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Abstract

:

When the number of lens groups is large, the zoom locus becomes complicated and thus cannot be determined by analytical means. By the conventional calculation method, it is possible to calculate the zoom locus only when a specific lens group is fixed or the number of lens groups is small. To solve this problem, we employed the Padé approximation to find the locus of each group of zoom lenses as an analytic form of a rational function consisting of the ratio of polynomials, programmed in MATLAB. The Padé approximation is obtained from the initial data of the locus of each lens group. Subsequently, we verify that the obtained locus of lens groups satisfies the effective focal length (EFL) and the back focal length (BFL). Afterwards, the Padé approximation was applied again to confirm that the error of BFL is within the depth of focus for all zoom positions. In this way, the zoom locus for each lens group of the optical system with many moving lens groups was obtained as an analytical rational function. The practicality of this method was verified by application to a complicated zoom lens system with five or more lens groups using preset patents.
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1. Introduction


A zoom lens is an optical system, where the effective focal length (EFL) or magnification can change continuously, whereas the image distance remains fixed [1]. To commercialize this setup, when moving the lens group, the zoom locus must be calculated such that the EFL or magnification continuously changes to the desired value. The function for the path of the moving lens group must hence be differentiable.



Each lens group must move continuously in the real product; however, the lens group is discontinuously placed at a specific position in the optical design process. Therefore, according to the optical design, it is necessary to find the zoom locus of the continuous lens group by interpolation from these discontinuous nodes. The most accessible method to connect each node is to use linear interpolation [2], as shown in Figure 1a. However, in the cam, which is a component converting rotational motion into linear motion processes with linear interpolation, the lens group does not move smoothly around each node [3,4]. Therefore, in the case of a zoom lens, the locus of the lens group should be calculated to smoothly connect the node, as shown in Figure 1b. By calculating the locus of each lens group in such a way that it is continuous and differentiable, the cam barrel can be made, as shown in Figure 1c. In Figure 1a,b, the arrows and circles represent cam roller components and zoom locus, respectively.



There are several ways to find the zoom locus. Basically, we want to find the unknown variables in the zoom equations. In general, however, there are many more unknown variables than the number of zoom equations, hence the solution cannot be obtained. However, in the past, a specific lens group was often fixed in a zoom lens, hence there was an analytical method considering the conditions of a fixed lens group relative to an image plane [5,6,7].



Recently, however, all lens groups have been moved to increase zoom magnification and reduce product size. Particularly in the case of a zoom lens system with a large change in magnification, the aberration change is also large when the lens group is moved from the wide position to the tele position [9]. Therefore, the number of moving groups is increased to correct this aberration, and thus the zoom locus becomes complicated. Further, since there is no fixed lens group, there are more unknown variables than the number of zoom equations. Therefore, to solve this problem, a method estimating the movement of some lens groups to satisfy a desired back focal length (BFL) or effective focal length (EFL) after spline interpolation from nodes of each lens group has been proposed. At this time, when calculating the movement of lens groups, it is possible to calculate the differential matrix and iterative calculation by considering the zoom equations and constraints as nonlinear simultaneous equations [10,11]. However, this iterative calculation method has the disadvantage of a complicated calculation method, which takes a long time. To solve this problem, an analytical method calculating the displacement of one or two lens groups with the desired value of BFL or EFL has been proposed [12,13].



However, this method also results in a numerically calculated total locus of the lens group. Therefore, the gap is made up of very tight discrete values. If the zoom locus is to be made smoother, the locus needs to be recalculated at even tighter intervals. Further, to find the minimum spacing of the lens group, these methods cannot be accurately obtained.



To solve this problem, we aim to calculate the locus of all lens groups of the zoom lens in the form of an analytical polynomial, unlike conventional methods. The interpolation method from these discrete values to the polynomial rational function is referred to as the Padé approximation [14]. The Padé approximation expresses the function values in the form of a rational function, which is the ratio of two polynomials, to solve the shortcoming of the Taylor series’ narrow convergence radius [15]. There is the advantage that the function shape is smooth, and the inflection point is small. Therefore, even with an optical system with high zoom magnification, a smooth zoom locus can be obtained, and the locus can be expressed as a function. Further, this method can be a definite contribution to improve the operational feeling of the product. It is possible to calculate the locus of each group from the existing zoom locus calculation method, however none of the studied methods have obtained the locus of each lens group in the form of an analytic function.



The optical products, used as an example to confirm the zoom locus calculation method, are shown in Figure 2. The patents for Figure 2a,b are in [16] and [17], respectively. These optical systems are a product currently on the market, and they have a large diameter optical system with a small F/#. The detailed design method of this zoom lens system is mentioned in [18], and this study only focuses on the locus calculation method.




2. Materials and Methods


Figure 3 shows the optical layout for a zoom lens comprising a total of N thin lens groups. To calculate the zoom locus, we need to trace paraxial rays. Gaussian brackets are very convenient for programming [19,20,21]. In this case, the calculation method of the Gaussian bracket is as shown in Equations (1)–(5).


[] = 1



(1)






[α1] = α1



(2)






[α1, α2] = α1α2 + 1



(3)






[α1, α2, α3] = [α1α2] α3 + [α1]



(4)






[α1, α2, α3,…, αi] = [α1, α2, α3,…, αi-1] αi +[α1, α2, …, αi-2],



(5)




where α is the refractive power of the lens group or the spacing between each lens group. Thus, the heights of the rays at the image plane and the EFL of the optical system are shown in Equations (6) and (7). This is referred to as the zooming equation.


  [  k 1  , −  z 1  ,  k 2  , … , −  z  i − 1   ,  k i  , −  z i  , … , −  z  j − 1   ,  k j  , −  z j  , … ,  k  N − 1   , −  z  N − 1   ,  k N  ] = K  



(6)






  [  k 1  , −  z 1  ,  k 2  , … , −  z  i − 1   ,  k i  , −  z i  , … , −  z  j − 1   ,  k j  , −  z j  , … ,  k  N − 1   , −  z  N − 1   ,  k N  , −  z N  ] = 0  



(7)




where k is the refractive power of each lens group, and z is the spacing of each lens group. In addition, the subscript is the number of the lens group, and K is the inverse of the EFL as the refractive power of the entire optical system.



