈ [0, 1].
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Proof. Clearly, there is a µ ∈ (0, 1) for which x′′(µ) = C − B. Then, for each t ∈ [0, µ) there is a
ξ ∈ (t, µ) such that

x′′(µ)− x′′(t) = x′′′(ξ)(µ− t),

from where, using Lemma 2, we get

|x′′(t)| ≤ |C− B|+ max{|F1|, |L1|}, t ∈ [0, µ].

We can see similarly that the same bound is valid for t ∈ [µ, 1].

Lemma 5. Let (H1) hold. Then each solution x(t) ∈ C4[0, 1] to a BVP for (1)λ with one of the boundary
conditions (k), k = 2, 9, satisfies the bounds

|x(t)| ≤ |A|+ |B|+ |C|+ max{|F1|, |L1|}, t ∈ [0, 1],

|x′(t)| ≤ |B|+ |C|+ max{|F1|, |L1|}, t ∈ [0, 1]. (23)

Proof. Let x(t) ∈ C4[0, 1] be a solution of (1)λ,(4); the assertion follows similarly for all the rest families
of BVPs. By the mean value theorem, for each t ∈ [0, 1) there is a ξ ∈ (t, 1) such that

x′(1)− x′(t) = x′′(ξ)(1− t),

from where, using Lemma 3, we get (23). Using again the mean value theorem, we obtain that for each
t ∈ (0, 1] and some η ∈ (0, t) we have

x(t)− x(0) = x′(η)t.

This together with (23) gives the bound for |x(t)|.

Lemma 6. Let A, B, C, D ≥ 0 and (H1) hold with F1 ≥ 0. Then each solution x ∈ C4[0, 1] to (1)λ, (2) satisfies
the bounds

A ≤ x(t) ≤ A + B + C + L1, t ∈ [0, 1],

B ≤ x′(t) ≤ B + C + L1, t ∈ [0, 1], (24)

C ≤ x′′(t) ≤ C + L1, t ∈ [0, 1]. (25)

Proof. By Lemma 2, we know that

0 ≤ F1 ≤ x′′′(t) ≤ L1 on [0, 1].

Then, for t ∈ (0, 1] we have

∫ t

0
F1ds ≤

∫ t

0
x′′′(s)ds ≤

∫ t

0
L1ds,

which yields consequtively F1t ≤ x′′(t)− C ≤ L1t, t ∈ [0, 1], and 0 ≤ x′′(t)− C ≤ L1, t ∈ [0, 1], from
where (25) follows. Next, by integration of (25) from 0 to t ∈ (0, 1] we get (24), and a new integration
from 0 to t ∈ (0, 1] gives the bound for x(t).

Lemma 7. Let A ≥ 0, B, C, D ≤ 0 and (H1) hold with L1 ≤ 0. Then each solution x ∈ C4[0, 1] to (1)λ, (3)
satisfies the bounds

A ≤ x(t) ≤ A− B− C− F1, t ∈ [0, 1],

B + C + F1 ≤ x′(t) ≤ B, t ∈ [0, 1], (26)
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C + F1 ≤ x′′(t) ≤ C, t ∈ [0, 1]. (27)

Proof. Following the proof of Lemma 6, we check that (26) and (27) are valid, and integrating (26)
from t ∈ [0, 1) to 1 gives the bound for x(t).

Lemma 8. Let (H1) hold. Then each solution x ∈ C4[0, 1] to (1)λ, (10) or (1)λ, (11) satisfies the bounds

|x(t)| ≤ |A|+ |B− A|+ |C|+ max{|F1|, |L1|}, t ∈ [0, 1],

|x′(t)| ≤ |B− A|+ |C|+ max{|F1|, |L1|}, t ∈ [0, 1].

