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Abstract: Multi-term time fractional diffusion model is not only an important physical subject, but
also a practical problem commonly involved in engineering. In this paper, we apply the alternating
segment technique to combine the classical explicit and implicit schemes, and propose a parallel
nature difference method alternating segment pure explicit–implicit (PASE-I) and alternating segment
pure implicit–explicit (PASI-E) difference schemes for multi-term time fractional order diffusion
equations. The existence and uniqueness of the solutions are proved, and stability and convergence
analysis of the two schemes are also given. Theoretical analyses and numerical experiments show
that the PASE-I and PASI-E schemes are unconditionally stable and satisfy second-order accuracy in
spatial precision and 2− α order in time precision. When the computational accuracy is equivalent,
the CPU time of the two schemes are reduced by up to 2/3 compared with the classical implicit
difference method. It indicates that the PASE-I and PASI-E parallel difference methods are efficient
and feasible for solving multi-term time fractional diffusion equations.

Keywords: multi-term time fractional diffusion equations; PASE-I and PASI-E schemes; stability;
convergence; numerical experiments

1. Introduction

Fractional differential equations have been widely used in medicine, mechanics, control theory,
environmental science, and finance [1–4]. In addition, fractional differential equations have unique
advantages in describing the memory and genetic properties of matter. Therefore, the numerical
solution of fractional differential equations has become one of the more active research fields in the
world [5–7].

It is well known that the diffusion process of pollutants in complex structural soils or underground
aquifers can span multiple scales in many cases, and needs to consider the impact of changes in time
scales on the entire process. This paper considers multi-term time fractional diffusion equation [2,5].

Pα,α1,...,αm(Dt)u(x, t) = ∂2u(x,t)
∂x2 + f (x, t), (x, t) ∈ (0, L)× (0, T],

u(x, 0) = µ(x), x ∈ [0, L],

u(0, t) = φ(t), u(L, t) = v(t), t ∈ (0, T].

(1)

where µ(x), v(t), and φ(t) are three functions that are known to be properly smooth. Pα,α1,...,αm(Dt) is
defined as

Pα,α1,...,αm(Dt) = Dα
t +

m

∑
i=1

liD
αi
t , li > 0, m ∈ N+, 0 < α1 < α2 . . . < αm < α < 1.
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Dα
t u(x, t) is a Caputo derivative operator for t, and is defined as

Dα
t u(x, t) =

1
Γ(1− α)

∫ t

0

∂u(x, ξ)

∂ξ

dξ

(t− ξ)α
, 0 < α < 1.

where Γ(·) is Gamma function.
For the study of multi-term time fractional diffusion equations, Luchko (2011) [8] applied the

Fourier variable separation method and multi-term Mittag–Leffler (M-L) functions to construct a
generalized solution. Li et al. (2015) [9] treated the low order fractional term as the perturbation
of the high order fractional term, and used some important properties of M-L function and feature
function expansion method to study the initial and boundary value problems of multi-time fractional
differential equations. With the fractional Laplace operator, Luchko’s theorem, and multi-term M-L
functions, Sin et al. (2017) [10] gave the analytical solutions of multi-term time-space Caputo–Riesz
fractional diffusion equations in finite regions. However, the analytical solutions of fractional
differential equations are difficult to be explicitly obtained in general. Even if the analytical solutions
are given, most of them contain special functions, such as M-L functions, Wright function, H-function,
hypergeometric function, etc. Therefore, it is particularly important to develop efficient numerical
algorithms for solving fractional differential equations.

There are some related results on the numerical solution of multi-term time fractional differential
equations. Ye et al. (2014) [11] proved a maximum principle for the multi-term time-space Riesz–Caputo
fractional differential equations and applied a fractional predictor–corrector method combining the
L1 and L2 discrete schemes to numerical solving the equation. The L1 and L2 formulas approximate
the Caputo fractional derivative Dα

t u(x, t) of 0 < α < 1 and 1 < α < 2 by piecewise interpolation,
respectively. For the multi-term time fractional diffusion equation in bounded convex polyhedron
domain, Jin et al. (2015) [12] gave the numerical algorithm based on the standard Galerkin finite element
method of space discretization and the finite difference method of time discretization, and discussed its
stability and error estimation. Shiralashetti and Deshi (2016) [13] applied the Haar wavelet collocation
method for solving multi-term fractional differential equations using the fractional order operational
matrix of integration. Li et al. (2018) [14], based on the mixed finite-element method and finite
difference method, gave the numerical algorithms of the multi-term time-fractional diffusion equations
and diffusion-wave equations with Caputo fractional derivative. The unconditional stability and
convergence results are proved. Wang et al. (2018) [15] applied the conforming triangular element
method to numerically solve the two-dimensional multi-time fractional diffusion equation and carry
out the accuracy analysis. Based on the bilinear finite element method in the spatial direction and L1
formula and Crank–Nicolson (C-N) formula in the temporal direction, Wei et al. (2018) [16] established
unconditionally stable fully discrete approximation schemes for two-term mixed time fractional
diffusion-wave equations and proved their unconditional stability. Furthermore, the superconvergence
result is obtained, which improves the accuracy of numerical approximation without greatly increasing
the computational complexity.