If variances in K change the field angle, z must change accordingly. z must be interpolated in a suitable method. In this study, we employ the Padé approximation. However, in some sections, Equations (6) and (7) may not be satisfied. In particular, zN is the BFL of the optical system in Equation (7), and if this value is within the depth of focus, there is no issue. However, it is assumed that Equations (6) and (7) are not satisfied with the interpolation method. Therefore, a specific lens group must be moved for this case. Namely, if the i-th and j-th lens groups are moved by Δzi and Δzj as shown in Figure 3, Equations (6) and (7) are changed to Equations (8) and (9).


  [  k 1  , −  z 1  ,  k 2  , … , −  z  i − 1   + Δ  z i  ,  k i  , −  z i  − Δ  z i  , … , −  z  j − 1   + Δ  z j  ,  k j  , −  z j  − Δ  z j  , … ,  k  N − 1   , −  z  N − 1   ,  k N  ] = K  



(8)






  [  k 1  , −  z 1  ,  k 2  , … , −  z  i − 1   + Δ  z i  ,  k i  , −  z i  − Δ  z i  , … , −  z  j − 1   + Δ  z j  ,  k j  , −  z j  − Δ  z j  , … ,  k  N − 1   , −  z  N − 1   ,  k N  , −  z N  ] = 0  



(9)







Solving Equations (8) and (9), zi and zj do not satisfy the formula calculated by the Padé approximation. Therefore, zi and zj must obtain the rational function again by the Padé approximation. In this method, zi and zj must compute the equation by the Padé approximation until they satisfy Equations (8) and (9). If a particular lens group needs to be moved linearly and satisfy only the desired BFL, then moving just one lens group is not a problem. In this case, therefore, Equation (10) may be satisfied. Likewise, until zi is satisfied, zi must be determined repeatedly by the Padé approximation.


  [  k 1  , −  z 1  ,  k 2  , … , −  z  i − 1   + Δ  z i  ,  k i  , −  z i  − Δ  z i  , … ,  k  N − 1   , −  z  N − 1   ,  k N  , −  z N  ] = 0  



(10)







Naturally, Equations (8)–(10) cannot be fully satisfied with the Padé approximation, and the error in zN, i.e., the distance from the rear surface of the last lens group to the image plane, is due to the depth of focus (DOF). If there is no issue, we repeat this several times to calculate z with a sufficiently small error. This is because the Padé approximation is a relatively accurate calculation method [22]. This process is summarized in Figure 4, where it showed the flow chart of the method for calculating the zoom locus in this study. The programming tool used is MATLAB [23].



Subsequently, Equations (8)–(10) are calculated in further detail. Using the characteristics of the Gaussian bracket, the unknown ki is exported out of the Gaussian bracket and written as the first equation for ki [24,25,26,27].


    [  k 1  , −  z 1  ,  k 2  , … , −  z  i − 1   + Δ  z i  ] ⋅  k i  ⋅ [ −  z i  − Δ  z i  , … ,  k  N − 1   , −  z  N − 1   ,  k N  , −  z N  ] +     [  k 1  , −  z 1  ,  k 2  , … , −  z  i − 1   −  z i  , … ,  k  N − 1   , −  z  N − 1   ,  k N  , −  z N  ] = 0    



(11)







If ∆zi is taken out of the Gaussian bracket and arranged in Equation (11), it can be summarized as a quadratic equation for ∆zi, as shown in Equation (12) below.


    ( ( −  z  i − 1   + Δ  z i  ) ⋅ [  k 1  , −  z 1  , … ,  k  i − 1   ] + [  k 1  , … ,  z  i − 2   ] ) ⋅  k i  ⋅ ( ( −  z i  − Δ  z i  ) ⋅ [  k  i + 1   , … ,  k N  , −  z N  ] + [  z  i + 1   , … ,  k N  , −  z N  ] )     + [  k 1  , −  z 1  ,  k 2  , … , −  z  i − 1   −  z i  , … ,  k  N − 1   , −  z  N − 1   ,  k N  , −  z N  ] = 0    



(12)







Equation (12), with respect to ∆zi, is identical to Equation (13). Solving Equation (13) yields two solutions, hence we have to choose a solution with a small absolute value.


    − B D  k i  ⋅ Δ  z i 2  +  k i   (  B C − A D  )  Δ  z i  +  k i  A C + E = 0     A ≡  [  −  z 0  ,  k 1  , −  z 1  ,  k 2  , ⋯ , −  z  i − 1    ]      B ≡  [  −  z 0  ,  k 1  , −  z 1  ,  k 2  , ⋯ ,  k  i − 1    ]      C ≡  [  −  z i  , ⋯ ,  k  n − 1   , −  z  n − 1   ,  k n  , −  z n   ]      D ≡  [  −  k  i + 1   , ⋯ ,  k  n − 1   , −  z  n − 1   ,  k n  , −  z n   ]      E ≡  [  −  z 0  ,  k 1  , −  z 1  ,  k 2  , ⋯ , −  z  i − 1   −  z i  , ⋯ ,  k  n − 1   , −  z  n − 1   ,  k n  , −  z n   ]     



(13)







Equations (8) and (9) apply the properties of Gaussian brackets in a similar manner. However, the formula is complicated, and the results are mentioned in References [12,13]. Nevertheless, Equations (8) and (9) can be solved using the “solve” command in MATLAB. Thereby, the solution of the unknown ∆zi can be found and reflected in the zoom locus. The Padé approximation is a generalized form of Taylor series expansion, and it is defined as Equation (14) below as the ratio of two polynomials [28]:


  [ L / M ] =  P L  ( x ) /  Q M  ( x )  



(14)




where PL(x) is an L-order polynomial such as Equation (15), and QM (x) is an M-order polynomial such as Equation (16).