Proof. By the mean value theorem, there is a µ ∈ (0, 1) with the property x′(µ) = B − A. Then,
for each t ∈ [0, µ) there is a ξ ∈ (t, µ) such that

x′(µ)− x′(t) = x′′(ξ)(µ− t),

from where, using Lemma 3, we get

|x′(t)| ≤ |B− A|+ |C|+ max{|F1|, |L1|}, t ∈ [0, µ].

Arguing similarly, establish that the same bound is valid on the interval t ∈ [µ, 1]. Next, for each
t ∈ (0, 1] there is an η ∈ (0, t) such that

x(t)− x(0) = x′(η)t,

from where using the obtained bound for |x′(t)|, we reach the bound for |x(t)|.

Lemma 9. Let A, B ≥ 0, C, D ≤ 0 and (H1) hold with L1 ≤ 0. Then each solution x ∈ C4[0, 1] to (1)λ, (10)
satisfies the bounds

min{A, B} ≤ x(t) ≤ A + |B− A|+ |C|+ |F1|, t ∈ [0, 1],

B− A + C + F1 ≤ x′(t) ≤ B− A− C− F1, t ∈ [0, 1],

C + F1 ≤ x′′(t) ≤ C, t ∈ [0, 1]. (28)

Proof. Using again Lemma 2, we get

∫ t

0
F1ds ≤

∫ t

0
x′′′(s)ds ≤

∫ t

0
L1ds, t ∈ (0, 1],

F1t ≤ x′′(t)− C ≤ L1t, t ∈ (0, 1],

and so (28) holds. Next, use that there is a µ ∈ (0, 1) such that x′(µ) = B− A. Then,∫ µ

t
(C + F1)ds ≤

∫ µ

t
x′′(s)ds ≤

∫ µ

t
Cds, t ∈ [0, µ),

gives consecutively

(C + F1)(µ− t) ≤ x′(µ)− x′(t) ≤ C(µ− t), t ∈ [0, µ),

C + F1 ≤ x′(µ)− x′(t) ≤ 0, t ∈ [0, µ),

B− A ≤ x′(t) ≤ B− A− C− F1, t ∈ [0, µ).
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Integrating (28) from µ to t ∈ (µ, 1], we establish similarly

B− A + C + F1 ≤ x′(t) ≤ B− A, t ∈ (µ, 1].

Hence,
B− A + C + F1 ≤ x′(t) ≤ B− A− C− F1 for t ∈ [0, 1]

and so
|x′(t)| ≤ |B− A|+ |C|+ |F1| for t ∈ [0, 1].

By the mean value theorem, for each t ∈ (0, 1] there is a ξ ∈ (0, t) such that

x(t)− x(0) = x′(ξ)t,

which yields
|x(t)| ≤ A + |B− A|+ |C|+ |F1| for t ∈ [0, 1].

Since C ≤ 0, in view of (28), x(t) is concave on [0, 1]. This together with A, B ≥ 0 gives

x(t) ≥ min{A, B} ≥ 0 for t ∈ [0, 1],

from where the bounds for x(t) follow.

Lemma 10. Let A, B, D ≥ 0, C ≤ 0 and (H1) hold with F1 ≥ 0. Then each solution x ∈ C4[0, 1] to (1)λ, (11)
satisfies the bounds

min{A, B} ≤ x(t) ≤ A + |B− A|+ |C|+ L1, t ∈ [0, 1],

B− A + C− L1 ≤ x′(t) ≤ B− A− C + L1, t ∈ [0, 1],

C− L1 ≤ x′′(t) ≤ C, t ∈ [0, 1]. (29)

Proof. Using Lemma 2, we get

∫ 1

t
F1ds ≤

∫ 1

t
x′′′(s)ds ≤

∫ 1

t
L1ds, t ∈ [0, 1),

and F1(1− t) ≤ x′′(1)− x′′(t) ≤ L1(1− t), t ∈ [0, 1], from where (29) follows. Furthermore, similar
arguments to those in the proof of Lemma 9 give the bounds for x′(t) and x(t).