The numerical methods of fractional partial differential equations are still dominated by the finite
difference method and the series method. The theoretical analysis tools mainly include Fourier method,
energy estimation, matrix method, and mathematical induction. The research on the finite difference
method for solving multi-term time fractional diffusion equations is as follows. Liu et al. (2013) [17]
gave two kinds of implicit difference algorithms for multi-term time fractional wave equations
with nonhomogeneous Dirichlet boundary conditions. Ren and Sun (2014) [18] proposed a high
precision difference algorithm for one- and two-dimensional multi-term time fractional diffusion
equations. For multi-term time fractional diffusion-wave equation, Dehghan et al. (2015) [19] combined
with finite difference method and Galerkin spectral method to give a numerical algorithm with
fourth-order precision. The energy method was applied to prove that the algorithm is unconditionally
stable. For multi-term time fractional diffusion equation, Gao et al. (2017) [20] firstly constructed a
numerical difference formula with second-order accuracy to approximate multiple Caputo type time



Mathematics 2020, 8, 596 3 of 19

fractional derivatives, and then applied fourth-order difference format in space and proposed the high
precision difference scheme for time fractional diffusion equations. Yang et al. (2019) [21] applied
explicit–implicit and implicit–explicit difference schemes for numerical solving double-term time
fractional sub-diffusion equation. However, the existing numerical methods for solving multi-term
time fractional diffusion equations are mostly serial algorithms. The computational efficiency of those
algorithms is low and the computation time is long. It is difficult to simulate long-term or large
computational domains, even with the application of high performance computers.

With the rapid development of multi-core and cluster technology, parallel algorithms have
become one of the mainstream technologies to improve computational efficiency [22–25]. In recent
years, some interesting results on the parallel algorithms of fractional partial differential equations have
been obtained [26,27]. For one-dimensional space fractional diffusion equation, Wang et al. (2010) [28]
presented a fast O(Nlog2N) algorithm for the difference scheme, based on the special structure of
difference matrix in the constructed scheme. Diethelm (2011) [29] performed parallel computing
on second-order Adams–Bashforth–Moulton method for fractional derivatives, and discussed the
accuracy of the parallel method. Wang and Basu (2012) [30] further extended the fast algorithm
to solve two-dimensional space fractional diffusion equation, which is an early attempt to apply
the fast algorithm to the numerical simulation of fractional differential equation. Gong et al.
(2013) [31] parallelized the explicit difference scheme of the space fractional reaction-diffusion equation.
Sweilam et al. (2014) [32] constructed a class of parallel C-N difference schemes for time fractional
parabolic equations. The core of the method is to use the precondition conjugate gradient method
to solve discrete algebraic equations. Wang et al. (2016) [33] proposed an efficient parallel algorithm
for Caputo fractional reaction–diffusion equation with implicit difference scheme. They developed a
new tridiagonal reduced system with elimination method. Yang and Dang (2019) [34] constructed a
class of improved alternating segment C-N difference scheme for time fractional reaction-diffusion
equation. The parallel difference scheme has second-order spatial accuracy and 2− α-order temporal
accuracy. Fu and Wang (2018) [35] developed a fast parareal finite difference method for space-time
fractional partial differential equation. At each time step, they explored the structure of the stiffness
matrix to develop a matrix-free preconditioned fast Krylov subspace iterative solver for the finite
difference method without resorting to any lossy compression. Most of the algorithms for fractional
partial differential equations are studied on the parallel algorithm of algebraic equations from the
perspective of numerical algebra.

At present, the parallel algorithms for integer order differential equations are relatively
mature [25,26]. However, the existing parallel algorithms cannot be directly applied to numerically
solving fractional differential equations. To obtain parallel algorithms with higher precision and more
relaxed stability conditions, we use the parallelization of traditional differential schemes, and hope to
skip the difficulties of numerical algebra. As far as we know, research on parallel nature algorithms for
multi-term time fractional diffusion equations has not been reported.

In this paper, we try to construct a class of alternating segment pure explicit–implicit (PASE-I) and
pure implicit–explicit (PASI-E) parallel nature difference methods for solving multi-term time fractional
diffusion equations. In Section 2, we alternately apply the classical explicit scheme and implicit scheme
to segment the solution region, and obtain a new kind of parallel nature difference (PASE-I) scheme.
Theoretical analysis of the PASE-I parallel scheme is given in Section 3. The construction and analysis
of the PASI-E scheme are given in Section 4. Finally, numerical experiments are used to verify the
correctness of theoretical analysis.

2. Construction of PASE-I Parallel Difference Scheme

Take two positive integers M and N and do equidistant rectangular meshing of the solution area
{(x, t)|0 ≤ x ≤ L, 0 ≤ t ≤ T}. Set h = L

M for spatial mesh points xi = (i− 1)h, 1 ≤ i ≤ M + 1 and
τ = T

N for temporal mesh points tk = kτ, 0 ≤ k ≤ N, respectively.
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For numerical approximation of the time Caputo derivative, the so-called L1 formula is prepared
below. The L1 formula approximates the Caputo fractional derivative based on piecewise linear
interpolation. Suppose f (t) ∈ C2[t0, tk] and 0 < α < 1. Then,

C
0Dα

t f (tk) =
τ−α

Γ(2− α)

[
bα

0 f (tk)− bα
k−1 f (t0)−

k−1

∑
j=1

(bα
j−1 − bα

j ) f (tk−j)

]
+ O(τ2−α),

where bα
j = (j + 1)1−α − j1−α, j ≥ 0. τ is the time step [6,7].

Define the discrete operator Lα
τu(xi, tk) := τ−α

Γ(2−α)
[bα

0 u(xi, tk) − bα
k−1u(xi, t0) − ∑k−1

j=1 (b
α
j−1 −

bα
j )u(xi, tk−j)]. The discrete formula of Pα,α1,...,αm(Dt)u(x, t) can be written as

Pα,α1,...,αm(Dt)u(xi, tk) =

(
Lα

t +
m

∑
i=1

liL
αi
t

)
u(xi, tk).

Denote uk
i = u(xi, tk), f k

i = f (xi, tk). For ∂2u
∂x2 in Equation (1), a second-order central difference

formula is applied to approximate it. The classical explicit scheme and implicit scheme of Equation (1)
are given, respectively.

The explicit difference scheme of Equation (1):

(Lα
t +

m

∑
i=1

liL
αi
t )uk

i =r(uk−1
i−1 − 2uk−1

i + uk−1
i+1 ) + f k

i . (2)

It can be written as

a0uk
i =ruk−1

i−1 + (a0 − a1 − 2r)uk−1
i + ruk−1

j=2 +
k−1

∑
j=2

(aj−1 − aj)u
k−j
i

+ ak−1u0
i + f k

i .