   P L  ( x ) =  α 0  +  α 1  ( x −  x 0  ) +  α 2    ( x −  x 0  )  2  +  α 3    ( x −  x 0  )  3  + ⋯ +  α L    ( x −  x 0  )  L   



(15)






   Q M  ( x ) =  β 0  +  β 1  ( x −  x 0  ) +  β 2    ( x −  x 0  )  2  +  β 3    ( x −  x 0  )  3  + ⋯ +  β M    ( x −  x 0  )  M   



(16)







Generally, we make an approximation by assuming that L and M are the same. Here, the constant term of the denominator is normalized to 1 to express the equation as shown in Equation (17).


  f ( x ) ≈    α 1   ( x −  x 0  )    n  +  α 2   ( x −  x 0  )     n − 1   + ⋯ +  α n   ( x −  x 0  )  +  f 0     β 1   ( x −  x 0  )    n  +  β 2   ( x −  x 0  )     n − 1   + ⋯ +  β n   ( x −  x 0  )  + 1    



(17)




where α is the coefficient of the numerator term, β is the coefficient of the denominator term, x is the position to start approximation, and the x0 value represents the translation of the function to the x-axis. Since each coefficient is paired, an even number of data is required. To calculate the coefficients of the numerator and denominator in Equation (17), we can arrange as Equations (18)–(21).


   α 1   (  x i  −  x 0  )    n  + ⋯ +  α n   (  x i  −  x 0  )  +  f 0  =  f i  [  β 1    (  x i  −  x 0  )  n  + ⋯ +  β n  (  x i  −  x 0  ) + 1 ]  



(18)






   α 1   (  x i  −  x 0  )    n  + ⋯ +  α n   (  x i  −  x 0  )  =  f i  [  β 1    (  x i  −  x 0  )  n  + ⋯ +  β n  (  x i  −  x 0  ) ] +  f i  −  f 0   



(19)






   α 1   (  x i  −  x 0  )     n − 1   + ⋯ +  α n  =  f i  [  β 1    (  x i  −  x 0  )   n − 1   + ⋯ +  β n  ] + (  f i  −  f 0  ) / (  x i  −  x 0  )  



(20)






   α 1   (  x i  −  x 0  )     n − 1   + ⋯ +  α n  −  f i  [  β 1    (  x i  −  x 0  )   n − 1   + ⋯ +  β n  ] = (  f i  −  f 0  ) / (  x i  −  x 0  )  



(21)







Equations (18)–(21) in matrix form are the same as in Equation (22).


   [        (  x 1  −  x 0  )   n − 1      ⋯   1    −  f 1    (  x 1  −  x 0  )   n − 1      ⋯    −  f 1          (  x 2  −  x 0  )   n − 1      ⋯   1    −  f 2    (  x 2  −  x 0  )   n − 1      ⋯    −  f 2       ⋮   ⋯   ⋮   ⋮   ⋯   ⋮        (  x n  −  x 0  )   n − 1      ⋯   1    −  f n    (  x n  −  x 0  )   n − 1      ⋯    −  f n          (  x  n + 1   −  x 0  )   n − 1      ⋯   1    −  f  n + 1     (  x  n + 1   −  x 0  )   n − 1      ⋯    −  f  n + 1        ⋮   ⋯   ⋮   ⋮   ⋯   ⋮        (  x  2 n   −  x 0  )   n − 1      ⋯   1    −  f  2 n     (  x  2 n   −  x 0  )   n − 1      ⋯    −  f  2 n        ]   [       α 1         α 2       ⋮       α n         β 1       ⋮       β n       ]  =  [         f 1  −  f 0     x 1  −  x 0             f 2  −  f 0     x 2  −  x 0         ⋮         f n  −  f 0     x n  −  x 0             f  n + 1   −  f 0     x  n + 1   −  x 0         ⋮         f  2 n   −  f 0     x  2 n   −  x 0         ]   



(22)







In the above matrix equations, the values except coefficients are determined by the optical design and are unknown variables α and β. To determine these, both sides are multiplied by the inverse matrix of the right term, and the unknown variables can be calculated as shown in Equation (23).


   [       α 1         α 2       ⋮       α n         β 1       ⋮       β n       ]  =    [        (  x 1  −  x 0  )   n − 1      ⋯   1    −  f 1    (  x 1  −  x 0  )   n − 1      ⋯    −  f 1          (  x 2  −  x 0  )   n − 1      ⋯   1    −  f 2    (  x 2  −  x 0  )   n − 1      ⋯    −  f 2       ⋮   ⋯   ⋮   ⋮   ⋯   ⋮        (  x n  −  x 0  )   n − 1      ⋯   1    −  f n    (  x n  −  x 0  )   n − 1      ⋯    −  f n          (  x  n + 1   −  x 0  )   n − 1      ⋯   1    −  f  n + 1     (  x  n + 1   −  x 0  )   n − 1      ⋯    −  f  n + 1        ⋮   ⋯   ⋮   ⋮   ⋯   ⋮        (  x  2 n   −  x 0  )   n − 1      ⋯   1    −  f  2 n     (  x  2 n   −  x 0  )   n − 1      ⋯    −  f  2 n        ]    − 1    [         f 1  −  f 0     x 1  −  x 0             f 2  −  f 0     x 2  −  x 0         ⋮         f n  −  f 0     x n  −  x 0             f  n + 1   −  f 0     x  n + 1   −  x 0         ⋮         f  2 n   −  f 0     x  2 n   −  x 0         ]   



(23)







Algorithm 1 shows the MATLAB code for calculating Equation (23). Thus, the coefficients of each term can be calculated to obtain an analytic function, as shown in Equation (17). The description of the MATLAB code is shown in Algorithm A1 of Appendix A.