Lemma 11. Let (H1) hold. Then each solution x ∈ C4[0, 1] to (1)λ, (12) or (1)λ, (13) satisfies the bounds

|x(t)| ≤ |A|+ |B|+ |C− B|+ max{|F1|, |L1|}, t ∈ [0, 1],

|x′(t)| ≤ |B|+ |C− B|+ max{|F1|, |L1|}, t ∈ [0, 1].

Proof. Let x(t) ∈ C4[0, 1] be a solution to (1)λ, (13); the assertion follows similarly for problem (1)λ,
(12). For each t ∈ (0, 1] there is a ξ ∈ (0, t) such that

x′(t)− x′(0) = x′′(ξ)t.

This and |x′′(t)| ≤ |C− B|+ max{|F1|, |L1|}, t ∈ [0, 1], which we have, thanks to Lemma 4, give
the bound for |x′(t)|. Next, again by the mean value theorem, for each t ∈ [0, 1) there is an η ∈ (t, 1)
such that

x(1)− x(t) = x′(η)(1− t),

from where, using the obtained already bound for |x′(t)|, obtain one for |x(t)|.
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Lemma 12. Let A, B, C ≥ 0, D ≤ 0 and (H1) hold with L1 ≤ 0. Then each solution x ∈ C4[0, 1] to (1)λ, (12)
satisfies the bounds

A ≤ x(t) ≤ A + B + |C− B|+ |F1|, t ∈ [0, 1],

min{B, C} ≤ x′(t) ≤ B + |C− B|+ |F1|, t ∈ [0, 1],

C− B + F1 ≤ x′′(t) ≤ C− B− F1, t ∈ [0, 1].

Proof. Observe firstly that there is a µ ∈ (0, 1) such that x′′(µ) = C− B. Next, let us recall, by Lemma
2 we have F1 ≤ x′′′(t) ≤ L1 on [0, 1]. Integrating this inequality from t ∈ [0, µ) to µ, we get

C− B ≤ x′′(t) ≤ C− B− F1, t ∈ [0, µ],

and integrating it from µ to t ∈ (µ, 1], we get

C− B + F1 ≤ x′′(t) ≤ C− B, t ∈ [µ, 1].

Thus,
C− B + F1 ≤ x′′(t) ≤ C− B− F1, t ∈ [0, 1].

Furthermore, by the mean value theorem, for each t ∈ (0, 1] there exists a ξ ∈ (0, t) such that

x′(t)− x′(0) = x′′(ξ)t,

which yields |x′(t)| ≤ B + |C − B| + |F1| for t ∈ [0, 1]. However, x′(t) is concave on [0, 1] because
x′′′(t) ≤ L1 ≤ 0 for t ∈ [0, 1]. This fact together with B, C ≥ 0 means that x′(t) ≥ min{B, C} on [0, 1].
Thus,

0 ≤ min{B, C} ≤ x′(t) ≤ B + |C− B|+ |F1| for t ∈ [0, 1].

Integrating from 0 to t ∈ (0, 1] yields

0 ≤ x(t)− x(0) ≤ (B + |C− B|+ |F1|)t,

from where the bound for x(t) follows.

Lemma 13. Let A, D ≥ 0, B, C ≤ 0 and (H1) hold with F1 ≥ 0. Then each solution x ∈ C4[0, 1] to (1)λ, (13)
satisfies the bounds

A ≤ x(t) ≤ A + |B|+ |C− B|+ L1, t ∈ [0, 1],

−(|B|+ |C− B|+ L1) ≤ x′(t) ≤ max{B, C}, t ∈ [0, 1],

C− B− L1 ≤ x′′(t) ≤ C− B + L1, t ∈ [0, 1].

Proof. Following the proof of Lemma 12, we obtain the bounds for x′′(t). Next, applying again the
mean value theorem, we get

|x′(t)| ≤ |B|+ |C− B|+ L1 for t ∈ [0, 1].

