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Abstract: We study the robust dissipativity issue with respect to the Hopfield-type of complex-valued
neural network (HTCVNN) models incorporated with time-varying delays and linear fractional
uncertainties. To avoid the computational issues in the complex domain, we divide the original
complex-valued system into two real-valued systems. We devise an appropriate Lyapunov-Krasovskii
functional (LKF) equipped with general integral terms to facilitate the analysis. By exploiting the multiple
integral inequality method, the sufficient conditions for the dissipativity of HTCVNN models are obtained
via the linear matrix inequalities (LMIs). The MATLAB software package is used to solve the LMIs
effectively. We devise a number of numerical models and their empirical results positively ascertain the
obtained results.

Keywords: dissipativity analysis; Hopfield neural networks; integral inequality; time-varying delays

1. Introduction

Nowadays, many investigations related to the dynamical properties with respect to a variety of
complex-valued neural network (CVNN) models have been published in the literature. In the engineering
science domain, the applications of CVNN models have been reported by many researchers, e.g., for sonic
wave, electromagnetic wave, light wave, quantum devices, image processing as well as signal processing.
In regard to both the mathematical analysis and practical application, CVNN models have been widely
studied, and many effective methods on various dynamical analysis of CVNN models are available [1–15].
Mainly, the Hopfield-type of neural network (HTNN) models has been considered a key development
owing to their adaptive mathematical model capability, along with many powerful methods concerning
the stability of HTNN models [1,13,16–18].

Time delays naturally occur in almost every dynamical system, which could cause the unstable
behaviors of the resulting system [19–25]. Because of these characteristics, the stability of delayed NN
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models has been highly focused, resulting in many research studies with comprehensive results [26–39].
On the other hand, it is important to investigate the stability of NN models with the effects of linear
fractional uncertainties. Because, when practical systems are modelled, uncertainties of system parameters
are often included. From the application point of view, it is important to investigate NN models with
linear fractional uncertainties. Several methods for analyzing the dynamical properties of NN models with
linear fractional uncertainties have recently been proposed [23,24,39]. By using the Lyapunov function, the
robust stability of delayed NN models has been studied with linear fractional uncertainties [23]. In [39],
several sufficient conditions have been derived. The study focuses on impulsive NN models, whereby the
problem of state feedback synchronization control considering linear fractional uncertainties along with
mixed delays has been tackled.

An essential property pertaining to dynamical systems is the dissipativity theory. It provides more
knowledge than stability. This is because stability analysis is normally strictly related to the phenomenon
of energy dissipation or loss. Besides that, the dissipativity theory offers a critical methodology
for designing control systems through an input–output representation using system energy-related
contemplations. As a result, many publications on the dissipativity analysis of NN models are available
in the literature [26–37,40]. As an example, a number of new conditions with respect to the (Q, S, R)

dissipativity criteria, global exponential dissipativity, and global dissipativity have been developed for
a class of CVNN models in [31,37]. In [32], the use of Dini derivative concepts has resulted in novel
sufficient conditions for the dissipativity of complex-valued bi-directional associative memory NN models.
The dissipativity of discrete-time systems has been studied in [34]. A new concept of dissipativity has been
introduced to describe the changes in subsystems and dissipation of energy of the considered system. Most
of the existing studies treat the global dissipativity analysis of CVNN models under the global attractive
set. With respect to HTCVNN models, the underlying challenge pertaining to (Q, S, R) dissipativity
analysis has yet to be fully considered, which is a key research area.

In this paper, we design novel dissipativity criteria with respect to the HTCVNN models taking
into consideration both time-varying delays and linear fractional uncertainties by utilizing the Lyapunov
stability theory. To tackle the task, we devise an appropriate delay-dependent Lyapunov-Krasovskii
functional (LKF) incorporating general integral terms as well as utilize linear matrix inequality (LMI) and
multiple integral inequality to derive the sufficient conditions pertaining to dissipativity of the HTCVNN
models. In particular, unlike some traditional dissipativity analysis of CVNN models, we establish new
LMI-based dissipativity conditions by forming two equivalent real-valued NN models from a CVNN
model. Through several numerical examples, we demonstrate the usefulness of the results.

The remaining paper is arranged as follows. In Section 2, we define the problem statement formally.
We express the main results and the numerical examples in Sections 3 and 4, respectively. The conclusions
are presented in Section 5.