	Algorithm 1: MATLAB code for Padé approximation



	 1:  function (): PadeApproximation(f,f0,x,x0,n)

 2:  X = x-x0

 3:  df = (f-f0)./X

 4:  A = zeros(2*n,2*n)

 5:  for i = 1:n-1

 6:  A(:,i) = X.^(n-i)

 7:  A(:,n+i) = -f.*(X.^(n-i))

 8:  end

 9:  A(:,n) = ones(2*n,1)

10: A(:,2*n) = -f

11: B = A\df

12: a = B(1:n,:)

13: b = B((n+1):2*n,:)






To analyze the error, we need to find the BFL which corresponds to zN in Equation (9). Therefore, using the property of the Gaussian bracket, Equation (24) is constructed [29]. If the BFL falls within the DOF, the error can be ignored. DOF is given by Equation (25) [30]. The pixel size of the sensor used in this study is assumed to be 5 μm. If the error of the BFL is smaller than the DOF, there is no need to reapply the Padé approximation.


  B F L =  z N  =   [  k 1  , −  z 1  ,  k 2  , −  z 2  , ⋯ ,  k  i − 1   , −  z  i − 1   ]   [  k 1  , −  z 1  ,  k 2  , −  z 2  , ⋯ ,  k  i − 1   , −  z  i − 1   ,  k i  ]    



(24)






  D O F = 2 ⋅ p ⋅ F N O  



(25)




where FNO in Equation (25) is the F/# (f-number) of the optical system, and p is the pixel size of the sensor.




3. Results and Discussion


We attempt to verify this method by calculating the zoom locus of a complex zoom system with a large number of moving groups. Table 1 summarizes the results of the zoom locus calculated by applying the Padé approximation for two optical systems. The two optical systems were calculated for every two cases. As a result of the calculation of the zoom locus, the error between the method mentioned in this paper and method by the conventional locus calculation is less than about 0.001 mm, and this error is within DOF, so it does not affect the resolution performances of the optical systems. Figures and Tables which are not mentioned in Table 1 are the results of the initial locus calculation before applying the Padé approximation.



Table 2 shows the distance between the lens groups in the optical system for Example 1 of patent KR 10-1890304 [16], which is assumed to be a zoom lens product of 16–50 mm, F/2.0 to F/2.8. The optical layout for this optical system is shown in Figure 5, and it can be seen that it consists of a total of five lens groups. You can also see that the second lens group is fixed relative to the image plane.



Table 3 shows the result of interpolating 11 data points using the Padé approximation as shown in Table 2, assuming the first lens group moves linearly in the optical system, as shown in Figure 5. The rotational movement of the zoom ring is converted into a linear movement of the lens group by the cam [31,32,33,34]. Typically, the products rotate the ring to change the field of view. The rotation angle of the zoom ring is determined for each product, however the maximum angle of the zoom ring was normalized in this study.



Figure 6 shows the zoom locus, EFL change, and BFL error drawn from the data according to Table 3. Here, Figure 6 is a graph drawn up to the image plane and actually shows the locus of the lens group movement. As shown in Figure 6c, the error of BFL is within the DOF, hence there is no need for additional correction or iteration calculation. Table 4 shows the coefficients of the rational function for the displacement of each lens group calculated by the Padé approximation.



Table 5 shows the results of the Padé approximation for the spacing of each lens group, assuming that the EFL varies linearly with the cam angle. Figure 7 likewise shows the locus, EFL changes, and BFL errors of each lens group.



As shown in Figure 7c, the error of BFL is larger than DOF. Therefore, the solution must be made by combining Equations (8) and (9). At this time, the first and the fourth lens groups were corrected. The results for this case are shown in Table 6 and Figure 8.



The results obtained by applying the Padé approximation to the data shown in Table 6 and Figure 8 are illustrated in Table 7 and Figure 9. Further, the coefficients for the equations of each lens group are shown in Table 8.



Table 9 shows the distance between the lens groups in the optical system for Example 1 of patent KR-2014-0111861 [17], which is assumed to be a zoom lens product of 50-150 mm, F/2.8. The optical layout for this optical system is shown in Figure 10, and it can be seen that it consists of a total of five lens groups. You can also see that the first and the fifth lens group are fixed relative to the image plane. Similarly, the results of the Padé approximation assuming that the second lens group moves in a straight line from the data shown in Table 9 are listed in Table 10. Further, from this data, the loci of each lens group, EFL, BFL error of the whole optical system are shown in Figure 11.



As shown in Figure 11c, the error is larger than DOF, hence the fourth lens group needs to move to correct it. The Padé approximation of the fourth lens group used in the calibration is shown in Table 11. Similarly, Table 11 lists the locus, EFL, and BFL errors of each lens group, as shown in Figure 12. Moreover, the coefficients of the function according to the movement of each lens group are shown in Table 12. Figure 12c indicates that the error for BFL is small enough to be ignored.



At this time, the locus of each lens group was calculated such that the EFL changes linearly. In this case, the third and fourth lens groups were corrected. After correction, the distance between each lens group was calculated using the Padé approximation. Figure 13 shows the locus, EFL change, and BFL error of each lens group from Table 13. In addition, the coefficients of the function for the amount of movement of each lens group are shown in Table 14. Furthermore, in this case, the Padé approximation can represent the distance of each lens group as an analytic function, and the error is sufficiently small, as shown in Figure 13c.




4. Conclusions


The analytical zoom locus can be obtained by performing conventional zoom locus calculations. However, these methods require constraints on specific groups. Further, there is a problem of separately solving the zoom equations according to the change of the constraint. In this study, however, the movement of each lens group was determined as an analytic function by interpolating with the Padé approximation. In this process, the specific lens group can be corrected by moving BFL or EFL to the desired value. The magnitude of movement of this particular lens group was then interpolated back to the Padé approximation and expressed as an analytic function. This calculation process was iteratively calculated until the BFL’s error was within DOF. In this manner, we confirm that the movement of all lens groups can be expressed as an analytic function using conventional optical systems.
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Appendix A. Description for MATLAB Code for Padé Approximation




	Algorithm A1: MATLAB code description



	 1: function (): PadeApproximation(f,f0,x,x0,n)

 2: X = x-x0 % calculate initial values for cam angle

 3: df = (f-f0)./X % calculate the right side of Equation (22)

 4: A = zeros(2*n,2*n) % Initialization for matrix A at Equation (22)

 5: % Calculation of matrix A

 6: for i = 1:n-1

 7:  A(:,i) = X.^(n-i)