Besides, from Lemma 2 we have 0 ≤ F1 ≤ x′′′(t) ≤ L1 on [0, 1], which means that x′(t) is convex
on [0, 1]. Therefore, x′(t) ≤ max{B, C} on [0, 1], i.e.

−(|B|+ |C− B|+ L1) ≤ x′(t) ≤ max{B, C} ≤ 0 for t ∈ [0, 1].

Finally, integrating from t ∈ [0, 1) to 1 yields

−(|B|+ |C− B|+ L1)(1− t) ≤ x(1)− x(t) ≤ 0 for t ∈ [0, 1],
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from where the bound for x(t) follows.

3. Problems (1),(2),...,(1),(8) and (1),(9)

Theorem 5. Let (H1) hold and let (H2) hold for

M0 = |A|+ |B|+ |C|+ max{|F1|, |L1|}, m0 = −M0,

M1 = |B|+ |C|+ max{|F1|, |L1|}, m1 = −M1,

M2 = |C|+ max{|F1|, |L1|}, m2 = −M2, m3 = F1, M3 = L1.

Then each BVP for Equation (1) with one of the boundary conditions (k), k = 2, 9, has at least one solution
in C4[0, 1].

Proof. We will show that each BVP for (1)λ, λ ∈ [0, 1], with one of the boundary conditions (k), k = 2, 9,
satisfies all hypotheses of Theorem 4. It is not hard to check that (i) holds for each BVP for (1)0 with
one of the boundary conditions (k), k = 2, 9. Obviously, each pair of BVPs for (1) and (1)1 with one and
the same boundary conditions are equivalent, i.e., (ii) is satisfied. It is easy to check also that for an
arbitrary y(t) ∈ C[0, 1] each BVP for the equation x(4) = y(t) with one of the homogeneous boundary
conditions (k), k = 2, 9, has a unique solution in C4[0, 1], that is, the map Λh : C4

BC0
[0, 1] → C[0, 1],

defined by Λhx = x(4), is one-to-one. Thus, (iii) holds. Furthermore, for each solution x(t) ∈ C4[0, 1]
to a BVP for (1)λ, λ ∈ [0, 1], with one of the boundary conditions (k), k = 2, 9, we have

m0 ≤ x(t) ≤ M0, t ∈ [0, 1], by Lemma 5,

m1 ≤ x′(t) ≤ M1, t ∈ [0, 1], by Lemma 5,

m2 ≤ x′′(t) ≤ M2, t ∈ [0, 1], by Lemma 3,

m3 ≤ x′′(t) ≤ M3, t ∈ [0, 1], by Lemma 2.

Because of the continuity of f on [0, 1]× J, there are constants m4 and M4 such that

m4 ≤ λ f (t, x, p, q, r) ≤ M4 for λ ∈ [0, 1] and (t, x, p, q, r) ∈ [0, 1]× J.

Since for t ∈ [0, 1] we have (x(t), x′(t), x′′(t), x′′′(t)) ∈ J, the equation (1)λ implies

m4 ≤ x(4)(t) ≤ M4 for t ∈ [0, 1].

Hence, (iv) also holds. Finally, (v) follows again from the continuity of f on the set J. Therefore,
we can apply Theorem 4 to conclude that assertion is true.

Under a suitable combination of the signs of A, B, C and D, (H1) and (H2) guarantee solutions
with important properties.

Theorem 6. Let A, B > 0(A, B = 0), C, D ≥ 0. Suppose (H1) holds with F1 ≥ 0 and (H2) holds for

m0 = A, M0 = A + B + C + L1, m1 = B, M1 = B + C + L1,

m2 = C, M2 = C + L1, m3 = F1, M3 = L1.