Notations: The Euclidean n-space, n × n real matrices are denoted by Rn,Rn×n, while the n
dimensional complex vectors, n×n complex matrices are denoted byCn,Cn×n, respectively. The imaginary
unit is denoted by i, where i =

√
−1, and the induced matrix 2-norm is denoted by ‖ · ‖. The complex

conjugate transpose and matrix transposition are donated by the superscripts ∗ and T. Given matrix
P , a positive (negative) definite matrix is denoted by P > 0 (P < 0). In addition, an identity matrix is
denoted by I , while the diagonal of a block diagonal matrix is denoted by diag{·}. Given a Hermitian
matrix, the conjugate transpose of the block is denoted by ?, while > denotes the symmetric terms in
a matrix.
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2. Problem Statement and Fundamentals

Given a CVHNN model with time-varying delays is expressed as
ṗx(t) = −dx px(t) +

n
∑

y=1
axygy(py(t− r(t))) + ux(t),

qx(t) = gx(px(t)),
px(t) = φx(t), t ∈ [−r, 0], x = 1, ..., n,

(1)

or 
ṗ(t) = −Dp(t) +Ag(p(t− r(t))) + u(t),
q(t) = g(p(t)),
p(t) = φ(t), t ∈ [−r, 0],

(2)

under the following assumptions:
(A1): The state vector is p(t) ∈ Cn; the disturbance input vector is u(t) ∈ Cn; the output vector is
q(t) ∈ Cn; the delayed connection weight matrix and the self-feedback connection weight matrix are
A = [axy]n×n ∈ Cn×n and D = diag{d1, ..., dn} ∈ Rn with dx > 0, respectively; while the initial condition
is φ(t).
(A2): The activation function gy(·), y = 1, ..., n satisfies the following Lipschitz condition for all p1, p2 ∈ C

|gy(p1)− gy(p2)| ≤ ly|p1 − p2|, y = 1, ..., n, (3)

where ly is a constant.
(A3): The time-varying delay function is r(t), which satisfies

0 ≤ r(t) ≤ r, ṙ(t) ≤ µ, (4)

where µ and r are known constants.
It should be remembered that the uncertainties associated with the weight coefficients of neurons

are unavoidable in network models. Therefore, the parameter uncertainties cannot be overlooked when
analyzing the stability of NN models. Therefore, the UHTCVNN model can be described by

ṗ(t) = −(D +4D(t))p(t) + (A+4A(t))g(p(t− r(t))) + u(t),
q(t) = g(p(t)),
p(t) = φ(t), t ∈ [−r, 0].

(5)

Note that4D(t),4A(t) = 4AR(t)+ i4AI(t) in (5) are the parameter uncertainties, and they satisfy:[
4D(t),4AR(t),4AI(t)

]
=G∆(t)

[
H1,H2,H3

]
, (6)

∆(t) =(I − JF (t))−1F (t), (7)

I − J TJ > 0. (8)

where the known constant real matrices are G,H1,H2,H3 and J ; the time-varying uncertain matrix is
F (t), which satisfies

FT(t)F (t) ≤ I . (9)
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Remark 1. From the inequalities (8) and (9), it is confirmed that (I − JF (t)) is invertible. Given J = 0, the
following norm-bounded parametric uncertainty form ∆T(t)∆(t) = FT(t)F (t) ≤ I can be obtained from the
linear fractional uncertainty of the form (6).

For a comprehensive analysis, let p(t) = x(t) + iy(t),A = AR + iAI , g(p(t − r(t))) = gR(x(t −
r(t)), y(t − r(t))) + igI(x(t − r(t)), y(t − r(t))), u(t) = uR(t) + iuI(t), q(t) = qR(t) + iqI(t), where the
imaginary unit is i.

The real and imaginary parts of the HTCVNN model in (5) are

dx(t) = [−(D +4D(t))x(t) + (AR +4AR(t))gR(x(t− r(t)),
y(t− r(t)))− (AI +4AI(t))gI(x(t− r(t)), y(t− r(t))) + uR(t)]dt,

dy(t) = [−(D +4D(t))y(t) + (AI +4AI(t))gR(x(t− r(t)), y(t− r(t)))
+(AR +4AR(t))gI(x(t− r(t)), y(t− r(t))) + uI(t)]dt,

qR(t) = gR(x(t), y(t)),
qI(t) = gI(x(t), y(t)).

(10)

From (10), an equivalent form of the model is

[
dx(t)
dy(t)

]
=

[
−
[
D +4D(t) 0

0 D +4D(t)

] [
x(t)
y(t)

]
+

[
AR +4AR(t) −AI −4AI(t)
AI +4AI(t) AR +4AR(t)

]

×
[

gR(x(t− r(t)), y(t− r(t)))
gI(x(t− r(t)), y(t− r(t)))

]
+

[
uR(t)
uI(t)

] ]
dt,[

qR(t)
qI(t)

]
=

[
gR(x(t), y(t))
gI(x(t), y(t))

]
,

(11)

which is equivalent to

[
dx(t)
dy(t)

]
=

[
−
[ [
D 0
0 D

]
+

[
4D(t) 0

0 4D(t)

] ] [
x(t)
y(t)

]
+

[ [
AR −AI

AI AR

]

+

[
4AR(t) −4AI(t)
4AI(t) 4AR(t)

] ] [
gR(x(t− r(t)), y(t− r(t)))
gI(x(t− r(t)), y(t− r(t)))

]
+

[
uR(t)
uI(t)

] ]
dt,[

qR(t)
qI(t)

]
=

[
gR(x(t), y(t))
gI(x(t), y(t))

]
.