The implicit difference scheme of Equation (1):

(Lα
τ +

m

∑
i=1

liL
αi
t )uk

i = r(uk
i−1 − 2uk

i + uk
i+1) + f k

i . (3)

It can be written as

−ruk
i−1 + (a0 +

2
h2 )u

k
i − ruk

i+1 =(a0 − a1)uk−1
i +

k−1

∑
j=2

(aj−1 − aj)u
k−j
i

+ ak−1u0
i + f k

i .

where r = 1
h2 , ak =

1
Γ(2−α)

bα
k + ∑m

i=1 li τα−αi
Γ(2−αi)

bαi
k , k = 1, . . . , N.

Before constructing the PASE-I parallel difference scheme, we firstly give the calculation format
of the explicit segment and the implicit segment. For i0 ≥ 0, consider the calculation of points
(i0 + i, n + 1), i = 1, 2, . . . , l in an implicit (explicit) segment.

The implicit segment calculation scheme is
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(a0 I + A)



un+1
i0+1

un+1
i0+2
...

un+1
i0+l−1
un+1

i0+l


=



run+1
i0
0
...
0

run+1
i0+l+1

+
n

∑
j=1

wj



un+1−j
i0+1

un+1−j
i0+2

...
un+1−j

i0+l−1

un+1−j
i0+l


+ an



u0
i0+1

u0
i0+2
...

u0
i0+l−1
u0

i0+l


+ Fn+1. (4)

where wj = aj−1 − aj, j = 1, 2, . . . , n.
The explicit segment calculation scheme is

a0



un+1
i0+1

un+1
i0+2
...

un+1
i0+l−1
un+1

i0+l


=(w1 I − A)



un
i0+1

un
i0+2
...

un
i0+l−1
un

i0+l


+



run
i0

0
...
0

run
i0+l+1



+
n

∑
j=2

wj



un+1−j
i0+1

un+1−j
i0+2

...
un+1−j

i0+l−1

un+1−j
i0+l


+ an



u0
i0+1

u0
i0+2
...

u0
i0+l−1
u0

i0+l


+ Fn.

(5)

where A =


2r −r
−r 2r −r

. . . . . . . . .
−r 2r −r

−r 2r


l×l

.

Combining the classical explicit and implicit schemes and applied the alternating segment
technique, the design of alternating segment pure explicit–implicit (PASE-I) for Equation (1) is as
follows. Suppose M− 1 = ql, where l ∈ N+ and q is odd numbers (l, q ≥ 3). The grid points to be
calculated in the same even time layer are divided into q segments, which are sequentially calculated
according to the rules of “(5)-(4)-(5)”. Similarly, the next odd layer is also divided into q segments,
and the calculation rule becomes “(4)-(5)-(4)”. For example, the point diagram of the PASE-I scheme is
shown in Figure 1, when q = 5 and l = 5. Then, we get the PASE-I scheme for Equation (1) as follows.{

(a0 I + G1)Vn+1 = (w1 I − G2)Vn + w2Vn−1 . . . + wnV1 + anV0 + bn
1 + Fn+1,

(a0 I + G2)Vn+2 = (w1 I − G1)Vn+1 + w2Vn . . . + wn+1V1 + an+1V0 + bn+2
1 + Fn+2.

(6)

where bn
1 = (run

1 , . . . , run
M+1)

′, Fn = ( f n
2 , f n

3 , . . . , f n
M), Vn = (un

2 , un
3 , . . . , un

M)′, n = 0, 2, 4, . . .. I is M− 1
order unit matrix, Q1 is l − 1 order zero matrix, and Q2 is l − 2 order zero matrix. G1 and G2, M− 1
order matrices, are defined as follows.
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G1 =



Q1

G3

Q2

G3
. . .

Q2

G3

Q1


(M−1)×(M−1)

,

G2 =



G4

Q2

G3

Q2
. . .

G3

Q2

G5


(M−1)×(M−1)

,

where

G3 =


0 0
−r 2r −r

. . . . . . . . .
−r 2r −r

0 0


(l+2)×(l+2)

,

G4 =


2r −r
−r 2r −r

. . . . . . . . .
−r 2r −r

0 0


(l+1)×(l+1)

,

G5 =


0 0
−r 2r −r

. . . . . . . . .
−r 2r −r

−r 2r


(l+1)×(l+1)

.

Figure 1. Point diagram of the PASE-I scheme.

3. Theoretical Analysis of PASE-I Difference Scheme

3.1. The Existence and Uniqueness of PASE-I Scheme’s Solution

Lemma 1. The matrices a0 I + G1 and a0 I + G2 defined by the PASE-I scheme are nonsingular matrices.
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Proof. It is known that a0 I + G1 is a strictly diagonally dominant matrix and the main diagonal
elements are positive real numbers, from a0 > 0 and the definition of G1. Thus, a0 I + G1 is a
nonsingular matrix and (a0 I + G1)

−1 exists. a0 I + G2 is also a nonsingular matrix and (a0 I + G2)
−1

exists. Thus, there is the following theorem.

Theorem 1. The solution of the PASE-I scheme for solving multi-term time fractional diffusion Equation (1)
is unique.

3.2. Stability of PASE-I Scheme

Lemma 2. If the matrix C is a nonnegative definite matrix, and 0 ≤ σ1 ≤ σ2, then there is an estimate for
ρ ≥ 0

‖(σ1 I − ρC)(σ2 I + ρC)−1‖2 ≤ 1. (7)

Proof.