Then BVP (1),(2) has at least one positive, increasing (non-negative, non-decreasing), convex solution in
C4[0, 1].
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Proof. Folowing the proof of Theorem 5, we establish that there is a solution x(t) ∈ C4[0, 1]. Now,
the bounds mi ≤ x(i)(t) ≤ Mi, t ∈ [0, 1], i = 0, 1, 2, follow from Lemma 6. In fact, Lemma 6 implies in
particular x(t) ≥ A > 0, x′(t) ≥ B > 0 (x(t) ≥ 0, x′(t) ≥ 0) and x′′(t) ≥ C ≥ 0 for t ∈ [0, 1], which
yields the assertion.

Theorem 7. Let A > 0, B < 0(A, B = 0), C, D ≤ 0. Suppose (H1) holds with L1 ≤ 0 and (H2) holds for

m0 = A, M0 = A− B− C− F1, m1 = B + C + F1, M1 = B,

m2 = C + F1, M2 = C, m3 = F1, M3 = L1.

Then BVP (1),(3) has at least one positive, decreasing (non-negative, non-increasing), concave solution in
C4[0, 1].

Proof. Using Lemma 7, as in the proof of Theorem 5 we establish that (1),(3) has a solution x(t) ∈
C4[0, 1]. Since Lemma 7 implies x(t) ≥ A > 0, x′(t) ≤ B < 0 (x(t) ≥ 0, x′(t) ≤ 0) and x′′(t) ≤ C ≤ 0
for t ∈ [0, 1], x(t) has the desired properties.

We provide the reader to formulate variants of Theorems 6 and 7 for the rest BVPs (1),(k), k = 4, 9.

Example 1. Consider BVPs for the equation

x(4) = Pn(x′′′), t ∈ (0, 1), (30)

with one of the boundary conditions (k), k = 2, 9, where the polynomial Pn(r), n ≥ 2, has simple zeros r1 and r2

such that r1 > D > r2.
Fix some θ > 0 with the properties r1 − θ ≥ D ≥ r2 + θ and

Pn(r) 6= 0 on r ∈ ∪2
i=1(ri − θ, ri + θ) \ ri, i = 1, 2,

and consider the case

Pn(r) > 0 for r ∈ (r1, r1 + θ] and Pn(r) < 0 for r ∈ [r2 − θ, r2);

the other cases for the sign of Pn(r) around the zeros can be studied by analogy. It is easy to check in this case that
if we choose, for example, F2 = r2 − θ, F1 = r2, L1 = r1, L2 = r1 + θ and σ = θ/2, (H1) and (H2) hold and so
each BVP for (30) with one of the boundary conditions (k), k = 2, 9, has a solution in C4[0, 1] by Theorem 5.

Example 2. Consider the BVP

x(4) =
t(x′′′ + 2)

√
100− x2

√
400− x′2√

225− x′′2
√

900− x′′′2
, t ∈ (0, 1),

x(1) = 2, x′(0) = −1, x′′(0) = −2, x′′′(1) = −3.

It is not hard to see that this problem has a positive, decreasing, concave solution in C4[0, 1] by Theorem 7;
moreover, F2 = −5, F1 = −4, L1 = −2, L2 = −1 and σ = 0.1, for example. Notice also, the right side of the
equation is defined on a bounded set.

4. Problems (1),(10) and (1),(11)

Theorem 8. Let (H1) hold and let (H2) hold for

M0 = |A|+ |B− A|+ |C|+ max{|F1|, |L1|}, m0 = −M0,
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M1 = |B− A|+ |C|+ max{|F1|, |L1|}, m1 = −M1,

M2 = |C|+ max{|F1|, |L1|}, m2 = −M2, m3 = F1, M3 = L1.

Then BVPs (1),(10) and (1),(11) have at least one solution in C4[0, 1].