 8: A(:,n+i) = -f.*(X.^(n-i))

 9: end

10: A(:,n) = ones(2*n,1)

11: A(:,2*n) = -f

12: B = A\df % Calculation of Equation (22)

13: a = B(1:n,:) % Polynomial coefficients for the denominator

14: b = B((n+1):2*n,:) % Polynomial coefficients for the numerator
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Figure 1. (a) Linear interpolation, (b) curved interpolation, and (c) barrel for cam [8]. 
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Figure 2. (a) Samsung NX 16-50 mm F2.0-2.8 S ED OIS [16]; (b) Samsung 50–150 mm F2.8 S ED OIS [17]. 
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Figure 3. Optical layout with i-th and j-th group movement. 
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Figure 4. Flow chart for calculating zoom locus with Padé approximation. 
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Figure 5. Optical layout of the first example in KR10-1890304 [16]. 
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Figure 6. Movement of each lens group assuming linear movement of the first lens group. (a) Zoom locus of each lens group, (b) effective focal length (EFL) of the optical system, and (c) error for image plane. 
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Figure 7. Linearization of EFL using the Padé approximation, as shown in Table 5. (a) Zoom locus of each lens group, (b) EFL of this optical system, and (c) error for image plane. 
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Figure 8. Result of correcting error for image plane and EFL by moving first and fourth lens groups, as shown in Table 6. (a) Zoom locus of each lens group, (b) EFL of this optical system, and (c) error for image plane. 
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Figure 9. Results of the reapplication of the Padé approximation to results in Table 6. (a) Zoom locus of each lens group, (b) EFL of this optical system, and (c) error for image plane. 
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Figure 10. Optical layout of the first example in KR-2014-0111861 [17]. 
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Figure 11. Linearization of the second lens group using the Padé approximation, as shown in Table 10. (a) Zoom locus of each lens group, (b) EFL of this optical system, and (c) error for image plane (BFL). 
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Figure 12. Graphs of the reapplication of the Padé approximation after correcting BFL by moving the fourth lens group from the results in Table 11. (a) Zoom locus of each lens group, (b) EFL of this optical system, and (c) error for image plane. 
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Figure 13. Graphs according to Table 13. (a) Zoom locus of each lens group, (b) EFL of this optical system, and (c) error for image plane. 
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Table 1. Summary of examples of optical systems and locus calculation results used in this paper.






Table 1. Summary of examples of optical systems and locus calculation results used in this paper.










	
	KR10-1890304 (Figure 2a)
	KR-2014-0111861 (Figure 2b)





	Optical Layout
	Figure 5
	Figure 10



	Linearization for the 1st group
	Table 3 (locus), Figure 6 (locus), Table 4 (coefficients)
	



	Linearization for the 2nd group
	
	Table 11 (locus), Figure 12 (locus), Table 12 (coefficients)



	Linearization for EFL
	Table 7 (locus), Figure 9 (locus), Table 8 (coefficients)
	Table 13 (locus), Figure 13 (locus), Table 14 (coefficients)
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Table 2. Zoom data of the first example in KR10-1890304.
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	Zoom
	EFL
	THI S5
	THI S11
	THI S14
	THI S20
	THI S32
	BFL





	1 (wide)
	16.5995
	1.2000
	10.4100
	12.3700
	10.6500
	20.7200
	0.5004



	2
	18.6691
	4.5000
	12.3581
	10.0464
	8.3049
	23.4319
	0.5104



	3
	23.6565
	10.0000
	13.3228
	6.7996
	5.2673
	28.7509
	0.5082



	4
	26.3337
	12.2000
	12.9100
	5.7200
	4.2801
	31.2020
	0.5072



	5
	39.5063
	19.6800
	8.0926
	2.9859
	1.9437
	41.0420
	0.5103



	6 (tele)
	48.5032
	23.2000
	4.0000
	2.2000
	1.4700
	46.3700
	0.5053







THI S5 is the distance between the first and second lens groups, THI S5 is the distance between the second and third lens groups, THI S14 is the distance between the third and fourth lens groups, THI S20 is the distance between the fourth and fifth lens groups, THI S32 is the distance between the fifth lens group and cover glass, and back focal length (BFL) is the distance between the cover glass and image plane.
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Table 3. Results of Padé approximation assuming the first lens group moves linearly.
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	Normalization Cam Angle
	EFL
	THI S5
	THI S11
	THI S14
	THI S20
	THI S32
	BFL





	1 (tele)
	48.5032
	23.2000
	4.0000
	2.2000
	1.4700
	46.3700
	0.5053



	0.9
	42.6389
	21.0000
	6.6948
	2.6536
	1.7127
	43.0024
	0.5088



	0.8
	37.5687
	18.8000
	8.9332
	3.2324
	2.1306
	39.7675
	0.5111



	0.7
	33.2143
	16.6000
	10.7152
	3.9364
	2.7054
	36.7110
	0.5106



	0.6
	29.4954
	14.4000
	12.0408
	4.7656
	3.4246
	33.8540
	0.5082



	0.5
	26.3337
	12.2000
	12.9100
	5.7200
	4.2801
	31.2020
	0.5072



	0.4
	23.6565
	10.0000
	13.3228
	6.7996
	5.2673
	28.7509
	0.5083



	0.3
	21.3981
	7.8000
	13.2792
	8.0044
	6.3843
	26.4910
	0.5103



	0.2
	19.4996
	5.6000
	12.7792
	9.3344
	7.6316
	24.4098
	0.5116



	0.1
	17.9099
	3.4000
	11.8229
	10.7897
	9.0119
	22.4935
	0.5072



	0 (wide)
	16.5995
	1.2000
	10.4100
	12.3700
	10.650
	20.7200
	0.5004
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Table 4. Coefficients of rational function for each lens group calculated by the Padé approximation.
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n