‖(σ1 I − ρC)(σ2 I + ρC)−1‖2
2

= max
ϕ∈Rn ,ϕ 6=0

(
(σ1 I − ρC)(σ2 I + ρC)−1 ϕ, (σ1 I − ρC)(σ2 I + ρC)−1 ϕ

)
(ϕ, ϕ)

Make a transformation ψ = (σ2 I + ρC)−1 ϕ; then,

‖(σ1 I − ρC)(σ2 I + ρC)−1‖2
2

= max
ϕ∈Rn ,ϕ 6=0

(
(σ1 I − ρC)(σ2 I + ρC)−1 ϕ, (σ1 I − ρC)(σ2 I + ρC)−1 ϕ

)
(ϕ, ϕ)

= max
ϕ∈Rn ,ϕ 6=0

((σ1 I − ρC)ψ, (σ1 I − ρC)ψ)
((σ2 I + ρC)ψ, (σ2 I + ρC)ψ)

= max
ϕ∈Rn ,ϕ 6=0

σ2
1 (ψ, ψ)− 2σ1ρ(Cψ, ψ) + ρ2(Cψ, Cψ)

σ2
2 (ψ, ψ) + 2σ2ρ(Cψ, ψ) + ρ2(Cψ, Cψ)

.

From 0 ≤ σ1 ≤ σ2, we can get

‖(σ1 I − ρC)(σ2 I + ρC)−1‖2 ≤ 1.

We suppose that ūn
i is the approximate solution of Equation (1) and the error εn

i = un
i − ūn

i , En =

(εn
2, εn

3, . . . , εn
M), 1 ≤ n ≤ N + 1. En is introduced into the PASE-I scheme. We can get{

(a0 I + G1)En+1 = (w1 I − G2)En + w2En−1... + wnE1 + anE0,

(a0 I + G2)En+2 = (w1 I − G1)En+1 + w2En... + wn+1E1 + an+1E0,
(8)

where N = 0, 2, 4, · · · .
When n ≥ 2,

En+2

=(a0 I + G2)
−1(w1 I − G1)(a0 I + G1)

−1(w1 I − G2)En

+ (a0 I + G2)
−1(w1 I − G1)(a0 I + G1)

−1(w2En−1 + · · ·+ wnE1 + anE0)

+ (a0 I + G2)
−1(w2En + · · ·+ wn+1E1 + an+1E0).

Taking the norm on both sides of the above equation, we can get
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‖En+2‖
≤‖(a0 I + G2)

−1(w1 I − G1)(a0 I + G1)
−1(w1 I − G2)‖‖En‖

+ ‖(a0 I + G2)
−1(w1 I − G1)(a0 I + G1)

−1‖‖(w2En−1 + · · ·+ wnE1 + anE0) ‖
+ ‖(a0 I + G2)

−1‖‖(w2En + · · ·+ wn+1E1 + an+1E0)‖.

The growth matrix of the PASE-I scheme is

T = (a0 I + G2)
−1(w1 I − G1)(a0 I + G1)

−1(w1 I − G2).

According to the definition of G1, G2, matrices G1 and G2 have the same eigenvalues. Suppose
that the eigenvalues of G1 and G2 are λ. Let T̃ = (a0 I + G2)T(a0 I + G2)

−1. Then, we have

‖T‖ = ‖T̃‖ = ‖(w1 I − G1)(a0 I + G1)
−1(w1 I − G2)(a0 I + G2)

−1‖

= max
{∣∣∣∣(w1 − λ

a0 + λ
)2
∣∣∣∣} ≤ 1.

(9)

The following inequality ‖En‖ ≤ ‖E0‖ is proved by mathematical induction.
When n = 0, for E1,

(a0 I + G1)E1 = (I − G2)E0,

‖E1‖ = ‖(a0 I + G1)
−1(I − G2)E0‖ ≤ ‖E0‖.

For E2, Case 1. max {w1, λ} = w1,∥∥∥E2
∥∥∥

≤
∥∥∥(a0 I + G2)

−1 (w1 I − G1) (a0 I + G1)
−1 (I − G2)

∥∥∥ ∥∥∥E0
∥∥∥+ ∥∥∥(a0 I + G2)

−1
∥∥∥ ∥∥∥a1E0

∥∥∥
≤max

{∣∣∣∣w1 − λ

a0 + λ

∣∣∣∣} ∥∥∥E0
∥∥∥+ max

{∣∣∣∣ a1

a0 + λ

∣∣∣∣} ∥∥∥E0
∥∥∥

≤max
{

a0 − λ

a0 + λ

}∥∥∥E0
∥∥∥

≤
∥∥∥E0

∥∥∥ .

Case 2. max {w1, λ} = λ,∥∥∥E3
∥∥∥

≤
∥∥∥a0(2I + G2)

−1 (w1 I − G1) (a0 I + G1)
−1 (I − G2)

∥∥∥ ∥∥∥E0
∥∥∥+ ∥∥∥(a0 I + G2)

−1
∥∥∥ ∥∥∥a1E0

∥∥∥
≤max

{∣∣∣∣w1 − λ

a0 + λ

∣∣∣∣} ∥∥∥E0
∥∥∥+ max

{∣∣∣∣ a1

a0 + λ

∣∣∣∣} ∥∥∥E0
∥∥∥

≤max
{

λ + a1 − w1

a0 + λ

}∥∥∥E0
∥∥∥

≤
∥∥∥E0

∥∥∥ .

Assume that, when n ≤ k + 1, the inequality ‖En‖ ≤ ‖E0‖ is true. When n = k + 2,
Case 1. max {w1 − λ} ≤ max {w1, λ} ≤ w1,
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∥∥∥Ek+2
∥∥∥

≤
∥∥∥(a0 I + Ḡ2)

−1
(w1 I − Ḡ1) (a0 I + Ḡ1)

−1
(w1 I − Ḡ2)

∥∥∥ ∥∥∥Ek
∥∥∥

+
∥∥∥(a0 I + Ḡ2)

−1
(w1 I − Ḡ1) (a0 I + Ḡ1)

−1
∥∥∥ ∥∥∥(w2Ek−1 + · · ·+ wkE1 + akE0

)∥∥∥
+
∥∥∥(a0 I + Ḡ2)

−1
∥∥∥ ∥∥∥(w2Ek + · · ·+ wk+1E1 + ak+1E0

)∥∥∥
≤
(

w1

a0 + λ

)2 ∥∥∥E0
∥∥∥+ w1 (1− w1)

(a0 + λ)2

∥∥∥E0
∥∥∥+ 1− w1

a0 + λ

∥∥∥E0
∥∥∥

≤w1

∥∥∥E0
∥∥∥+ (1− w1)

∥∥∥E0
∥∥∥

≤
∥∥∥E0

∥∥∥ .