(12)

Let

ẽ(t) =

[
x(t)
y(t)

]
, ũ(t) =

[
uR(t)
uI(t)

]
,

g̃(ẽ(t− r(t))) =

[
gR(x(t− r(t)), y(t− r(t)))
gI(x(t− r(t)), y(t− r(t)))

]
,

g̃(ẽ(t)) =

[
gR(x(t), y(t))
gI(x(t), y(t))

]
, z̃(t) =

[
qR(t)
qI(t)

]
,

D̃ =

[
D 0
0 D

]
, Ã =

[
AR −AI

AI AR

]
,
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4D̃ =

[
4D(t) 0

0 4D(t)

]
,

4Ã =

[
4AR(t) −4AI(t)
4AI(t) 4AR(t)

]
.

Then, we can express the model in (12) in an equivalent form of{
dẽ(t) = [−(D̃ +4D̃)ẽ(t) + (Ã+4Ã)g̃(ẽ(t− r(t))) + ũ(t)]dt,

z̃(t) = g̃(ẽ(t)).
(13)

From (6)–(8), the parameter uncertainties4D̃,4Ã satisfy:[
4D̃, 4Ã

]
= G̃∆̃(t)

[
H̃1, H̃2

]
, (14)

∆̃(t) = (Ĩ − J̃ F̃ (t))−1F̃ (t), (15)

Ĩ − J̃ TJ̃ > 0. (16)

where

G̃ =

[
G 0
0 G

]
, ∆̃(t) =

[
∆(t) 0

0 ∆(t)

]
, H̃1 =

[
H1 0
0 H1

]
. H̃2 =

[
H2 −H3

H3 H2

]
,

F̃ (t) =
[
F (t) 0

0 F (t)

]
, Ĩ =

[
I 0
0 I

]
, J̃ =

[
J 0
0 J

]
.

According to (A2), it is straightforward to obtain

(g(z1)− g(z2))
∗(g(z1)− g(z2)) ≤ (z1 − z2)

∗LTL(z1 − z2), (17)

where L = diag{l1, ..., ln}.
The real and imaginary parts of Equation (17) are

(g̃(ẽ1)− g̃(ẽ2))
T(g̃(ẽ1)− g̃(ẽ2)) ≤ (ẽ1 − ẽ2)

TL̃(ẽ1 − ẽ2), (18)

where L̃ =

[
LTL 0

0 LTL

]
.

Given the model in (13), the initial condition is

ẽ(t) = φ̃(t), t ∈ [−r, 0], (19)

where φ̃(t) = [φR(t), φI(t)]T .

Remark 2. It should be noted that, if we let4D̃ = 4Ã = 0, the NN model in (13) becomes{
dẽ(t) = [−D̃ẽ(t) + Ãg̃(ẽ(t− r(t))) + ũ(t)]dt,

z̃(t) = g̃(ẽ(t))
(20)
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The real-valued NN model in (20) is an equivalent form of the original model in (2). In addition, the model
in (5) is an equivalent form of the real-valued NN model in (13).

A number of key lemmas and definitions used to derive the main results are explained.

Definition 1 ([31]). Given the existence of a compact set S ⊆ Cn, whereby ∀p0 ∈ Cn, ∃T > 0, when t ≥
t0 + T, p(t, t0, p0) ⊆ S in which the solution of (5) from the initial state and time of p0 is denoted by p(t, t0, p0),
the CVNN model in (5) is said to be globally dissipative. In this case, S is called a globally attractive set. A set S is
called positive invariant if ∀p0 ∈ S implies p(t, t0, p0) ⊆ S for t ≥ t0.

Similar to the publications in [31,34,35,37], the energy supply function for the NN model in (5) is
defined as

G(u, q, T ) = 〈q, Qq〉T + 2〈q, Su〉T + 〈u, Ru〉T , (21)

where Q ≤ 0, and Q, S, R ∈ Cn×n. In addition,

〈a, b〉T =
∫ T

0
aTbdt, T ≥ 0.

Definition 2 ([31,37]). Subject to zero initial state, and given any T ≥ 0 and scalar α > 0, under zero initial state,
the CVNN model in (5) is said to be strictly (Q, S, R)-dissipative. The following inequality

G(u, q, T ) ≥ α〈u, u〉T , (22)

holds with respect to any non-zero input u ∈ L2[0, ∞).

For the model in (5), we can express the relation (22) in an equivalent dissipativity performance index,
as follows:

Jα,T =
∫ T

0

[ [
q(t)
u(t)

]∗ [
Q S
? R

] [
q(t)
u(t)

]
− αu(t)∗u(t)

]
dt. (23)

Remark 3. We notice from the available publications that a number of definitions for strictly
(Q, S, R)-dissipativity [27,30], global exponential disspativity and global dissipativity [31,33] are provided in
the Euclidean space Rn. These definitions have been extended in recent publication [31,34–37] to the complex
plane Cn.