Proof. Following the proof of Theorem 5, we check that all hypotheses of Theorem 4 are fulfilled for
family (1)λ,(10) and BVP (1),(10) as well as for (1)λ,(11) and BVP (1),(11) and so the assertion is true.
Moreover,

m0 ≤ x(t) ≤ M0 on [0, 1], by Lemma 8,

m1 ≤ x′(t) ≤ M1 on [0, 1], by Lemma 8,

m2 ≤ x′′(t) ≤ M2 on [0, 1], by Lemma 3.

m3 ≤ x′′′(t) ≤ M3 on [0, 1], by Lemma 2.

The remaining result of this section provide solutions with various properties.

Theorem 9. Let A, B > 0(A.B = 0 and A + B ≥ 0) and C, D ≤ 0. Suppose (H1) holds with L1 ≤ 0, and
(H2) holds for

m0 = min{A, B}, M0 = A + |B− A|+ |C|+ |F1|,

m1 = B− A + C + F1, M1 = B− A− C− F1,

m2 = C + F1, M2 = C, m3 = F1, M3 = L1.

Then BVP (1),(10) has at least one positive (non-negative), concave solution in C4[0, 1].

Proof. Following the proof of Theorem 5 and using Lemmas 9 and 2, we establish that there is a
solution x(t) ∈ C4[0, 1]. In fact, from Lemma 9 we know that x(t) ≥ min{A, B} > 0 (x(t) ≥ 0) and
x′′(t) ≤ C ≤ 0 for t ∈ [0, 1], which completes the proof.

Corollary 1. Let B > A > 0, A − B < C ≤ 0 and D ≤ 0. Suppose (H1) holds with L1 ≤ 0 and
A− B− C < F1 ≤ 0 (A− B− C ≤ F1 < 0), and (H2) holds for mi, Mi, i = 0, 3, as in Theorem 9. Then BVP
(1),(10) has at least one positive, increasing (non-decreasing), concave solution in C4[0, 1].

Proof. According to Theorem 9 problem (1),(10) has at least one positive, concave solution x(t) ∈
C4[0, 1]. From Lemma 9 we know that

x′(t) ≥ B− A + C + F1 > 0 (x′(t) ≥ B− A + C + F1 ≥ 0), t ∈ [0, 1],

and as a result x(t) is increasing (non-decreasing); let us note, since A − B − C < 0 the
inequality A− B− C < F1 ≤ 0 (A − B − C ≤ F1 < 0) is possible and so B − A + C + F1 > 0
(B− A + C + F1 ≥ 0).

Corollary 2. Let A = B > 0(A, B = 0) and C, D ≤ 0. Suppose (H1) holds with L1 ≤ 0, and (H2) holds for
mi, Mi, i = 0, 3, as in Theorem 9. Then BVP (1),(10) has at least one positive (non-negative), concave solution
x(t) ∈ C4[0, 1] for which there is a µ ∈ (0, 1) with the property x(µ) = max[0,1] x(t).

Proof. A positive (non-negative), concave solution x(t) ∈ C4[0, 1] exists by Theorem 9. By the mean
value theorem there is a µ ∈ (0, 1) such that x′(µ) = B− A = 0, which yields the assertion.
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Theorem 10. Let A, B > 0(A.B = 0 and A + B ≥ 0), C ≤ 0 and D ≥ 0. Suppose (H1) holds with F1 ≥ 0,
and (H2) holds for

m0 = min{A, B}, M0 = A + |B− A|+ |C|+ L1,

m1 = B− A + C− L1, M1 = B− A− C + L1,

m2 = C− L1, M2 = C, m3 = F1, M3 = L1.

Then BVP (1),(11) has at least one positive (non-negative), convex solution in C4[0, 1].

Proof. Following the proof of Theorem 5 and using Lemmas 10 and 2, we establish that there is a
solution x(t) ∈ C4[0, 1]. In fact, from Lemmas 10 we know that x(t) ≥ min{A, B} > 0 (x(t) ≥ 0) and
x′′(t) ≤ C ≤ 0 for t ∈ [0, 1], which completes the proof.