Case 2. max {w1 − λ} ≤ max {w1, λ} ≤ λ,∥∥∥Ek+2
∥∥∥

≤
∥∥∥(a0 I + Ḡ2)

−1
(w1 I − Ḡ1) (a0 I + Ḡ1)

−1
(w1 I − Ḡ2)

∥∥∥ ∥∥∥Ek
∥∥∥

+
∥∥∥(a0 I + Ḡ2)

−1
(w1 I − Ḡ1) (a0 I + Ḡ1)

−1
∥∥∥ ∥∥∥(w2Ek−1 + · · ·+ wkE1 + akE0

)∥∥∥
+
∥∥∥(a0 I + Ḡ2)

−1
∥∥∥ ∥∥∥(w2Ek + · · ·+ wk+1E1 + ak+1E0

)∥∥∥
≤
(

λ

a0 + λ

)2 ∥∥∥E0
∥∥∥+ λ (1− w1)

(a0 + λ)2

∥∥∥E0
∥∥∥+ 1− w1

a0 + λ

∥∥∥E0
∥∥∥

=
λ

a0 + λ

(
λ

a0 + λ
+

1− w1

a0 + λ

)∥∥∥E0
∥∥∥+ 1− w1

a0 + λ

∥∥∥E0
∥∥∥

≤ λ

a0 + λ

∥∥∥E0
∥∥∥+ 1− w1

a0 + λ

∥∥∥E0
∥∥∥

≤
∥∥∥E0

∥∥∥ .

In summary, there is the following theorem.

Theorem 2. The PASE-I scheme of the multi-term time fractional diffusion Equation (1) is unconditionally stable.

3.3. Convergence of PASE-I Scheme

Firstly, the accuracy analyses of the explicit and implicit schemes are performed separately.
The truncation errors of explicit and implicit schemes are T1(τ, h) and T2(τ, h), respectively. The Taylor
expansion is performed at grid point (xi, tn+1). It is known that the discreteness of the C

0Dα
t u(xi, tn+1)

formula has 2− α order numerical precision [6,7].
The truncation error of explicit scheme T1(τ, h) is

T1(τ, h) =(Lα
t +

m

∑
i=1

liL
αi
t )uk

i −
1
h2 (u

k−1
i−1 − 2uk−1

i + uk−1
i+1 )− f k

i

=Dα
t u +

m

∑
i=1

liD
αi
t u− uxx − f k

i

+ τuxxt +
τh2

12
uxxxxt −

τ2

2
uxxtt −

h2

12
uxxxx + O(τ2−α +

m

∑
i=1

τ2−αi + h2)

=τuxxt +
τh2

12
uxxxxt −

τ2

2
uxxtt −

h2

12
uxxxx + O(τ2−α +

m

∑
i=1

τ2−αi + h2).
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The truncation error of implicit scheme T2(τ, h) is

T2(τ, h) =(Lα
τ +

m

∑
i=1

liL
αi
t )uk

i −
1
h2 (u

k
i−1 − 2uk

i + uk
i+1)− f k

i

=Dα
t u +

m

∑
i=1

liD
αi
t u− uxx − f k

i

− τuxxt −
τh2

12
uxxxxt −

τ2

2
uxxtt −

h2

12
uxxxx + O(τ2−α +

m

∑
i=1

τ2−αi + h2)

=− τuxxt −
τh2

12
uxxxxt −

τ2

2
uxxtt −

h2

12
uxxxx + O(τ2−α +

m

∑
i=1

τ2−αi + h2).

For the PASE-I scheme, the explicit scheme and implicit scheme are alternately applied for each
grid point in spatial direction. The coefficients of the two terms uxxt and uxxxxt are opposite numbers
in T1(τ, h), T2(τ, h). Therefore, the two terms uxxt and uxxxxt of the truncation errors are offset for the
PASE-I scheme. The accuracy of PASE-I scheme is O(τ2−α + ∑m

i=1 τ2−αi + h2).
Suppose u(xi, tn) is the solution of Equation (1) at the mesh point (xi, tn). The defined en

i =

u(xi, tn)− un
i , en = (en

2 , en
3 , . . . , en

M)T , (1 ≤ i ≤ M + 1, 1 ≤ n ≤ N + 1). en and e0 = 0 are substituted
into the PASE-I scheme,{

(a0 I + G1)en+1 = (w1 I − G2)en + w2en−1... + wne1 + ane0 + R,

(a0 I + G2)en+2 = (w1 I − G1)en+1 + w2en... + wn+1e1 + an+1e0 + R,
(10)

where R = ταO(τ2−α + ∑m
i=1 τ2−αi + h2) ≤ C(τ2 + h2τα) and C is a constant.

When n = 1, for e1,

e1 = (I + G1)
−1 (I − G2) e0 + (I + G1)

−1R = (I + G1)
−1R.

Take the norm on both sides of above equation.∥∥∥e2
∥∥∥ =

∥∥∥(I + G1)
−1R

∥∥∥ ≤ ‖R‖ ≤ C
(

τ2 + h2τα
)
= a−1

0 ταC
(

τ2−α + h2
)

.

For e2, we have
(a0 I + G2)e2 = (w1 I − G1)e1 + R.