At the same time, the energy supply function for the NN model in (13) can be defined as follows:

G(ũ, z̃, T ) = 〈z̃, Q̃z̃〉T + 2〈z̃, S̃ũ〉T + 〈ũ, R̃ũ〉T , (24)

where Q̃, S̃, R̃ ∈ Rn×n, and

〈a, b〉T =
∫ T

0
aTbdt, T ≥ 0.
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Definition 3. Given scalar α > 0 and T ≥ 0, and subject to zero initial condition, the NN model in (13) is said to
be strictly (Q̃, S̃, R̃)-dissipative. The following inequality

G(ũ, q̃, T ) ≥ α〈ũ, ũ〉T , (25)

holds for any nonzero input ũ ∈ L2[0, ∞).

Consider the NN model in (13), by dividing into the real and imaginary parts, we can write the
Inequality (25)

Jα,T =
∫ T

0

[ 
[

qR(t)
qI(t)

]
[

uR(t)
uI(t)

]


T 
[

QR −QI

QI QR

] [
SR −SI

SI SR

]

>

[
RR −RI

RI RR

]


[

qR(t)
qI(t)

]
[

uR(t)
uI(t)

]
− α

[
uR(t)
uI(t)

]T [
uR(t)
uI(t)

] ]
dt.

equivalently

Jα,T =
∫ T

0

[ [
z̃(t)
ũ(t)

]T [
Q̃ S̃
> R̃

] [
z̃(t)
ũ(t)

]
− αũ(t)T ũ(t)

]
dt. (26)

where

Q̃ =

[
QR −QI

QI QR

]
, S̃ =

[
SR −SI

SI SR

]
, R̃ =

[
RR −RI

RI RR

]
.

Lemma 1 ([38]). Consider scalars s1 and s2 satisfying s2 − s1 > 0 and 0 ≤ n ∈ Z and a positive-definite matrix
O ∈ Rn×n. Subject to a continuously differentiable function ẽ : [s1, s2]→ Rn, the following inequality holds:

− (s2 − s1)
n

n!

∫ s2

s1

∫ s2

z1

...
∫ s2

zn
ẽT(u)Onẽ(u)dudzn...dz1 ≤−

[ ∫ s2

s1

∫ s2

z1

...
∫ s2

zn
ẽ(u)dudzn...dz1

]T

×On

[ ∫ s2

s1

∫ s2

z1

...
∫ s2

zn
ẽ(u)dudzn...dz1

]
.

Lemma 2 ([39]). Suppose ∆(t) is given by (6)-(8). GivenM and N are of appropriate dimensions and matrix
Ξ = ΞT the inequality

Ξ +M∆(t)N + (M∆(t)N )T < 0,

holds for F (t) in such a way that FT(t)F (t) ≤ I subject to some ε, if and only if Ξ M εN T

MT −εI εJ T

εN εJ −εI

 < 0.
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3. Main Results

The dissipativity analysis of the HTCVNN model in (13) is yet to be fully studied in this literature.
To overcome this issue, we derive some sufficient conditions with respect to dissiaptivity pertaining to the
NN model in (13). For clarity, we use the following notations:

ẽt := ẽ(t),

ẽr(t) := ẽ(t− r(t)),

g̃t := g̃(e(t)),

g̃r(t) := g̃(ẽ(t− r(t))),

ũt := ũ(t),

q̃t := q̃(t),

z̃t := z̃(t),

ỹnt :=
m

∑
n=1

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽ(s)dsdzn−1...dz1

]
,

ξt = col[ẽt ẽr(t) g̃t g̃r(t) ỹnt ũt].

Dissipativity Analysis

By employing the Lyapunov stability theory and integral inequality approach, some sufficient
conditions are derived. The aim is to make sure the (Q̃, S̃, R̃)-α dissipativity of the CVHNN model
in (20) in terms of LMIs, as in Theorem 1.

Theorem 1. Based on Assumption (A2), we can divide the activation function into both the real and imaginary
parts. The NN model in (20) is strictly (Q̃, S̃, R̃)-α dissipative subject to scalars µ > 0 and r > 0, and with the
existence of scalars 0 < ε1, 0 < ε2, 0 < α and matrices 0 < P , 0 < Q, 0 < Rn (n = 1, 2, ...m) whereby the
following LMI holds:

0̃ =



0̃1 0 0 PÃ 0 P
> 0̃2 0 0 0 0
> > 0̃3 0 0 −S̃
> > > −ε2I 0 0
> > > > −Rn 0
> > > > > 0̃4


< 0, (27)

where 0̃1 := −PD̃ − D̃TP +Q+
m

∑
n=1

( rn
n!
)2Rn + ε1L̃, 0̃2 := −(1− µ)Q+ ε2L̃, 0̃3 := −ε1I − Q̃, 0̃4 :=

−R̃ + αI .

Proof. Given the NN model in (20), the following Lyapunov function candidate is considered

V(t) = ẽT
t P ẽt +

∫ t

t−r(t)
ẽT(s)Qẽ(s)ds+

m

∑
n=1

rn

n!