Corollary 3. Let B > A > 0, A − B < C ≤ 0 and D ≥ 0. Suppose (H1) holds with F1 ≥ 0 and
0 ≤ L1 < B− A + C(0 < L1 ≤ B− A + C), and (H2) holds for mi, Mi, i = 0, 3, as in Theorem 10. Then
BVP (1),(11) has at least one positive, increasing (non-decreasing), convex solution in C4[0, 1].

Proof. According to Theorem 10 problem (1),(11) has at least one positive, convex solution x(t) ∈
C4[0, 1]. From Lemma 10 we know that

x′(t) ≥ B− A + C− L1 > 0 (x′(t) ≥ B− A + C− L1 ≥ 0), t ∈ [0, 1],

and as a result x(t) is increasing (non-decreasing); the inequality B − A + C − L1 > 0
(B− A + C− L1 ≥ 0) is possible since B− A + C > 0.

Corollary 4. Let A = B > 0(A, B = 0), C ≤ 0 and D ≥ 0. Suppose (H1) holds with F1 ≥ 0, and (H2)
holds for mi, Mi, i = 0, 3, as in Theorem 10. Then BVP (1),(11) has at least one positive (non-negative), convex
solution x(t) ∈ C4[0, 1] for which there is a µ ∈ (0, 1) with the property x(µ) = max[0,1] x(t).

Proof. A positive (non-negative), convex solution x(t) ∈ C4[0, 1] exists by Theorem 10. By the mean
value theorem there is a µ ∈ (0, 1) such that x′(µ) = B− A = 0, which yields the assertion.

Example 3. Consider the BVP

x(4) =
(x′′′ − 3)

√
400− x′2

t(x′′2 + 1)
√

225− x2
, t ∈ (0, 1), (31)

x(0) = 1, x(1) = 0, x′′(0) = 2, x′′′(1) = 3.

The assumptions of Theorem 8 hold for F2 = 1, F1 = 2, L1 = 4, L2 = 5 and σ = 0.1, for example. Hence,
the considered problem has a solution in C4[0, 1].

Example 4. Consider the BVP for (31) with boundary conditions

x(0) = 1, x(1) = 6, x′′(0) = −2, x′′′(1) = −2.

This problem has a positive, increasing, concave solution in C4[0, 1] by Corollary 1. Now, F2 = −3,
F1 = −2, L1 = −1, L2 = 0 and σ = 0.1, for example.

Example 5. Consider the BVP for (31) with boundary conditions

x(0) = 2, x(1) = 2, x′′(1) = −1, x′′′(1) = 2.
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The assumptions of Corollary 4 are satisfied for F2 = 0, F1 = 1, L1 = 3, L2 = 4 and σ = 0.1, for example.
Thus, the considered problem has a positive, convex solution x(t) ∈ C4[0, 1] which has a maximum on (0, 1).

5. Problems (1),(12) and (1),(13)

Theorem 11. Let (H1) hold and let (H2) hold for

M0 = |A|+ |B|+ |C− B|+ max{|F1|, |L1|}, m0 = −M0,

M1 = |B|+ |C− B|+ max{|F1|, |L1|}, m1 = −M1,

M2 = |C− B|+ max{|F1|, |L1|}, m2 = −M2, m3 = F1, M3 = L1.

Then BVPs (1),(12) and (1),(13) have at least one solution in C4[0, 1].

Proof. As in the proof of Theorem 5, we check that family (1)λ, (12) and BVP (1),(12) as well as
family (1)λ,(13) and BVP (1),(13) satisfy all hypotheses of Theorem 4 and so the assertion is true.
Moreover, now

m0 ≤ x(t) ≤ M0 on [0, 1], by Lemma 11,

m1 ≤ x′(t) ≤ M1 on [0, 1], by Lemma 11,

m2 ≤ x′′(t) ≤ M2 on [0, 1], by Lemma 4,

m3 ≤ x′′′(t) ≤ M3 on [0, 1], by Lemma 2.