Take the norm on both sides of above equation.∥∥∥e2
∥∥∥ =

∥∥∥(a0 I + G2)
−1[(w1 I − G1)e1 + R]

∥∥∥
≤
∥∥∥(a0 I + G2)

−1
∥∥∥ [‖w1 I − G1‖+ a1]a−1

1 R.

Case 1. max{w1 − λ} ≤ max{w1, λ} ≤ w1,∥∥∥e2
∥∥∥ ≤ ∥∥∥(a0 I + G2)

−1
∥∥∥ [‖w1 I − G1‖+ a1]a

−1
1 R

≤ 1
a0
[(w1 + a1)a−1

1 R]

≤ a−1
1 R ≤ a−1

1 ταC
(

τ2−α + h2
)

.
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Case 2. max{w1 − λ} ≤ max{w1, λ} ≤ λ,∥∥∥e2
∥∥∥ = (a0 I + G2)

−1[(w1 I − G1)e1 + R]

≤
∥∥∥(a0 I + G2)

−1
∥∥∥ [‖w1 I − G1‖+ a1]a

−1
1 R

≤ 1
a0 + λ

[(λ− w1 + a1)a−1
1 R]

≤
2a1 − a0 + λ

a0 + λ
a−1

1 R ≤ a−1
1 R ≤ a−1

1 ταC
(

τ2−α + h2
)

.

when n ≤ k + 1, assume that the inequality ‖en‖ ≤ a−1
n−1R is true. When n = k + 2,

Case 1. max{w1 − λ} ≤ max{w1, λ} ≤ w1,∥∥∥ek+2
∥∥∥

≤
∥∥∥(a0 I + G2)

−1 (w1 I − G1) (a0 I + G1)
−1 (w1 I − G2)

∥∥∥ ∥∥∥ek
∥∥∥

+
∥∥∥(a0 I + G2)

−1 (w1 I − G1) (a0 I + G1)
−1
∥∥∥ ∥∥∥(w2ek−1 + · · ·+ wke1 + ake0

)∥∥∥
+
∥∥∥(a0 I + G2)

−1
∥∥∥ ∥∥∥(w2ek + · · ·+ wk+1e1 + ak+1e0

)∥∥∥+ ∥∥∥(a0 I + G)−1
∥∥∥ R

≤
(

w1

a0 + λ

)2
R +

w1 (1− w1)

(a0 + λ)2 R +
1

a0 + λ
(w2 + · · ·+ wk + ak+1) a−1

k+1R

≤
[

w1
2

(a0 + λ)2 +
w1 (1− w1)

(a0 + λ)2 +
1− w1

a0 + λ

]
a−1

k+1R

≤
[

w1

(a0 + λ)2 +
1− w1

a0 + λ

]
a−1

k+1R

≤a−1
k+1R ≤ a−1

k+1ταC
(

τ2−α + h2
)

.

(11)

Case 2. max{w1 − λ} ≤ max{w1, λ} ≤ λ,∥∥∥ek+2
∥∥∥

≤
∥∥∥(a0 I + G2)

−1 (w1 I − G1) (a0 I + G1)
−1 (w1 I − G2)

∥∥∥ ∥∥∥ek
∥∥∥

+
∥∥∥(a0 I + G2)

−1 (w1 I − G1) (a0 I + G1)
−1
∥∥∥ ∥∥∥(w2ek−1 + · · ·+ wke1 + ake0

)∥∥∥
+
∥∥∥(a0 I + G2)

−1
∥∥∥ ∥∥∥(w2ek + · · ·+ wk+1e1 + ak+1e0

)∥∥∥+ ∥∥∥(a0 I + G)−1
∥∥∥ R

≤
(

λ

a0 + λ

)2
R +

λ (1− w1)

(a0 + λ)2 R +
1

a0 + λ
(w2 + · · ·+ wk + ak+1) a−1

k+1R

≤
[

λ2

(a0 + λ)2 +
λ (1− w1)

(a0 + λ)2 +
1− w1

a0 + λ

]
a−1

k+1R

≤
[

λ

a0 + λ

(
λ

a0 + λ
+

1− w1

a0 + λ

)
+

1− w1

a0 + λ

]
a−1

k+1R

≤
[

λ

a0 + λ
+

1− w1

a0 + λ

]
a−1

k+1R

≤a−1
k+1R ≤ a−1

k+1ταC
(

τ2−α + h2
)

.

(12)

From
a−1

n
nα

=
(bα

n + ∑m
i=1 bαi

n )
−1

nα
≤ (bα

n)
−1

nα1
+

∑m
i=1 (b

αi
n )
−1

nα2
, (13)
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we have

lim
n→∞

(bα1
n )
−1

nα1
= lim

n→∞

n−α1

n1−α1 − (n− 1)1−α1
= lim

n→∞

n−1

1− (1− 1
n )

1−α1
=

1
1− α1

, (14)

lim
n→∞

a−1
n
nα

= lim
n→∞

(bα
n)
−1

nα
+ lim

n→∞

∑m
i=1 (b

αi
n )
−1

nα
=

1
1− α

+
m

∑
i=1

1
1− αi

. (15)

From the Equations (11), (12), (14) and (15), we have

∥∥∥en+1
∥∥∥ ≤ a−1

n ταC
(

τ2−α + h2
)
≤

a−1
k+1
nα

nαταC
(

τ2−α + h2
)

≤
(

1
1− α

+
m

∑
i=1

1
1− αi

)
(nτ)αC(τ2−α + h2)

≤
(

1
1− α

+
m

∑
i=1

1
1− αi

)
TαC(τ2−α + h2)

≤ C1(τ
2−α + h2),

(16)

where C1 = ( 1
1−α + ∑m

i=1
1

1−αi
)TαC. We can get the following inequality.

‖u(xi, tn)− un
i ‖ ≤ C1(τ

2−α + h2).

In summary, the following theorem is obtained.

Theorem 3. The PASE-I scheme of the multi-term time fractional diffusion Equation (1) is convergent,
‖u(xi, tn)− un

i ‖ ≤ C(τ2−α + h2), and C is a positive number.