∫ t

t−r

∫ t

z1

...
∫ t

zn
ẽT(s)Rnẽ(s)dsdzn...dz1. (28)



Mathematics 2020, 8, 595 9 of 22

We can obtain the time-derivative of V(t), i.e.

V̇(t) ≤ 2ẽT
t P [−D̃ẽt + Ãg̃r(t) + ũt] + ẽT

t Qẽt − (1− µ)ẽT
r(t)Qẽr(t)

+
m

∑
n=1

[(
rn

n!

)2

ẽT
t Rnẽt −

rn

n!

∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽT(s)Rnẽ(s)dsdzn−1...dz1

]
, (29)

V̇(t) ≤ ẽT
t (−PD̃ − D̃TP)ẽt + ẽT

t (PÃ)g̃r(t) + ẽT
t P ũt + ẽT

t Qẽt − (1− µ)ẽT
r(t)Qẽr(t)

+
m

∑
n=1

[(
rn

n!

)2

ẽT
t Rnẽt −

rn

n!

∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽT(s)Rnẽ(s)dsdzn−1...dz1

]
. (30)

We can estimate the terms in (30) through Lemma 1, i.e.,

−
m

∑
n=1

rn

n!

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽT(s)Rnẽ(s)dsdzn−1...dz1

]
≤−

m

∑
n=1

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽ(s)dsdzn−1...dz1

]T
Rn

×
m

∑
n=1

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽ(s)dsdzn−1...dz1

]
. (31)

Moreover, from (18), it follows that

0 ≤ ε1[ẽ
T
t L̃ẽt − g̃T

t g̃t], (32)

0 ≤ ε2[ẽ
T
r(t)L̃ẽr(t) − g̃T

r(t) g̃r(t)], (33)

for ε1, ε2 > 0.
Combining (30)–(33), we have

V̇(t)− z̃T
t Q̃z̃t − z̃T

t S̃ũt − ũT
t (R̃− αI)ũt ≤ẽT

t (−PD̃ − D̃TP)ẽt + ẽT
t (PÃ)g̃r(t) + ẽT

t P ũt

+ ẽT
t Qẽt − (1− µ)ẽT

r(t)Qẽr(t) +
m

∑
n=1

[(
rn

n!

)2

ẽT
t Rnẽt

−
m

∑
n=1

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽ(s)dsdzn−1...dz1

]T
Rn

×
m

∑
n=1

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽ(s)dsdzn−1...dz1

]
+ ε1ẽ

T
t L̃ẽt − ε1 g̃T

t g̃t + ε2ẽ
T
r(t)L̃ẽr(t) − ε2 g̃T

r(t) g̃r(t)

− z̃T
t Q̃z̃t − z̃T

t S̃ũt − ũT
t (R̃− αI)ũt, (34)

which is equivalent to

V̇(t)− z̃T
t Q̃z̃t − z̃T

t S̃ũt − ũT
t (R̃− αI)ũt ≤ ξ̃T

t 0̃ξ̃t, (35)

where 0̃ is defined in (27), while ξ̃t is defined in the main results.
From (26), we can obtain

Jα,T =
∫ T

0

[ [
z̃t

ũt

]T [
Q̃ S̃
> R̃

] [
z̃t

ũt

]
− αũT

t ũt

]
dt. (36)
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Suppose 0̃ < 0, we have

∫ T
0
V̇(t)dt− Jα,T ≤

∫ T
0

ξ̃T
t 0̃ξ̃tdt. (37)

It can be deducted from (27) that

∫ T
0
V̇(t)dt ≤ Jα,T . (38)

It can be concluded that (25) holds, subject to zero initial condition. This implies the NN model in (20)
is strictly (Q̃, S̃, R̃)− α− dissipative in accordance with Definition 3. The proof is completed.

Based on Theorem 1, the (Q̃, S̃, R̃)− α− dissipative criteria with respect to the UHTCVNN model in
(13) is given to Theorem 2 along with linear fractional uncertainties.

Theorem 2. Based on Assumption (A2), we can divide the activation function into two: real and imaginary parts.
The NN model in (13) is (Q̃, S̃, R̃)-α dissipative for given scalars r > 0 and µ > 0 and under the existence of scalars
0 < ε1, 0 < ε2, 0 < ε3, 0 < α and matrices 0 < P , 0 < Q, 0 < Rn (n = 1, 2, ...,m) in such a way that the
following LMI holds: 0̃ Λ̃1G̃ ε3Λ̃T

2
> −ε3I ε3J̃ T

> > −ε3I

 < 0, (39)

where 0̃ is defined in (27) and Λ̃1 = [PT 0 0 0 0 0]T , Λ̃2 = [−H̃1 0 0 H̃2 0 0].

Proof. By replacing D̃, Ã by (D̃ + G̃∆̃(t)H̃1), (Ã+ G̃∆̃(t)H̃2) in the proof of Theorem 1 leads to

0̃+ Λ̃1G̃∆̃(t)Λ̃2 + (Λ̃1G̃∆̃(t)Λ̃2)
T < 0. (40)

As a result, we have the following inequality from Lemma 2:0̃ Λ̃1G̃ ε3Λ̃T
2

> −ε3I ε3J̃ T

> > −ε3I

 < 0. (41)

This completes the proof.