	
Group 1

	
Group 2

	
Group 3




	
αn

	
βn

	
αn

	
βn






	
1

	
   f ( x ) = 22 x + 1.2   

	
−1.332760 × 1015

	
3.733451 × 109

	
9.246665 × 1014

	
3.991029 × 1010




	
2

	
9.583397 × 1014

	
−6.689493 × 109

	
−2.427209 × 1015

	
3.880115 × 1010




	
3

	
6.080430 × 1014

	
5.840851 × 1013

	
1.827784 × 1015

	
1.477584 × 1014




	
n

	
Group 4

	
Group 5

	
EFL




	
αn

	
βn

	
αn

	
βn

	
αn

	
βn




	
1

	
−6.889293 × 1011

	
1.212915 × 1010

	
−7.480184 × 1012

	
5.389472 × 1011

	
−5.969384 × 1012

	
−1.903471 × 1011




	
2

	
1.525974 × 1012

	
1.124267 × 1010

	
−1.842148 × 1012

	
−2.102355 × 1012

	
−2.019942 × 1011

	
7.736730 × 1011




	
3

	
−9.329287 × 1011

	
−8.859894 × 1010

	
5.106835 × 1013

	
2.463689 × 1012

	
−1.790674 × 1013

	
−1.079749 × 1012
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Table 5. Linearization of EFL using the Padé approximation.
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	Normalization Cam Angle
	EFL
	THI S5
	THI S11
	THI S14
	THI S20
	THI S32
	BFL





	1
	48.5032
	23.2000
	4.0000
	2.2000
	1.4700
	46.3700
	0.5053



	0.9
	45.3128
	22.0439
	5.4732
	2.4182
	1.5681
	44.5806
	0.5373



	0.8
	42.1225
	20.7916
	6.9264
	2.7003
	1.7412
	42.6845
	0.5268



	0.7
	38.9321
	19.4244
	8.3443
	3.0560
	1.9962
	40.6701
	0.5070



	0.6
	35.7417
	17.9161
	9.7042
	3.5032
	2.3476
	38.5226
	0.4935



	0.5
	32.5514
	16.2301
	10.9704
	4.0703
	2.8210
	36.2236
	0.4918



	0.4
	29.3610
	14.3119
	12.0848
	4.8031
	3.4586
	33.7479
	0.4991



	0.3
	26.1706
	12.0761
	12.9453
	5.7774
	4.3321
	31.0586
	0.5074



	0.2
	22.9803
	9.3795
	13.3569
	7.1271
	5.5697
	28.0955
	0.5072



	0.1
	19.7899
	5.9594
	12.8942
	9.1105
	7.4217
	24.7435
	0.5029



	0
	16.5995
	1.2000
	10.4100
	12.3700
	10.6500
	20.7200
	0.5004
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Table 6. Result of correcting the error for the image plane and EFL by moving the first and fourth lens groups.
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	Normalization Cam Angle
	EFL
	THI S5
	THI S11
	THI S14
	THI S20
	THI S32
	BFL





	1
	48.5032
	23.2070
	4.0000
	2.2000
	1.4693
	46.3700
	0.5004



	0.9
	45.3128
	22.0489
	5.4732
	2.4259
	1.5604
	44.5806
	0.5004



	0.8
	42.1225
	20.8026
	6.9264
	2.7061
	1.7354
	42.6845
	0.5004



	0.7
	38.9321
	19.4419
	8.3443
	3.0572
	1.9950
	40.6701
	0.5004



	0.6
	35.7417
	17.9377
	9.7042
	3.5007
	2.3501
	38.5226
	0.5004



	0.5
	32.5514
	16.2513
	10.9704
	4.0671
	2.8242
	36.2236
	0.5004



	0.4
	29.3610
	14.3296
	12.0848
	4.8023
	3.4594
	33.7479
	0.5004



	0.3
	26.1706
	12.0918
	12.9453
	5.7800
	4.3295
	31.0586
	0.5004



	0.2
	22.9803
	9.4019
	13.3569
	7.1301
	5.5667
	28.0955
	0.5004



	0.1
	19.7899
	5.9946
	12.8942
	9.1115
	7.4207
	24.7435
	0.5004



	0
	16.5995
	1.2000
	10.4100
	12.3700
	10.6500
	20.7200
	0.5004
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Table 7. Results of reapplying the Padé approximation to results in Table 6.






Table 7. Results of reapplying the Padé approximation to results in Table 6.





	Normalization Cam Angle
	EFL
	THI S5
	THI S11
	THI S14
	THI S20
	THI S32
	BFL





	1
	48.5032
	23.2070
	4.0000
	2.2000
	1.4693
	46.3700
	0.5004



	0.9
	45.3128
	22.0488
	5.4732
	2.4259
	1.5604
	44.5806
	0.5004



	0.8
	42.1225
	20.8025
	6.9264
	2.7061
	1.7354
	42.6845
	0.5004



	0.7
	38.9321
	19.4419
	8.3443
	3.0572
	1.9950
	40.6701
	0.5004



	0.6
	35.7417
	17.9377
	9.7042
	3.5007
	2.3501
	38.5226
	0.5004



	0.5
	32.5514
	16.2512
	10.9704
	4.0671
	2.8242
	36.2236
	0.5004



	0.4
	29.3610
	14.3295
	12.0848
	4.8023
	3.4594
	33.7479
	0.5004



	0.3
	26.1706
	12.092
	12.9453
	5.7800
	4.3295
	31.0586
	0.5004



	0.2
	22.9803
	9.4019
	13.3569
	7.1301
	5.5667
	28.0955
	0.5004



	0.1
	19.7899
	5.9946
	12.8942
	9.1115
	7.4207
	24.7435
	0.5004



	0
	16.5995
	1.2000
	10.4100
	12.3700
	10.650
	20.7200
	0.5004
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Table 8. Coefficients of the rational function for each lens group calculated by the Padé approximation, shown in Table 5.
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n