4. PASI-E Parallel Difference Scheme

By changing the calculation order of the explicit segment and implicit segment, the PASI-E
scheme of the multi-term time fractional diffusion Equation (1) can be obtained. The calculation rule
is calculated in the order of “(4)-(5)-(4)” in the even time layer, and in the order of “(5)-(4)-(5)” in the
odd time layer. Then, we can get the PASI-E scheme for solving multi-term time fractional diffusion
Equations (1) as follows.{

(a0 I + G2)Vn+1 = (w1 I − G1)Vn + w2Vn−1... + wnV1 + anV0 + bn
1 + Fn+1,

(a0 I + G1)Vn+2 = (w1 I − G2)Vn+1 + w2Vn... + wn+1V1 + an+1V0 + bn+2
1 + Fn+2,

(17)

where n = 1, 3, 5, . . . The definition of G1, G2, Fn, bn
1 is the same as above.

By the same proof process, there is the following theorem.

Theorem 4. The PASI-E scheme of the multi-term time fractional diffusion Equation (1) is unconditionally
stable and convergent, ‖u(xi, tn)− un

i ‖ ≤ C(τ2−α + h2), and C is a positive number.

Since the PASE-I scheme and the PASI-E scheme differ only in the order of calculation of
the explicit and implicit schemes, the amount of computation of the two parallel schemes should
theoretically be equivalent.
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5. Numerical Experiments

The experiment platform was laptop with Intel(R) Core(TM) i5-2400 CPU, 4 GB main memory and
Windows 7 operating system. The CPU clock frequency is 3.10 GHz. The code was developed with
Matlab R2014b [36]. We consider the following multi-term time fractional diffusion equation [7,12],

Dα1
t u(x, t) + Dα2

t u(x, t) = ∂2u(x,t)
∂x2 + f (x, t), (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = x(1− x), x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1].

(18)

where 0 < α2 < α1 < 1, f (x, t) =
(

2t2−α1
Γ(3−α1)

+ 2t2−α2
Γ(3−α2)

)
(−x2 + x) + 2(1 + t2). The exact solution of the

above equation is u(x, t) = (1 + t2)(−x2 + x).
Take M = 20, N = 100, α1 = 0.9, α2 = 0.5, the error surfaces of the PASE-I scheme and PASI-E

scheme are shown in Figure 2. In Figure 2, the numerical solutions of the two parallel schemes are
consistent with the exact solution.

Next, we verify the calculation precision and convergence order of PASE-I and PASI-E parallel
difference schemes for solving multi-term time fractional diffusion equations. Define E∞(h, τ) =

max0≤i≤M ‖u(xi, tn)− un
i ‖, Orderx = log2

(
E∞(2h,τ)
E∞(h,τ)

)
, and Ordert = log2

(
E∞(h,2τ)
E∞(h,τ)

)
. Firstly, we choose

the optimal step size τ2−α ≈ h2 and α1 = α2 for the calculation precision and convergence order in
space [7]. Then, we choose the values of M as 25, 50, 100, 200, 400, and 800, separately, and the values
of α1 and α2 as 0.4, 0.5, and 0.6, separately. Table 1 shows that the PASE-I and PASI-E parallel difference
methods have a convergence order of 2 in spatial direction. The accuracy of the two parallel difference
schemes is almost the same.
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Figure 2. The error surfaces of numerical solutions of PASE-I and PASI-E schemes.
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Table 1. E∞ and Orderx of PASE-I and PASI-E schemes (τα ≈ h2).

α1 α2 M N PASE-I Scheme PASI-E Scheme

E∞ Orderx E∞ Orderx

0.4 0.4

50 132 1.960988×10−3 —— 1.933065×10−3 ——
100 316 4.750145×10−4 2.045537 4.715343×10−4 2.035455
200 752 1.175639×10−4 2.014526 1.171268×10−4 2.009290
400 1788 2.927383×10−5 2.005761 2.921901×10−5 2.003092
800 4254 7.293185×10−6 2.004990 7.286329×10−6 2.003643

0.5 0.5

50 184 1.808959×10−3 —— 1.783177×10−3 ——
100 464 4.441176×10−4 2.026146 4.408679×10−4 2.016032
200 1169 1.093836×10−4 2.021544 1.097908×10−4 2.005589
400 2947 2.716023×10−5 2.009829 2.721104×10−5 2.012493
800 7426 6.763548×10−6 2.005643 6.757212×10−6 2.009691

0.6 0.6

50 267 1.344353×10−4 —— 1.345261×10−4 ——
100 719 3.270205×10−5 2.039459 3.271047×10−5 2.040061
200 1937 8.019243×10−6 2.027843 8.020099×10−6 2.028060
400 5214 1.979933×10−6 2.018014 1.979839×10−6 2.018236
800 14036 4.901814×10−7 2.014064 4.901704×10−7 2.014027

For the convergence order of the time direction, we take three cases α1 = α2 = 0.35, α1 = 0.4
and α2 = 0.2, and α1 = 0.8 and α2 = 0.2, respectively. Take M = 200 and the value of N as
200, 400, 800, 1600, 3200, respectively. When α1 = α2 = 0.35, the time convergence orders of PASE-I
and PASI-E parallel difference schemes are about 1.65. It is consistent with the theoretical analyses,
and the time convergence order is 2− α. For α1 = 0.4 and α2 = 0.2 and α1 = 0.8 and α2 = 0.2, the time
convergence orders are 1.67 and 1.36, respectively, which are slightly larger than the theoretical analysis
order 2− α.

Suppose r1 ≥ r2. We have

E∞((2τ)r1 + (2τ)r2 + h2)

E∞(τr1 + τr2 + h2)
≈ E∞((2τ)r1 + (2τ)r2)

E∞(τr1 + τr2)
= 2r2

E∞((2τ)r1−r2 + 1)
E∞(τr1−r2 + 1)

≥ 2r2 .

It can be seen from the above equation that the time convergence order is 2− α1 for α1 = α2.
When α1 6= α2, the time convergence order is slightly larger than 2− α, α = max{α1, α2}.