Remark 4. When the disturbance input does not appear in (20) and (13), Corollary 1 and Corollary 2 can be derived
by using Theorem 1 and Theorem 2, respectively.

Corollary 1. Based on Assumption (A2), we can divide the activation function into two: real and imaginary parts.
The NN model in (20) with ũ(t) = 0 is global asymptotic stable subject to scalars r > 0 and µ > 0 and with the
existence of scalars 0 < ε1, 0 < ε2 and matrices 0 < P , 0 < Q, 0 < Rn (n = 1, 2, ...,m) in such a way that the
following LMI holds:
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0̂ =


0̂1 0 0 PÃ 0
> 0̂2 0 0 0
> > −ε1I 0 0
> > > −ε2I 0
> > > > −Rn

 < 0, (42)

where 0̂1 := −PD̃ − D̃TP +Q+
m

∑
n=1

( rn
n!
)2Rn + ε1L̃, 0̂2 := −(1− µ)Q+ ε2L̃.

Corollary 2. Based on Assumption (A2), we can divide the activation function into two: real and imaginary parts.
The NN model in (13) with ũ(t) = 0 is robustly global asymptotical stable subject to scalars r > 0 and µ > 0 and
with the existence of scalars 0 < ε1, 0 < ε2, 0 < ε3 and matrices 0 < P , 0 < Q, 0 < Rn (n = 1, 2, ...,m) in such a
way that the following LMI holds: 0̂ Λ̂1G̃ ε3Λ̂T

2
> −ε3I ε3J̃ T

> > −ε3I

 < 0, (43)

where 0̂ is defined in (42) and

Λ̂1 = [PT 0 0 0 0]T , Λ̂2 = [−H̃1 0 0 H̃2 0].

Remark 5. In recent years, dynamical analysis with respect to various CVNN models has been
conducted [1–15,31–37]. In this regard, the research interest pertaining to HTCVNN models has increased
significantly in recent years [1,13,16–18]. Nonetheless, the dissipativity analysis of Hopfield-type of NN models has
not yet been studied. As a result, we undertake the first attempt to provide (Q̃, S̃, R̃)-α- dissipativity analysis with
respect to the HTCVNN models in this paper.

Remark 6. Unlike some existing studies on dissipativity analysis of the CVNN models [31–37], we derive the
sufficient conditions to safeguard the dissipativity of HTCVNN models. An equivalent real-valued model is
formulated from the original model. Moreover, the obtained dissipativity conditions (27) and (39) are expressed in
LMIs. The feasible solutions can be obtained using the MATLAB software package.

Remark 7. In this paper, we construct an appropriate LKF candidate along with multiple integral terms, such

as
m

∑
n=1

rn
n!

∫ t
t−r

∫ t
z1

...
∫ t
zn

ẽT(s)Rnẽ(s)dsdzn...dz1. Its derivative has been employed by applying Jensen’s multiple

integral inequality such as

−
m

∑
n=1

rn

n!

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽT(s)Rnẽ(s)dsdzn−1...dz1

]
≤−

m

∑
n=1

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽ(s)dsdzn−1...dz1

]T

Rn

×
m

∑
n=1

[ ∫ t

t−r

∫ t

z1

...
∫ t

zn−1

ẽ(s)dsdzn−1...dz1

]
.

Furthermore, to solve this term, we define, ỹnt =
∫ t

t−r

∫ t
z1

...
∫ t
zn−1

ẽT(s)dsdzn−1...dz1 (n = 1, 2, ...,m). With
this notation, some delay-dependent dissipativity conditions are derived in this paper based on the properties
of ỹ1

t , ỹ2
t , ỹ3

t . In addition, the similar criteria can be derived by using a sequence of integral terms such as
ỹ4

t , ỹ5
t , ..., ỹm−1

t , ỹmt .
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Remark 8. With respect to Assumption (A2), the presented dissipativity and stability results in this paper are
invalid in the situation when we cannot convert the complex-valued activation function gy(·), y = 1, ..., n into its
real and imaginary part.

4. Numerical Examples

We assess the usefulness of the results using a number of numerical examples.

Example 1. The HTCVNN model in (20) is considered, i.e.,

D =

[
6 0
0 6

]
, A =

[
1 + i −2 + i
1− i −1 + i

]
,L =

[
0.5 0
0 0.5

]
.

Let g̃x(ẽx) = 0.8 tanh(ẽx), x = 1, 2 and r(t) = 0.2sint + 0.6 which satisfies r = 0.8 and µ = 0.3.
We choose

Q =

[
−3.8 + 4.8i −1.5 + 2.8i
−0.4 + 3.8i −2.8− 1.1i

]
, S =

[
0.3 + 0.5i −0.6− 0.2i
0.4− 0.6i 0.5 + 0.3i

]
, R =

[
4.5 −0.5− i

−0.5 + i 2.5

]
.