	
Group 1

	
Group 2

	
Group 3




	
αn

	
βn

	
αn

	
βn

	
αn

	
βn






	
1

	
−2.036482 × 1013

	
−4.344269 × 1011

	
2.513836 × 1014

	
−1.295515 × 1012

	
−1.251574 × 1013

	
−5.637689 × 1012




	
2

	
4.065651 × 1013

	
3.101308 × 1011

	
−7.759830 × 1014

	
−1.166387 × 1013

	
3.884953 × 1013

	
−5.173306 × 1012




	
3

	
−3.779113 × 1012

	
1.142540 × 1012

	
8.215034 × 1014

	
2.242109 × 1013

	
−1.034856 × 1014

	
6.488446 × 1012




	
4

	
−1.301273 × 1013

	
−6.974780 × 1011

	
−3.303085 × 1014

	
−9.862428 × 1012

	
9.636515 × 1013

	
−1.459382 × 1012




	
5

	
1.640220 × 1012

	
−1.282749 × 1011

	
2.398983 × 1013

	
−7.652251 × 1011

	
−3.162410 × 1013

	
−1.122307 × 1012




	
6

	
3.796005 × 1010

	
3.063338 × 1011

	
7.709175 × 1012

	
7.395548 × 1011

	
−3.042863 × 1013

	
−2.460873 × 1012




	
n

	
Group 4

	
Group 5

	
EFL




	
αn

	
βn

	
αn

	
βn




	
1

	
8.556871 × 1011

	
−3.590836 × 1011

	
−7.832881 × 1015

	
−7.009690 × 1013

	
   f ( x ) = 31.9 x + 16.5995   




	
2

	
−3.284057 × 1012

	
8.114808 × 1011

	
3.797327 × 1015

	
−1.224683 × 1014




	
3

	
3.988490 × 1012

	
−1.233108 × 1011

	
3.077817 × 1015

	
1.975847 × 1014




	
4

	
−1.212015 × 1012

	
−3.565934 × 1011

	
−1.750141 × 1015

	
−6.028183 × 1013




	
5

	
−2.864645 × 1011

	
−1.744259 × 1011

	
2.959681 × 1014

	
−4.615632 × 1011




	
6

	
−4.173828 × 1011

	
−4.019088 × 1010

	
1.389837 × 1014

	
6.706708 × 1012
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Table 9. Zoom data of the first example in KR10-2014-011186.
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	Number of Zoom
	EFL
	THI S7
	THI S13
	THI S15
	THI S20
	THI S39
	BFL





	1 (Wide)
	51.4947
	2.2569
	6.3454
	18.1084
	23.6443
	25.3410
	1.0063



	2
	56.2267
	6.1254
	6.0855
	17.3773
	20.7905
	25.3410
	1.0063



	3
	61.8577
	10.0161
	6.1163
	16.4780
	17.7378
	25.3410
	1.0183



	4
	68.6140
	13.8965
	6.4696
	15.3905
	14.5932
	25.3410
	1.0110



	5
	77.0188
	17.7743
	7.1378
	14.0380
	11.4052
	25.3410
	1.0063



	6 (Tele)
	145.3643
	32.0985
	12.3055
	3.6140
	2.3370
	25.3410
	1.0063







THI S7 is the distance between the first and second groups, THI S13 is the distance between the second and third lens groups, THI S15 is the distance between the third and fourth lens groups, THI S20 is the distance between the fourth and fifth groups, THI S39 is the distance between the fifth lens group and cover glass, and BFL is the distance between the cover glass and image plane.
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Table 10. Padé approximation linearization of the second lens group for the optical system shown in Figure 10.






Table 10. Padé approximation linearization of the second lens group for the optical system shown in Figure 10.





	Normalization Cam Angle
	EFL
	THI S7
	THI S13
	THI S15
	THI S20
	THI S39
	BFL





	0
	51.4947
	2.25690
	6.34540
	18.1084
	23.6443
	25.3410
	1.0063



	0.1
	55.0677
	5.24110
	6.12470
	17.5608
	21.4672
	25.3410
	0.9984



	0.2
	59.1477
	8.22520
	6.06140
	16.9121
	19.1575
	25.3410
	1.0166



	0.3
	63.7943
	11.2094
	6.19100
	16.1668
	16.7796
	25.3410
	1.0170



	0.4
	69.1913
	14.1935
	6.50970
	15.2975
	14.3497
	25.3410
	1.0102



	0.5
	75.5902
	17.1777
	7.01470
	14.2674
	11.8953
	25.3410
	1.0061



	0.6
	83.3501
	20.1619
	7.70410
	13.0250
	9.4613
	25.3410
	1.0133



	0.7
	93.0091
	23.1460
	8.57720
	11.4949
	7.1209
	25.3410
	1.0380



	0.8
	105.4162
	26.1302
	9.63430
	9.5620
	4.9944
	25.3410
	1.0772



	0.9
	121.9990
	29.1143
	10.8763
	7.0412
	3.2833
	25.3410
	1.1020



	1
	145.3643
	32.0985
	12.3055
	3.6140
	2.3370
	25.3410
	1.0064
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Table 11. Results of reapplying the Padé approximation after correcting BFL by moving the fourth lens group from the results in Table 10.






Table 11. Results of reapplying the Padé approximation after correcting BFL by moving the fourth lens group from the results in Table 10.





	Normalization Cam Angle
	EFL
	THI S7
	THI S13
	THI S15
	THI S20
	THI S39
	BFL





	1
	145.3645
	32.0985
	12.3055
	3.6140
	2.3370
	25.3410
	1.00629



	0.9
	121.9377
	29.1143
	10.8763
	7.0885
	3.2359
	25.3410
	1.00629



	0.8
	105.3703
	26.1302
	9.6343
	9.5971
	4.9593
	25.3410
	1.00634



	0.7
	92.9890
	23.1460
	8.5772
	11.5106
	7.1052
	25.3410
	1.00633



	0.6
	83.3463
	20.1619
	7.7041
	13.0285
	9.4579
	25.3410
	1.00626



	0.5
	75.5900
	17.1777
	7.0147
	14.2673
	11.8952
	25.3410
	1.00628



	0.4
	69.1856
	14.1935
	6.5097
	15.2995
	14.3477
	25.3410
	1.00623



	0.3
	69.1856
	14.1935
	6.5097
	15.2995
	14.3477
	25.3410
	1.00623



	0.2
	63.7811
	11.2094
	6.1910
	16.1722
	16.7742
	25.3410
	1.00618



	0.1
	59.1353
	8.2252
	6.0614
	16.9173
	19.1523
	25.3410
	1.00622



	0
	55.0774
	5.2411
	6.1247
	17.5569
	21.4712
	25.3410
	1.00628
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Table 12. Coefficients of the rational function for each lens group calculated by the Padé approximation shown in Table 11.