Next, we verify the stability and computational accuracy of two parallel difference schemes
from the perspective of numerical experiments. Tables 1 and 2 show that the accuracy of PASE-I and
PASI-E schemes are similar, thus the following analysis is represented by PASE-I scheme. Let the
numerical solution un

i of the difference scheme be the perturbation solution, and the exact solution
u(xi, tn) is the control solution. Definition of the difference total energy (DTE) of the error is as follows:
DTE(i) = 1

2 ∑N
n=1(u(xi, tn)− un

i )
2.

IN Figure 3, the DTE of PASE-I scheme is within 10−3. With the encryption of the spatial
grid, the DTE is gradually reduced. The PASE-I and PASI-E parallel difference schemes have good
computational accuracy.

For the stability of the PASE-I and PASI-E schemes, we define the relative error (RE) as follows:

RE(j) =
M

∑
i=1

|u(xi, tj)− ui
j|

u(xi, tj)
.
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Table 2. E∞ and Ordert of PASE-I and PASI-E schemes (M = 200).

α1 α2 N
PASE-I Scheme PASI-E Scheme

E∞ Ordert E∞ Ordert

0.35 0.35

200 1.540090×10−4 —— 1.541745×10−4 ——
400 4.981818×10−5 1.628270 4.986837×10−5 1.628367
800 1.579056×10−5 1.657609 1.580609×10−5 1.657643
1600 4.971665×10−6 1.667262 4.976502×10−6 1.667277
3200 1.561734×10−6 1.670579 1.563244×10−6 1.670588

0.4 0.2

200 1.641599×10−4 —— 1.643375×10−4 ——
400 5.320684×10−5 1.625418 5.326029×10−5 1.625530
800 1.681644×10−5 1.661739 1.683288×10−5 1.661777
1600 5.266880×10−6 1.674851 5.271969×10−6 1.674868
3200 1.643123×10−6 1.680508 1.644700×10−6 1.680517

0.8 0.2

200 6.070178×10−4 —— 6.075953×10−4 ——
400 2.349702×10−4 1.369260 2.351861×10−4 1.369307
800 9.139187×10−5 1.362340 9.147204×10−5 1.362400
1600 3.598744×10−5 1.344572 3.601678×10−5 1.344661
3200 1.445759×10−5 1.315666 1.446810×10−5 1.315793
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Figure 3. Distribution of the difference total energy in spatial grid points (M takes 50, 100, 200, 400).

Take the value of M as 200 and the value of N as 400, 800, 1600, and 3200, respectively. Figure 4
shows that the RE of the PASE-I scheme is within a certain range. With the time step decreases,
the RE becomes smaller and smaller. The speed of growth also slows down as the time step decreases.
These demonstrate that the PASE-I parallel difference scheme is computationally stable and consistent
with theoretical analysis.



Mathematics 2020, 8, 596 16 of 19

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

 t

R
E

400

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

 t

R
E

800

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

 t

R
E

1600

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

 t

R
E

3200

Figure 4. Changes in the relative error over time steps (N takes 400, 800, 1600, 3200).

Finally, we investigate the effect of increasing the number of spatial grid points on the
computational complexity of serial and parallel difference schemes. We define the speedup as
Sp = T1/Tp (T1 is the CPU time of implicit and Tp is the CPU time of parallel scheme) [37]. When the
number of spatial grid points is 100, 500, 1000, 2000, 3000, 4000, and 5000, respectively, the CPU time
of the three schemes is shown in Figure 5 and Table 3.

It can be seen that, when the number of spatial grid points becomes larger, the parallel difference
schemes in this paper show obvious superiority in computational efficiency in Figure 5. When M = 5000,
the CPU time of the two parallel schemes can be reduced by up to 2/3 compared with the serial
(classical implicit) difference scheme. When the number of spatial grid points becomes smaller, the CPU
time of the serial scheme and parallel scheme is similar. With the small number of spatial grid
points, the influence of data communication on the program loop will greatly reduce the efficiency of
parallel computing.
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Figure 5. Comparison of computational efficiency of three schemes.
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Table 3. Comparison of the three difference schemes’s CPU time (Unit: second).

100 500 1000 2000 3000 4000 5000

Implicit 9.90432 53.6988 139.582 359.223 499.958 900.628 1462.45
PASE-I 9.14516 44.5909 91.2816 171.389 272.927 368.622 493.003
PASI-E 10.5672 44.7052 91.4469 171.517 262.139 368.364 491.059

SP of PASE-I 1.08301 1.20425 1.52914 2.09594 1.83183 2.44322 2.96641
SP of PASI-E 0.93726 1.20117 1.52637 2.09437 1.90722 2.44494 2.97815

In Table 3, we can see that the speedup of PASE-I and PASI-E schemes will become more
prominent with the increase of computational domain. When the number of spatial grids is small
(100), the speedup of parallel difference scheme is near one, because the communication between
modules consumes a lot of CPU time. When the number of grid points is 5000, the speedup of parallel
difference schemes is optimal in this example. Therefore, data communication problems need to be
considered in parallel programming. When the amount of data (number of spatial grid points) is
large, the impact of program loop execution is much greater than the impact of data communication.
In this case, parallel computing is more effective, and, as the number of spatial grid points increases,
the efficiency of parallel computing becomes more obvious.

6. Conclusions

In this paper, the PASE-I and PASI-E schemes of multi-term time fractional diffusion equation
are constructed. The theoretical analysis of the two parallel schemes shows that both schemes are
unconditionally stable and convergent. The methods are simple and feasible, and keep high precision
of calculation. Numerical experiments verify the theoretical analysis, indicating that the advantages
of PASE-I and PASI-E parallel methods are more and more obvious compared with classical implicit
difference scheme with the increase of grid points. It is feasible to solve multi-term time fractional
diffusion equations by the PASE-I and PASI-E parallel natural difference methods. At the same
time, the methods can be easily extended to solve two-dimensional problems, especially suitable for
MIMD computers.
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