Assume that g̃x(ẽ) = g̃R
x (x, y) + ig̃I

x(x, y), x = 1, 2. By simple calculation, we have

D̃ =


6 0 0 0
0 6 0 0
0 0 6 0
0 0 0 6

 , Ã =


1 −2 −1 −1
1 −1 1 −1
1 1 1 −2
−1 1 1 −1

 , L̃ =


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 ,

Q̃ =


−3.8 −1.5 −4.8 −2.8
−0.4 −2.8 −3.8 1.1
4.8 2.8 −3.8 −1.5
3.8 −1.1 −4.8 −2.8

 , S̃ =


0.3 −0.6 −0.5 0.2
0.4 0.5 0.6 −0.3
0.5 −0.2 0.3 −0.6
−0.6 0.3 0.4 0.5

 ,

R̃ =


4.5 0.5 0 1
−0.5 2.5 −1 0

0 −1 4.5 0.5
1 0 −0.5 2.5

 .

By using the MATLAB software package, the LMI (27) is true with n = 1, 2, 3. With 10 randomly generated
initial values, Figures 1–4 depict the time response of the real and imaginary parts pertaining to the model in (20)
with ũ(t) = sin(0.02 t)e−0.005 t, t ≥ 0. When ũ(t) = 0 and subject to the same initial conditions, the time
responsed of the real and imaginary parts are shown in Figures 5–8.
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Figure 1. An illustration on the time responses with respect to the real parts pertaining to the model in (20),
in which ũ(t) = sin(0.02 t)e−0.005 t in Example 1.
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Figure 2. An illustration of the time responses with respect to the imaginary parts pertaining to the model
in (20), in which ũ(t) = sin(0.02 t)e−0.005 t in Example 1.
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Figure 3. An illustration of the time responses between the real subspace pertaining to the model in (20),
in which ũ(t) = sin(0.02 t)e−0.005 t in Example 1.
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Figure 4. An illustration of the time responses between the imaginary subspace pertaining to the model
in (20), in which ũ(t) = sin(0.02 t)e−0.005 t in Example 1.
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Figure 5. An illustration of the time responses with respect to the real parts pertaining to the model in (20),
in which ũ(t) = 0 in Example 1.
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Figure 6. An illustration of the time responses with respect to the imaginary parts pertaining to the model
in (20), in which ũ(t) = 0 in Example 1.
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Figure 7. An illustration of the time responses between the real subspace pertaining to the model in (20),
in which ũ(t) = 0 in Example 1.
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Figure 8. An illustration of the time responses between the imaginary subspace pertaining to the model
in (20), in which ũ(t) = 0 in Example 1.

Example 2. The UHTCVNN model in (13) is considered, i.e.,

D =

[
3 0
0 3

]
, A =

[
1 + i −2 + i
1− i −1 + i

]
,G =

[
0.1 0
0 0.1

]
, H1 =

[
0.2 0
0 0.2

]
,

H2 =

[
0.2 0
0 0.2

]
, H3 =

[
0.1 0
0 0.1

]
,J =

[
0.3 0
0 0.3

]
,L =

[
1
2 0
0 1

2

]
, I =

[
1 0
0 1

]

Take Q, S, R are the same as defined in Example 1, while g̃x(ẽx) = 0.2(|ẽx + 1| − |ẽx − 1|), x = 1, 2. and
r(t) = 0.2sint + 0.6 which satisfies r = 0.8, µ = 0.3 and F (t) = 0.2sint.
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Assume that g̃x(ẽ) = g̃R
x (x, y) + ig̃I

x(x, y), x = 1, 2. By simple calculation, we have

D̃ =


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

 , Ã =


1 −2 −1 −1
1 −1 1 −1
1 1 1 −2
−1 1 1 −1

 , G̃ =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 ,

H̃1 =


0.2 0 0 0
0 0.2 0 0
0 0 0.2 0
0 0 0 0.2

 , H̃2 =


0.2 0 −0.1 0
0 0.2 0 −0.1

0.1 0 0.2 0
0 0.1 0 0.2

 , J̃ =


0.3 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.3

 ,

Ĩ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , L̃ =


1
2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

2

 .

and Q̃, S̃, R̃ are similar to those defined in Example 1. By using the MATLAB software package, the LMI (39)
is satisfied with n = 1, 2, 3. Subject to the initial values ẽ(0) = [−1, 0.8,−1.2, 0.6]T , Figure 9 depict the time
responses with respect to both the real and imaginary parts pertaining to the model in (13), in which ũ(t) =

sin(0.02 t)e−0.005 t, t ≥ 0. Based on the same initial conditions and with ũ(t) = 0, the time responses with respect
to both the real and imaginary parts of the model in (13) are shown in Figure 10.
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x
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2

y
1
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Figure 9. An illustration of the time responses with respect to the real and imaginary parts of the states p1

and p2 pertaining to the model in (13) in a 2D space, in which ũ(t) = sin(0.02 t)e−0.005 t in Example 2.
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Figure 10. An illustration of the time responses with respect to the real and imaginary parts of the states p1

and p2 pertaining to the model in (13) in a 2D space, in which ũ(t) = 0 in Example 2.