Theorem 12. Let A, B, C > 0(A, B, C = 0) and D ≤ 0. Suppose (H1) holds with L1 ≤ 0, and (H2) holds for

m0 = A, M0 = A + B + |C− B|+ |F1|,

m1 = min{B, C}, M1 = B + |C− B|+ |F1|,

m2 = C− B + F1, M2 = C− B− F1, m3 = F1, M3 = L1.

Then BVP (1),(12) has at least one positive, increasing (non-negative, non-decreasing), concave solution in
C4[0, 1].

Proof. Following the proof of Theorem 5 and using Lemma 12 and Lemma 2, we establish that
there is a solution x(t) ∈ C4[0, 1]. However, from Lemma 12 we know x(t) ≥ A > 0 (x(t) ≥ 0) and
x′(t) ≥ min{B, C} > 0 (x′(t) ≥ 0), t ∈ [0, 1], and by Lemma 2, x′′(t) ≤ L1 ≤ 0, t ∈ [0, 1], which
completes the proof.

Theorem 13. Let A > 0, B, C < 0(A, B, C = 0) and D ≥ 0. Suppose (H1) holds with F1 ≥ 0, and (H2)
holds for

m0 = A, M0 = A + |B|+ |C− B|+ L1,

m1 = −(|B|+ |C− B|+ L1), M1 = max{B, C},

m2 = C− B− L1, M2 = C− B + L1, m3 = F1, M3 = L1.

Then BVP (1),(13) has at least one positive, decreasing (non-negative, non-increasing), convex solution in
C4[0, 1].

Proof. Using Lemma 13 and following the proof of Theorem 5, we establish that there is a
solution x(t) ∈ C4[0, 1]. However, from Lemma 13 we know that x(t) ≥ A > 0 (x(t) ≥ 0) and
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x′(t) ≤ max{B, C} < 0 (x′(t) ≤ 0) for t ∈ [0, 1], and by Lemma 2, x′′(t) ≥ F1 ≥ 0, t ∈ [0, 1], which
completes the proof.

Example 6. Consider the BVP

x(4) = x′′′3(x′2 + x′ + 1) + ln(x′′′ + 8)− 1, t ∈ (0, 1),

x(0) = 1, x′(0) = 0, x′(1) = −1, x′′′(1) = 2.

The assumptions of Theorem 11 are satisfied for F2 = −7.5, F1 = −7, L1 = 2, L2 = 3 and σ = 0.1. Thus,
the problem has a solution in C4[0, 1].

Example 7. Consider the BVP

x(4) = (x′′2 + 5)(exp(x′′′ + 3)− 1) + (t− 1) sin(x + 2)− 2, t ∈ (0, 1),

x(0) = 2, x′(0) = 1, x′(1) = 5, x′′′(1) = −3.

It is not hard to check that we can apply Theorem 12 if F2 = −5, F1 = −4, L1 = −2, L2 = −1 and
σ = 0.1. Thus, the considered problem has a positive, increasing, concave solution in C4[0, 1].

Example 8. Consider the BVP

x(4) = t
√

x′ + 15 sin(x′′′ − 2), t ∈ (0, 1),

x(1) = 1, x′(0) = −4, x′(1) = −1, x′′′(1) = 2.

This problem has a positive, decreasing, convex solution in C4[0, 1] by Theorem 13. Now, F2 = 0, F1 = 1,
L1 = 2.5, L2 = 3 and σ = 0.1.

6. Conclusions

This paper introduces the reader to the possibility of the barrier strips technique (based here on
condition (H1)) for investigating not only the solvability of various two-point BVPs for fourth-order
nonlinear differential equations, but also for investigating the existence of solutions with important
properties; we cannot cite known results that guarantee similar conclusions for Examples 6–8.
The number of similar BVPs on which this technique is applicable can be substantially increased
by using another suitable condition of barrier strips type, alone or in combination with (H1).
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