Table 12. Coefficients of the rational function for each lens group calculated by the Padé approximation shown in Table 11.





	
n

	
Group 1

	
Group 2

	
Group 3




	
αn

	
βn

	
αn

	
βn






	
1

	
   f ( x ) = 26.8574 x + 5.2411   

	
9.783476 × 1012

	
−4.653744 × 1010

	
7.740465 × 1012

	
−2.192537 × 1012




	
2

	
−1.250194 × 1013

	
1.458901 × 1011

	
−1.165847 × 1014

	
−2.075092 × 1012




	
3

	
1.097399 × 1013

	
9.178999 × 1011

	
−9.678796 × 1014

	
−3.574061 × 1013




	
4

	
−6.766977 × 1012

	
−9.712168 × 1011

	
1.356876 × 1015

	
7.172526 × 1013




	
5

	
9.947731 × 1011

	
1.557708 × 1011

	
−2.068031 × 1014

	
−1.142129 ×1013




	
n

	
Group 4

	
Group 5

	
EFL




	
αn

	
βn

	
αn

	
βn

	
αn

	
βn




	
1

	
−1.584780 × 1013

	
−1.491557 × 1011

	
Fix Group

	
−1.995529 × 1012

	
−1.731668 × 1011




	
2

	
3.216840 × 1013

	
7.157712 × 1011

	
3.607046 × 1011

	
−5.906835 × 1010




	
3

	
−9.722916 × 1012

	
−6.658744 × 1011

	
4.230997 × 1013

	
−9.473708 × 1011




	
4

	
−1.353134 × 1013

	
−3.075905 × 1011

	
1.114415 × 1014

	
5.137988 × 1012




	
5

	
6.636467 × 1012

	
2.796794 × 1011

	
−2.321274 × 1014

	
−4.508796 × 1012
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Table 13. After moving the third and fourth lens groups to correct EFL and BFL, results of reapplying the Padé approximation to linearize EFL for the optical system shown in Figure 10.






Table 13. After moving the third and fourth lens groups to correct EFL and BFL, results of reapplying the Padé approximation to linearize EFL for the optical system shown in Figure 10.





	Normalization Cam Angle
	EFL
	THI S7
	THI S13
	THI S15
	THI S20
	THI S39
	BFL





	1
	145.3644
	32.0985
	12.3055
	3.6140
	2.33700
	25.3410
	1.0063



	0.9
	135.9774
	31.0361
	11.7720
	4.9973
	2.61080
	25.3410
	1.0062



	0.8
	126.5904
	29.8029
	11.1841
	6.3916
	3.06450
	25.3410
	1.0062



	0.7
	117.2035
	28.3552
	10.5361
	7.7992
	3.75100
	25.3410
	1.0063



	0.6
	107.8165
	26.6339
	9.82450
	9.2227
	4.74020
	25.3410
	1.0062



	0.5
	98.42950
	24.5569
	9.04930
	10.6648
	6.12260
	25.3410
	1.0064



	0.4
	89.04260
	22.0077
	8.22050
	12.1287
	8.01330
	25.3410
	1.0062



	0.3
	79.65560
	18.8174
	7.37070
	13.6161
	10.5531
	25.3410
	1.0062



	0.2
	70.26860
	14.7366
	6.58550
	15.1247
	13.9042
	25.3410
	1.0062



	0.1
	60.88170
	9.39600
	6.08100
	16.6388
	18.2339
	25.3410
	1.0062



	0
	51.49470
	2.25690
	6.34540
	18.1084
	23.6443
	25.3410
	1.0063
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Table 14. Coefficients of the rational function for the locus of each lens group calculated by the Padé approximation in Table 13.






Table 14. Coefficients of the rational function for the locus of each lens group calculated by the Padé approximation in Table 13.





	
n

	
Group 1

	
Group 2

	
Group 3




	
αn

	
βn

	
αn

	
βn

	
αn

	
βn






	
1

	
−2.181989 × 1014

	
−4.735851 × 1012

	
6.212852 × 1012

	
2.899227 × 1011

	
8.970257 × 1014

	
1.268275 × 1011




	
2

	
1.023146 × 1014

	
2.250370 × 1011

	
4.658154 × 1012

	
4.072067 × 1011

	
−1.287229 × 1015

	
−6.935987 × 1013




	
3

	
−1.976953 × 1013

	
3.917116 × 1011

	
−1.525487 × 1013

	
−4.694700 × 1011

	
−2.371261 × 1014

	
1.789717 × 1013




	
4

	
−1.199393 × 1013

	
−3.190916 × 1011

	
4.940926 × 1012

	
−3.629294 × 1011

	
5.026126 × 1014

	
2.838136 × 1013




	
5

	
9.792404 × 1012

	
3.347322 × 1010

	
6.108839 × 1008

	
1.426433 × 1011

	
9.668934 × 1013

	
2.990567 × 1012




	
6

	
2.693676 × 1011

	
1.183512 × 1011

	
5.102177 × 1011

	
7.940791 × 1012

	
−5.512953 × 1013

	
−3.045419 × 1012




	
n

	
Group 4

	
Group 5

	
EFL




	
αn

	
βn




	
1

	
2.032312 × 1013

	
2.834559 × 1012

	
Fix Group

	
   f ( x ) = 93.8697 x + 51.4947   




	
2

	
−1.806261 × 1014

	
−9.617145 × 1012




	
3

	
3.980726 × 1014

	
−1.753622 × 1012




	
4

	
−3.716712 × 1014

	
−1.703606 × 1012




	
5

	
1.145219 × 1014

	
5.965493 × 1012




	
6

	
1.041810 × 1013

	
4.396177 × 1011
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