Example 3. The HTCVNN model in (20) with ũ(t) = 0 is considered, i.e.,

d
dt
ẽ(t) = −

[
5 0
0 5

]
ẽ(t) +

[
1 + i −2 + i
1− i −1 + 0i

]
g̃(ẽ(t− r(t))).

and L =

[
1
2 0
0 1

2

]
, g̃x(ẽx) = 0.5 tanh(ẽx), x = 1, 2.

Assume that g̃x(ẽ) = g̃R
x (x, y) + ig̃I

x(x, y), x = 1, 2. It is straightforward to obtain

D̃ =


5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5

 , Ã =


1 −2 −1 −1
1 −1 1 0
1 1 1 −2
−1 0 1 −1

 , L̃ =


1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4

 .

Take r(t) = 0.6 + 0.2sin t which satisfies r = 0.8 and µ = 0.3, and with the above parameters, we can use
the MATLAB software package, the LMI (41) is true with n = 1, 2, 3. Based on 20 randomly generated initial
values, Figures 11–14 depict the time responses with respect to both the imaginary and real parts pertaining to
the model in (20). From the illustrations, we can confirm that the equilibrium point of the model in (20) is global
asymptotic stable.
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Figure 11. An illustration of the time responses with respect to the imaginary parts pertaining to the model
in (20), in which ũ(t) = 0 in Example 3.
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Figure 12. An illustration of the time responses with respect to the real parts pertaining to the model in (20),
in which ũ(t) = 0 in Example 3.
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Figure 13. An illustration of the time responses between the imaginary subspace pertaining to the model
in (20), in which ũ(t) = 0 in Example 3.
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Figure 14. An illustration of the time responses between the real subspace pertaining to the model in (20),
in which ũ(t) = 0 in Example 3.

Example 4. The CVHNN model in (13) with ũ(t) = 0 is considered, i.e.,

D =

[
2 0
0 2

]
, A =

[
1 + i −2 + i
1− i −1 + 0i

]
,G =

[
0.1 0
0 0.1

]
, H1 =

[
0.2 0
0 0.2

]
,

H2 =

[
0.2 0
0 0.2

]
, H3 =

[
0.1 0
0 0.1

]
,J =

[
0.3 0
0 0.3

]
, L =

[
1
4 0
0 1

4

]
,

g̃x(ẽx) = 0.5(|ẽx + 1| − |ẽx − 1|), x = 1, 2, F (t) = 0.2sint.

Assume that g̃x(ẽ) = g̃R
x (x, y) + ig̃I

x(x, y), x = 1, 2. By simple calculation, we have

D̃ =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 , Ã =


1 −2 −1 −1
1 −1 1 0
1 1 1 −2
−1 0 1 −1

 , G̃ =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 ,

H̃1 =


0.2 0 0 0
0 0.2 0 0
0 0 0.2 0
0 0 0 0.2

 , H̃2 =


0.2 0 −0.1 0
0 0.2 0 −0.1

0.1 0 0.2 0
0 0.1 0 0.2

 , J̃ =


0.3 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.3

 .

L̃ = diag{0.5, 0.5, 0.5, 0.5}. Take r(t) = 0.6 + 0.2sint which satisfies r = 0.8 and µ = 0.3, and with the above
parameters, we can use the MATLAB, the LMI (43) is true with n = 1, 2, 3. We obtain the following results with the
initial condition ẽ(0) = [−0.8, 1.5,−1, 0.5]T . The time responses pertaining to the model in (13) with ũ(t) = 0 are
depicted in Figures 15 and 16. According to Corollary 2, we can confirm that the equilibrium point of the model in
(5) or the equivalent real-valued model in (13) is global asymptotic stable.
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Figure 15. An illustration of the time responses with respect to both the real and imaginary parts of the
states p1 and p2 pertaining to the model in (13) in a 2D space, in which ũ(t) = 0 in Example 4.
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Figure 16. An illustration of the time responses between the real and imaginary subspace pertaining to the
model in (13), in which ũ(t) = 0 in Example 4.

5. Conclusions

An investigation on the robust dissipativity with respect to the HTCVNN models with linear
fractional uncertainties and time-varying delays was conducted. To facilitate the analysis, we devised
an appropriate LKF with general integral terms and employed the multiple integral inequality method
to yield the sufficient conditions of dissipativity with respect to the HTCVNN models in the form of
LMIs. The MATLAB software package was used to solve the LMIs effectively. We also illustrated the
feasibility of the results through several numerical models and their simulation results. Note that the
features of HTCVNNs are closely connected with other CVNN models. As a result, we intend to extend
the obtained results to study various dynamical behaviours of different fractional-order CVNN models in
our future research.
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